Как найти производную функции по направлению вектора

Производная функции по направлению

Как найти?

Постановка задачи

Найти производную функции $ u(x,y,z) $ в точке $ M (x_1,y_1,z_1) $ по направлению вектора $ overline{l} = (l_x,l_y,l_z) $

План решения

Если для функции $ u(x,y,z) $ существует производная в точке $ M(x_1,y_1,z_1) $, то значит в этой точке существует производная по любому направлению $ overline{l} $ и находится по формуле:

$$ frac{partial u}{partial l} = frac{partial u}{partial x} bigg |_M cdot cos alpha + frac{partial u}{partial y} bigg |_M cdot cos beta + frac{partial u}{partial z} bigg |_M cdot cos gamma $$

  1. Находим частные производные первого порядка:
    $$ frac{partial u}{partial x}; frac{partial u}{partial y}; frac{partial u}{partial z} $$
  2. Вычисляем полученные производные в точке $ M(x_1,y_1,z_1) $:
    $$ frac{partial u}{partial x} bigg |_{M(x_1,y_1,z_1)}; frac{partial u}{partial y} bigg |_{M(x_1,y_1,z_1)}; frac{partial u}{partial z} bigg |_{M(x_1,y_1,z_1)} $$
  3. Получаем направляющие косинусы по формулам:
    $$ cos alpha = frac{l_x}{|overline{l}|}; cos beta = frac{l_y}{|overline{l}|}; cos gamma = frac{l_z}{|overline{l}|} $$
  4. Подставляем все полученные данные в формулу и записываем ответ

Примеры решений

Пример 1
Найти производную функции $ u = x+ln(z^2+y^2) $ в точке $ M (2,1,1) $ по направлению вектора $ overline{l} = (-2,1,-1) $
Решение

Находим частные производные первого порядка и вычисляем их начение в точке $ M $:

$$ frac{partial u}{partial x} = 1; frac{partial u}{partial x} bigg |_{M(2,1,1)} = 1 $$

$$ frac{partial u}{partial y} = frac{2y}{z^2+y^2}; frac{partial u}{partial y} bigg |_{M(2,1,1)}=1 $$

$$ frac{partial u}{partial z} = frac{2z}{z^2+y^2}; frac{partial u}{partial z} bigg |_{M(2,1,1)} = 1 $$

Вычисляем направляющие косинусы:

$$ cos alpha = frac{-2}{sqrt{(-2)^2+1^2+(-1)^2}} = frac{-2}{sqrt{6}} $$

$$ cos beta = frac{1}{sqrt{(-2)^2+1^2+(-1)^2}} = frac{1}{sqrt{6}} $$

$$ cos gamma = frac{-1}{sqrt{(-2)^2+1^2+(-1)^2}} = — frac{1}{sqrt{6}} $$

Подставляем полученные частные производные в точке $ M $ и направляющие косинусы в формулу:

$$ frac{partial u}{partial l} = 1 cdot (-frac{2}{sqrt{6}}) + 1 cdot frac{1}{sqrt{6}} + 1 cdot (-frac{1}{sqrt{6}}) = -frac{2}{sqrt{6}} $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ frac{partial u}{partial l} = -frac{2}{sqrt{6}} $$
Пример 2
Найти производную $ u = xy — frac{x}{z} $ в точке $ M(-4,3,-1) $ по направлению вектора $ overline{l} = (5,1,-1) $
Решение

Берем частные производные первого порядка от функции в точке $ M(-4,3,-1) $:

$$ frac{partial u}{partial x} = y — frac{1}{z}; frac{partial u}{partial x} bigg |_{M(-4,3,-1)} = 4 $$

$$ frac{partial u}{partial y} = x; frac{partial u}{partial y} bigg |_{M(-4,3,-1)} = -4 $$

$$ frac{partial u}{partial z} = frac{x}{z^2}; frac{partial u}{partial z} bigg |_{M(-4,3,-1)} = -4 $$

Вычисляем направляющие косинусы:

$$ cos alpha = frac{5}{sqrt{5^2+1^2+(-1)^2}} = frac{5}{sqrt{27}} $$

$$ cos beta = frac{1}{sqrt{5^2+1^2+(-1)^2}} = frac{1}{sqrt{27}} $$

$$ cos gamma = frac{-1}{sqrt{5^2+1^2+(-1)^2}} = frac{-1}{sqrt{27}} $$

По формуле производной по направлению получаем ответ:

$$ frac{partial u}{partial l} = 4 cdot frac{5}{sqrt{27}} + (-4) cdot frac{1}{sqrt{27}} + (-4) cdot frac{-1}{sqrt{27}} = frac{20}{sqrt{27}} $$

Ответ
$$ frac{partial u}{partial l} = frac{20}{sqrt{27}} $$

Предел
отношения приназывается производной
от функциив
точкепо
направлению вектораи
обозначается,
т.е..

Производная
по направлению характеризует скорость
изменения функции в направлении вектора.
Если то
функциявозрастает
в направлении вектора,
если,
то функцияубывает
в направлении вектора.

Механический
(физический) смысл производной по
направлению состоит в том, что она
характеризует мгновенную скорость
изменения функции в
точкевнаправлении
вектора.

Для
вычисления производной по направлению
функции двух переменных используют
формулу:

где инаправляющие
косинусы, т.е. косинусы углов, образуемых
векторомс
осями координат.

Пример..
Найти производную функции в
точкев
направлении, идущем от этой точки к
точке

Решение. Вычислим иНайдем
значения этих производных в точке:Найдем
координаты вектораВычислим
направляющие косинусы вектораДля
вычисления производной функциипо
направлениюподставим
полученные выражения в формулу: 

9.Экстремум функции двух переменных. Условия экстремума.

Функция
имеет максимум
(минимум)

в точкеМ0, если для любой точки М,
находящейся в некоторой окрестности
точкиМ0, выполняется условие f(x0,
y0)>f(x,
y)
(f(x0,
y0)<f(x,
y)).

Максимумы
и минимумы функции называются экстремумами.

Теорема
(необходимое
условие экстремума)

Если функция-дифференцируемая функция
и достигает в точке М0 экстремума, то ее
частные производные первого порядка в
этой точке равны нулю.

Точки,
в которых частные производные первого
порядка обращаются в нуль (или не
существуют), называются критическими
или стационарными
.

;

;

Дискриминант
.

Достаточное
условие экстремума в стационарной
точке:

  1. –экстремум
    есть, при этом, если А>0 (или С>0 при
    А=0), в точке функция имеет минимум, а
    если А<0 (или C<0
    при А=0) – максимум

  2. –экстремума
    нет

–требуется
дополнительные исследования

13. Интегрирование по частям в неопред. Интеграле

12.Замена переменной в неопределенном интеграле.

Интегрирование
по частям

 
Замена
переменной в неопределенном интеграле
производится с помощью подстановок
двух видов:
     а) ,
где  –
монотонная, непрерывно дифференцируемая
функция новой переменной t. Формула
замены переменной в этом случае: ;
    
б) ,
где U –
новая переменная. Формула замены
переменной при такой подстановке: .

16.Интегрирование квадратичных иррациональностей.

R(x, √
a2 ± x2 )  и  R(x, √ x2 − a2 )

где R —
рациональная функция.

а)
Для интегрирования выражений R(x, √
a2 − x2 ) используются подстановки

x = a ·
sin t     или
    x = a · cos t .

б)
Для интегрирования выражений R(x,√a2
− x2 ) dx используются подстановки

x = a ·
tg t     или
    x = a·sht .

в)
Для интегрирования выражений R (x,√a2
− x2 ) dx используются подстановки

  x=
a/cost   или
    x=a·ch t .

Во
всех случаях, применив формулу замены
переменной в неопределенном интеграле,
получаем интегралы вида

∫ Rs(sin t, cos t) dt ,

где Rs —
рациональноя функция, т.е. задача сводится
к интегрированию
триглнометрических выражений.

19.Замена переменной в определенном интеграле.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Производная функции в точке в направлении вектора

Пример №1. Дана функция z=z(x,y), точка A(x0,y0) и вектор a. Найти:

1) grad z в точке A; 2) производную данной функции в точке A в направлении вектора a.

z=5x²*y+3xy²

Решение получаем, решая через калькулятор.

Градиентом функции z = f(x,y) называется вектор, координатами которого являются частные производные данной функции, т.е.:

Находим частные производные:



Тогда величина градиента равна:

grad(z)=(10xy+3y²)i+(5x²+6xy)j

Найдем градиент в точке А(1;1): grad(z)A=(10·1·1+3·1²)i+(5·1²+6·1·1)j или grad(z)A=13i+11j

Модуль grad(z):


Направление вектора-градиента задаётся его направляющими косинусами:


Найдем производную в точке А по направлению вектора а(6;-8).

Найти направление вектора — значит найти его направляющие косинусы:


Модуль вектора |a| равен:

тогда направляющие косинусы:

Для вектора a имеем:

Если ∂z/∂a > 0, то заданная функция в направлении вектора a возрастает.
Если ∂z/∂a < 0, то заданная функция в направлении вектора a убывает.

Пример №2. Даны z=f(x; y), А(х0, у0).

Найти а) градиент функции z=f(x; y) в точке А.

б) производную в точке А по направлению вектора а.

Пример №3. Найти полный дифференциал функции, градиент и производную вдоль вектора l(1;2).

z = ln(sqrt(x^2+y^2))+2^x

Решение.

Градиентом функции z = f(x,y) называется вектор, координатами которого являются частные производные данной функции, т.е.:


Находим частные производные:


Тогда величина градиента равна:

Найдем производную в точке А по направлению вектора а(1;2).


Найти направление вектора — значит найти его направляющие косинусы:

Модуль вектора |a| равен:

тогда направляющие косинусы:


Для вектора a имеем:



Если ∂z/∂a > 0, то заданная функция в направлении вектора a возрастает.
Если ∂z/∂a < 0, то заданная функция в направлении вектора a убывает.

Пример №4. Дана функция . Найти:

1) gradu в точке A(5; 3; 0);

2) производную в точке А в направлении вектора a=i-2j+k.

Решение.

1. .

Найдем частные производные функции u в точке А.

;;

, .

Тогда

2. Производную по направлению вектора a в точке А находим по формуле

Частные производные в точке А нами уже найдены. Для того чтобы найти cos α, cos β, cos γ, найдем единичный вектор a0 вектора a.

, где .

Отсюда

Пример №5. Даны функция z=f(x), точка А(х0, у0) и вектор a. Найти: 1) grad z в точке А; 2) производную в точке А по направлению вектора a.

Решение.

Находим частные производные:


Тогда величина градиента равна:

Найдем градиент в точке А(1;1)

или

Модуль grad(z):


Направление вектора-градиента задаётся его направляющими косинусами:


Найдем производную в точке А по направлению вектора а(2;-5).

Найти направление вектора — значит найти его направляющие косинусы:

Модуль вектора |a| равен:

тогда направляющие косинусы:

Для вектора a имеем:

Поскольку ∂z/∂a < 0, то заданная функция в направлении вектора a убывает.

Перейти к онлайн решению своей задачи

Градиент функции и производная по направлению вектора

Краткая теория


Градиентом называется вектор, направление которого указывает направление максимально быстрого возрастания функции f(x). Нахождение этой векторной величины связано с определением частных производных функции. Производная по направлению это скалярная величина и показывает скорость изменения функции при движении вдоль направления, заданного некоторым вектором.

Пример решения задачи


Задача

Даны функция

, точка

 и вектор

. Найти:

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Нахождение градиента функции

1) Найдем градиент
функции в точке

:

Искомый градиент:

Нахождение производной по направлению вектора

2) Найдем производную
в направлении вектора

:

где

 -угол,
образованный вектором и осью

Искомая производная в
точке

:

Пусть F(x,y,z)F(x,y,z) – функция трех переменных, (x,y,z)(x,y,z) – декартовы координаты.

Градиентом функции F(x,y,z)F(x,y,z) называется векторное поле

∇F(x,y,z)=∂F∂xi+∂F∂yj+∂F∂zk,
nabla F(x,y,z)=frac{partial F}{partial x}mathbf{i}+frac{partial F}{partial y}mathbf{j}+frac{partial F}{partial z}mathbf{k},

где ∂F∂xfrac{partial F}{partial x}, ∂F∂yfrac{partial F}{partial y} и ∂F∂zfrac{partial F}{partial z} – частные производные функции F(x,y,z)F(x,y,z), а imathbf{i}, jmathbf{j} и kmathbf{k} – базис декартовой системы координат (x,y,z)(x,y,z).

Иногда градиент обозначается так: grad⁡F(x,y,z)operatorname{grad} F(x,y,z).

Градиент функции в данной точке показывает направление наибольшего роста функции.

Пример 1

Найти градиент функции F(x,y,z)=ln⁡(x2+y2+z2)F(x,y,z)=ln(x^2+y^2+z^2) в точке M(1,2,3)M(1,2,3).

Вычислим частные производные:
∂F∂x=∂∂xln⁡(x2+y2+z2)=2xx2+y2+z2,
frac{partial F}{partial x}=frac{partial }{partial x}ln(x^2+y^2+z^2)=frac{2x}{x^2+y^2+z^2},

∂F∂y=∂∂yln⁡(x2+y2+z2)=2yx2+y2+z2,
frac{partial F}{partial y}=frac{partial }{partial y}ln(x^2+y^2+z^2)=frac{2y}{x^2+y^2+z^2},

∂F∂z=∂∂zln⁡(x2+y2+z2)=2zx2+y2+z2.
frac{partial F}{partial z}=frac{partial }{partial z}ln(x^2+y^2+z^2)=frac{2z}{x^2+y^2+z^2}.

Градиент в точке M(1,2,3)M(1,2,3) (подставляем в формулы для частных производных значения x=1x=1, y=2y=2, z=3z=3):

∇F(M)=17  i+27  j+37  k=17  OM→.
nabla F(M)=frac{1}{7},,mathbf{i}+frac{2}{7},,mathbf{j}+frac{3}{7},,mathbf{k}=frac{1}{7},,overrightarrow{OM}.

Производная по направлению

Пусть FF – функция на плоскости или в пространстве.

Производной функции FF по направлению вектора amathbf{a} в точке MM называется число

∂F∂a(M)=1∥a∥ddεF(M+εa)∣ε=0,
frac{partial F}{partialmathbf{a}}(M)=frac{1}{|mathbf{a}|}left.frac{d}{dvarepsilon}Fleft(M+varepsilon mathbf{a}right)right|_{varepsilon=0},

если производная в правой части существует.

Пример 2

Найдем производную функции F(x,y,z)=x2y−y2z+z2xF(x,y,z)=x^2y-y^2z+z^2x по направлению вектора a=i−2j+2kmathbf{a}=mathbf{i}-2mathbf{j}+2mathbf{k} в точке M(−1,0,1)M(-1,0,1).

Вычисляем значение функции в точке M+εaM+varepsilon mathbf{a} с координатами (−1+ε,−2ε,1+2ε)(-1+varepsilon,-2varepsilon,1+2varepsilon):

F(M+εa)=(−1+ε)2(−2ε)−(−2ε)2(1+2ε)+(1+2ε)2(−1+ε)=−6ε3−5ε−1.
Fleft(M+varepsilon mathbf{a}right)=(-1+varepsilon)^2(-2varepsilon)-(-2varepsilon)^2(1+2varepsilon)+(1+2varepsilon)^2(-1+varepsilon)=-6{varepsilon^{3}}-5varepsilon-1.

Длина вектора amathbf{a}:

∥a∥=a12+a22+a32=12+(−2)2+22=9=3.
|mathbf{a}|=sqrt{a_1^2+a_2^2+a_3^2}=sqrt{1^2+(-2)^2+2^2}=sqrt{9}=3.

Производная по направлению:
∂F∂a(M)=1∥a∥ddεF(M+εa)∣ε=0=13ddε(−6ε3−5ε−1)∣ε=0=−53
frac{partial F}{partialmathbf{a}}(M)=frac{1}{|mathbf{a}|}left.frac{d}{dvarepsilon}Fleft(M+varepsilon mathbf{a}right)right|_{varepsilon=0}=frac{1}{3}left.frac{d}{dvarepsilon}left(-6{varepsilon^{3}}-5varepsilon-1right)right|_{varepsilon=0}=-frac{5}{3}

Выражение производной по направлению через градиент

Используя формулу Тейлора для функций нескольких переменных, легко получить выражение производной по направлению через градиент. Действительно, из равенства

F(M+εa)=F(M)+ε(∇F(M),a)+o(ε2)Fleft(M+varepsilon mathbf{a}right)=F(M)+varepsilonleft(nabla F(M),mathbf{a}right)+oleft(varepsilon^2right)

следует, что

ddεF(M+εa)∣ε=0=(∇F(M),a).
left.frac{d}{dvarepsilon}Fleft(M+varepsilon mathbf{a}right)right|_{varepsilon=0}=left(nabla F(M),mathbf{a}right).

Таким образом,

∂F∂a(M)=(∇F(M),a)∥a∥.
frac{partial F}{partialmathbf{a}}(M)=frac{left(nabla F(M),mathbf{a}right)}{|mathbf{a}|}.

Пример 2′2′

Найдем производную функции F(x,y,z)=x2y−y2z+z2xF(x,y,z)=x^2y-y^2z+z^2x по направлению вектора a=i−2j+2kmathbf{a}=mathbf{i}-2mathbf{j}+2mathbf{k} в точке M(−1,0,1)M(-1,0,1) используя градиент.

Частные производные:

∂F∂x(M)=2xy+z2∣(x,y,z)=(−1,0,1)=1,
frac{partial F}{partial x}(M)=left.2xy+z^2right|_{(x,y,z)=(-1,0,1)}=1,

∂F∂y(M)=x2−2yz∣(x,y,z)=(−1,0,1)=1,
frac{partial F}{partial y}(M)=left.x^2-2yzright|_{(x,y,z)=(-1,0,1)}=1,

∂F∂z(M)=−y2+2zx∣(x,y,z)=(−1,0,1)=−2.
frac{partial F}{partial z}(M)=left.-y^2+2zxright|_{(x,y,z)=(-1,0,1)}=-2.

Градиент:

∇F(M)=i+j−2k.
nabla F(M)=mathbf{i}+mathbf{j}-2mathbf{k}.

Скалярное произведение:

(∇F(M),a)=(i+j−2k,i−2j+2k)=1−2−4=−5.
left(nabla F(M),mathbf{a}right)=left(mathbf{i}+mathbf{j}-2mathbf{k},mathbf{i}-2mathbf{j}+2mathbf{k}right)=1-2-4=-5.

Производная по направлению:

∂F∂a(M)=(∇F(M),a)∥a∥=−53.
frac{partial F}{partialmathbf{a}}(M)=frac{left(nabla F(M),mathbf{a}right)}{|mathbf{a}|}=-frac{5}{3}.

Тест по теме “Градиент функции. Производная по направлению”

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти фото которые загружал на сайт
  • Как найти мой куар код на госуслугах
  • Как найти инсты в вов
  • Как нашли лик христа
  • Как найти эдс аккумулятора

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии