Как найти производную если в степени синус

Решение

$$sin^{n}{left(x right)}$$

$$frac{partial}{partial x} sin^{n}{left(x right)}$$

Подробное решение

  1. Заменим .

  2. В силу правила, применим: получим

  3. Затем примените цепочку правил. Умножим на :

    1. Производная синуса есть косинус:

    В результате последовательности правил:

  4. Теперь упростим:


Ответ:

Первая производная
[src]

     n          
n*sin (x)*cos(x)
----------------
     sin(x)     

$$frac{n sin^{n}{left(x right)} cos{left(x right)}}{sin{left(x right)}}$$

Вторая производная
[src]

          /        2           2   
     n    |     cos (x)   n*cos (x)|
n*sin (x)*|-1 - ------- + ---------|
          |        2          2    |
               sin (x)    sin (x) /

$$n left(frac{n cos^{2}{left(x right)}}{sin^{2}{left(x right)}} — 1 — frac{cos^{2}{left(x right)}}{sin^{2}{left(x right)}}right) sin^{n}{left(x right)}$$

Третья производная
[src]

          /               2       2    2             2          
     n    |          2*cos (x)   n *cos (x)   3*n*cos (x)|       
n*sin (x)*|2 - 3*n + --------- + ---------- - -----------|*cos(x)
          |              2           2             2     |       
                     sin (x)     sin (x)       sin (x)  /       
-----------------------------------------------------------------
                              sin(x)                             

$$frac{n left(frac{n^{2} cos^{2}{left(x right)}}{sin^{2}{left(x right)}} — 3 n — frac{3 n cos^{2}{left(x right)}}{sin^{2}{left(x right)}} + 2 + frac{2 cos^{2}{left(x right)}}{sin^{2}{left(x right)}}right) sin^{n}{left(x right)} cos{left(x right)}}{sin{left(x right)}}$$

урок 3. Математика ЕГЭ

Как найти производную от функции

Как считать производные?

Никто не использует определение производной, чтобы ее вычислить. Как же тогда ее посчитать?

Оказывается, существуют специальные формулы, с помощью которых производная от функции вычисляется достаточно просто.

Формулы производной

Выпишем теперь все формулы производной функции и порешаем примеры.

Производная от константы
Производная от любого числа всегда равна (0):
$$(const)^{/}=0;$$

Пример 1
$$(5)^{/}=0;$$

Производная от (x)
Производная просто от (x) равна (1):
$$x^{/}=1;$$

Производная от степени
$$(x^n)^{/}=n*x^{n-1};$$
Пример 2
$$(x^4)^{/}=4*x^{4-1}=4*x^{3};$$
$$(x^{10})^{/}=10*x^{10-1}=10*x^{9};$$
$$(x^{-3})^{/}=-3*x^{-3-1}=-3*x^{-4};$$
$$(x^{frac{1}{3}})^{/}=frac{1}{3}*x^{1-frac{1}{3}}=frac{1}{3}*x^{frac{2}{3}};$$

Производная от квадратного корня
$$(sqrt{x})^{/}=frac{1}{2sqrt{x}};$$
Тут полезно заметить, что формулу производной от квадратного корня можно не учить. Она сводится к формуле производной от степени:
$$(sqrt{x})^{/}=(x^{frac{1}{2}})^{/}=frac{1}{2}*x^{frac{1}{2}-1}=frac{1}{2}*x^{-frac{1}{2}}=frac{1}{2sqrt{x}};$$

Производная от синуса
$$sin(x)^{/}=cos(x);$$

Производная от косинуса
$$cos(x)^{/}=-sin(x);$$

Производная от тангенса
$$tg(x)^{/}=frac{1}{cos^{2}(x)};$$

Производная от котангенса
$$tg(x)^{/}=frac{-1}{sin^{2}(x)};$$

Производная от экспоненты
$$(e^x)^{/}=e^x;$$

Производная от показательной функции
$$(a^x)^{/}=a^x*ln(a);$$
Пример 3
$$(2^x)^{/}=2^{x}*ln(2);$$

Производная от натурального логарифма
$$(ln(x))^{/}=frac{1}{x};$$

Производная от логарифма
$$(log_{a}(x))^{/}=frac{1}{x*ln(a)};$$

Свойства производной

Помимо формул по вычислению производной еще есть свойства производной, их тоже надо выучить.

Вынесение константы за знак производной
$$(alpha*f(x))^{/}=alpha*(f(x))^{/};$$

Пример 4
$$(3*x^5)^{/}=3*(x^5)^{/}=3*5x^4=15x^4;$$
$$(10sin(x))^{/}==10*(sin(x))^{/}=10*cos(x);$$

Производная от суммы и разности двух функций
$$(f(x) pm g(x))^{/}=(f(x))^{/} pm (g(x))^{/};$$

Пример 5
$$(2x^4+x^3)^{/}=?$$
Тут (f(x)=2x^4), а (g(x)=x^3). Тогда по формуле производной от суммы:
$$(2x^4+x^3)^{/}=(2x^4)^{/}+(x^3)^{/}=2*(x^4)^{/}+(x^3)^{/}=2*4x^3+3x^2=8x^3+3x^2;$$

Пример 6
$$(ln(x)+cos(x))^{/}=(ln(x))^{/}+(cos(x))^{/}=frac{1}{x}-sin(x);$$

Пример 7
$$(x^6-e^x)^{/}=(x^6)^{/}-(e^x)^{/}=6x^5-e^x;$$

Производная от произведения двух функций
$$(f(x)*g(x))^{/}=(f(x))^{/}*g(x)+f(x)*(g(x))^{/};$$

Пример 8
$$(x^2*sin(x))^{/}=?$$
$$(x^2*sin(x))^{/}=(x^2)^{/}*sin(x)+x^2*(sin(x))^{/}=2x*sin(x)+x^2*cos(x);$$

Пример 9
$$(ln(x)*e^x)^{/}=(ln(x))^{/}*e^x+ln(x)*(e^x)^{/}=frac{1}{x}*e^x+ln(x)*e^x;$$

Производная от частного двух функций
$$left(frac{f(x)}{g(x)}right)^{/}=frac{(f(x))^{/}*g(x)-f(x)*(g(x))^{/}}{(g(x))^2};$$

Пример 10
$$left(frac{x^3}{sin(x)}right)^{/}=frac{(x^3)^{/}*sin(x)-x^3*(sin(x))^{/}}{(sin(x))^2}=frac{3x^2*sin(x)-x^3*cos(x)}{(sin(x))^2};$$

Примеры нахождения производной

Рассмотрим несколько примеров нахождения производной, чтобы разобраться, как применяются свойства и формулы производной на практике.

Пример 11
$$(5x^3+2cos(x))^{/}=(5x^3)^{/}+(2cos(x))^{/}=$$
$$=5*(x^3)^{/}+2*(cos(x))^{/}=5*3*x^2+2*(-sin(x))=15x^2-2sin(x);$$

Пример 12
$$left(-frac{3x^2}{2x^4+5x}right)^{/}=-frac{(3x^2)^{/}*(2x^4+5x)-3x^2*(2x^4+5x)^{/}}{(2x^4+5x)^2}=$$
$$=-frac{6x*(2x^4+5x)-3x^2*(8x+5)}{(2x^4+5x)^2}=-frac{12x^5-24x^3+15x^2}{(2x^4+5x)^2};$$

Пример 13
$$(2xsqrt{x})^{/}=(2x)^{/}*sqrt{x}+2x*(sqrt{x})^{/}=$$
$$=2*sqrt{x}+2x*frac{1}{2sqrt{x}}=2*sqrt{x}+frac{2x}{2sqrt{x}}=2*sqrt{x}+sqrt{x}=3sqrt{x};$$

Производная сложной функции

Сложная функция — это функция не от аргумента (x), а от какой-то другой функции: (f(g(x))). Например, функция (sin(x^2)) будет сложной функцией: «внешняя» функция синуса берется от «внутренней» функции степени ((x^2)). Так как под синусом стоит аргумент не (x), а (x^2), то такая функция будет называться сложной.
Еще примеры сложных функций:

  • $$ln(3x^4);$$
    Внешняя функция: натуральный логарифм; Внутренняя функция: ((3x^4)).
  • $$cos(ln(x));$$
    Внешняя функция: косинус; Внутренняя функция: ((ln(x))).
  • $$e^{2x^2+3};$$
    Внешняя функция: экспонента; Внутренняя функция: ((2x^2+3)).
  • $$(sin(x))^3;$$
    Внешняя функция: возведение в третью степень; Внутренняя функция: (sin(x)).
  • Чтобы посчитать производную от такой функции, нужно сначала найти производную внешней функции, а затем умножить результат на производную внутренней функции. В общем виде формула выглядит так:
    $$f(g(x))^{/}=f^{/}(g(x))*g^{/}(x);$$
    Скорее всего, выглядит непонятно, поэтому давайте разберем на примерах.

    Пример 14
    $$((cos(x))^4)^{/}=?$$
    Внешней функцией тут будет возведение в четвертую степень, поэтому сначала считаем производную от степени по формуле ((x^n)^{/}=n*x^{n-1}). А потом умножаем результат на производную внутренней функции, у нас это функция косинуса, по формуле (cos(x)^{/}=-sin(x)):
    $$((cos(x))^4)^{/}=underset{text{внешняя производная}}{underbrace{4*(cos(x))^3}}*underset{text{внутренняя производная}}{underbrace{(cos(x))^{/}}}=$$
    $$=4*(cos(x))^3*(-sin(x))=-4*(cos(x))^3*sin(x);$$

    Пример 15
    $$(e^{2x^3+5})^{/}=?$$
    Внешняя функция — это экспонента ((e^x)^{/}=e^x), а внутренняя функция — квадратный многочлен ((2x^3+5)):
    $$(e^{2x^3+5})^{/}=e^{2x^3+5}*(2x^3+5)^{/}=e^{2x^3+5}*((2x^3)^{/}+5^{/})=e^{2x^3+5}*6x^2.$$

    Пример 16
    $$(ln((2x^2+3)^6))^{/}=?$$
    Внешняя функция — это натуральной логарифм, берем производную от него по формуле ((ln(x))^{/}=frac{1}{x}), и умножаем на производную внутренней функции, у нас это шестая степень: ((x^n)^{/}=n*x^{n-1}). Но и на этом еще не все: под шестой степенью стоит не просто (x), а квадратный многочлен, значит еще нужно умножить на производную от этого квадратного многочлена:
    $$ln((2x^2+3)^6)=frac{1}{(2x^2+3)^6}*((2x^2+3)^6)^{/}*(2x^2+3)^{/}=$$
    $$=frac{1}{(2x^2+3)^6}*6*(2x^2+3)^5*(4x+0)=frac{1}{(2x^2+3)^6}*6*(2x^2+3)^5*4x=$$
    $$=frac{6*(2x^2+3)^5*4x}{(2x^2+3)^6}=frac{24x*(2x^2+3)^5}{(2x^2+3)^6}=frac{24x}{(2x^2+3)^6}.$$

Вывод формул производной функции

Выведем некоторые из этих формул, чтобы было понимание, откуда они берутся. Но перед этим познакомимся с новыми обозначениями. Запись (f(x)) означает, что функция берется от аргумента (x). Например:
$$f(x)=x^3+sin(x);$$
На месте аргумента (x) может стоять все что угодно, например выражение (2x+3). Обозначение такой функции будет (f(2x+3)), а сама функция примет вид:
$$f(2x+3)=(2x+3)^3+sin(2x+3);$$
То есть, везде вместо аргумента (x) мы пишем (2x+3).

И несколько важных замечаний про (Delta f(x)) и (Delta x). Напомню, что значок (Delta) означает изменение некоторой величины. (Delta x) — изменения координаты (x) при переходе от одной точки на графике функции к другой; (Delta f(x)) — разница координат (y) между двумя точками на графике. Подробнее про это можно почитать в главе, где мы вводим понятие производной. Распишем (Delta x) для двух близких точек на графике функции (O) и (B):
$$Delta x=x_B-x_O;$$
Отсюда можно выразить (x_B):
$$x_B=x_O+Delta x;$$
Абсцисса (координата точки по оси (x)) точки (B) получается путем сложения абсциссы точки (O) и (Delta x).

Кстати, функцию (f(x)=x^3+sin(x)) от аргумента (x_B=x_O+Delta x) можно расписать:

$$f(x_B)=f(x_O+Delta x)=(x_O+Delta x)^3+sin(x_O+Delta x);$$

Определение производной

Рис.1. График произвольной функции

И распишем (Delta f):
$$Delta f(x)=f(x_B)-f(x_O)=f(x_O+Delta x)-f(x_O);$$
Тогда определение производной можно записать в виде:
$$f^{/}(x)=frac{Delta f(x)}{Delta x}=frac{f(x_O+Delta x)-f(x_O)}{Delta x} quad при quad Delta x to 0;$$

За (x_O) обычно обозначают точку, в окрестности которой берут производную. То есть, получается (x_O) — это абсцисса начальной точки, а (x_O+Delta x) — абсцисса конечной точки.

Нам это пригодится при выводе формул производной.

Производная квадратичной функции

Выведем теперь формулу производной от (f(x)=x^2), воспользовавшись определением производной:
$$f^{/}(x)=frac{Delta f(x)}{Delta x}=frac{f(x+Delta x)-f(x)}{Delta x} quad при quad Delta x to 0;$$
Распишем числитель (f(x+Delta x)-f(x)) с учетом, что (f(x)=x^2):
$$f(x+Delta x)-f(x)=(x+Delta x)^2-x^2=x^2+2xDelta x+(Delta x)^2-x^2=2xDelta x+(Delta x)^2;$$
Подставим в определение производной:
$$f^{/}(x)=frac{2xDelta x+(Delta x)^2}{Delta x}=frac{Delta x*(2x+Delta x)}{Delta x}=2x+Delta x;$$
Напоминаю, что (Delta x) это бесконечно малая величина:
$$(Delta x)^2 ll 0;$$
Поэтому этим слагаемым можно пренебречь. Вот мы и получили формулу для производной от квадратной функции:
$$f^{/}(x)=(x^2)^{/}=2x;$$

Производная от третьей степени

Аналогичные рассуждения можно провести для функции третьей степени:
$$f(x)=x^3;$$
Воспользуемся определением производной:
$$f^{/}(x)=frac{f(x+Delta x)-f(x)}{Delta x} quad при quad Delta x to 0;$$
$$f(x+Delta x)-f(x)=(x+Delta x)^3-x^3=(x+Delta x-x)((x+Delta x)^2+(x+Delta x)*x+x^2)=$$
$$=Delta x*(x^2+2x*Delta x+(Delta x)^2+x^2+x*Delta x+x^2)=Delta x*(3x^2+3xDelta x);$$
$$f^{/}(x)=frac{f(x+Delta x)-f(x)}{Delta x}=frac{Delta x*(3x^2+3xDelta x)}{Delta x}=3x^2+3xDelta x;$$
Так как при умножении на бесконечно малую величину получается бесконечно малая величина, то слагаемым (3xDelta x) можно пренебречь:
$$f^{/}(x)=(x^3)^{/}=3x^2;$$
Точно таким же способом можно вывести формулы производных для любых степеней:
$$(x^4)^{/}=4x^3;$$
$$(x^5)^{/}=5x^4;$$
$$…$$
$$(x^n)^{/}=n*x^{n-1};$$
Кстати, эта формула справедлива и для дробных степеней.

Вывод остальных формул делается похожим образом, только там может понадобиться знание пределов. Вывод всех формул разбирается в университетском курсе математического анализа.


Что такое производная функции простыми словами? Для чего нужна производная? Определение производной


Как решать задания №7 из ЕГЭ по математике. Анализ графиков при помощи производной. Графики производной и графики функции


Исследуем функцию с помощью производной. Находим точки минимума и максимума, наибольшее и наименьшее значение функции. Точки экстремума. Промежутки возрастания и убывания.


Связь коэффициента наклона и тангенса угла наклона касательной к функции и производной функции в точке касания. Задание №7 в ЕГЭ по математике.


Правильно записанное условие — это половина решения Зеленивская Светлана Аполлинариевна

а вы попробуйте с помощью интегрирования по частям.

Всё должно быть сделано настолько простым, насколько это возможно, но не проще. А. Энштейн

Формула производной сложной функции.

Правильно записанное условие — это половина решения Зеленивская Светлана Аполлинариевна

_ТошА_ вот млин. Терминология украинская то у меня. Вот я и спутал.

Savka. У вас производная от сложной функций

Ни о чем не нужно говорить, ничему не следует учить, и печальна так и хороша темная звериная душа.

IskanderLocator , это типа шутка такая?

Savka. , проиводная сложной функции: сначала степень, потом синус, потом 3х

нормально делай нормально будет.

вряд ли у меня получилось правильно, но все же предположу:
ответ не 12*cos^3 3x?

Правильно записанное условие — это половина решения Зеленивская Светлана Аполлинариевна

Всё должно быть сделано настолько простым, насколько это возможно, но не проще. А. Энштейн

несовсем. забыли производную от синуса

производная = производная как от степенной с появлением коэффициента и понижением степени * производную СИНУСА с тем же аргументом * производную аргумента как линейной функции.

Получается

4*sin^3(3x)*cos(3x)*3 = 12*sin^3(3x)*cos(3x)

2010-03-09 в 22:55
_ТошА_

несовсем. забыли производную от косинуса

?? почему от косинуса? ПРАВИЛЬНЫЙ порядок действий приведен выше, от КОСИНУСА производная — это почему? Не понял…

а, уже поправлено. Тогда Sorry, но забыто ИМХО не это. Забыта не производная от синуса, а НЕПРАВИЛЬНО ПРИМЕНЕНО правило нахождения производной сложной функции…

Всё должно быть сделано настолько простым, насколько это возможно, но не проще. А. Энштейн

Гость да-да, я давно исправил. Мне казалось, что в начальной ф-ии косинус.

нормально делай нормально будет.

поняла, спасибо. особенно Гостю

Я одна, но всё же я есть. Я не могу сделать всё, но всё же могу сделать что-то. И я не откажусь сделать то немногое, что могу (c)

Гость, это чужой топик.
Надо зарегистрироваться, вступить в сообщество (левый столбец меню) и создать свой топик (левый столбец меню — Написать в сообщество)
Инструкции
Обращение к Гостям

(sin^4 3x)’= 4 * sin^3(3x) * cos3x * 3 = 12 * sin^3(3x) * cos3x

   Раз ты зашел сюда, то уже, наверное, успел увидеть в учебнике эту формулу

((f(g(x)))’=f'(g(x))cdot g'(x))

и сделать вот такое лицо:

лицо когда видишь формулу производной сложной функции

Друг, не переживай! На самом деле все просто до безобразия. Ты обязательно все поймешь. Только одна просьба – прочитай статью не торопясь, старайся понять каждый шаг. Я писал максимально просто и наглядно, но вникнуть в идею всё равно надо. И обязательно реши задания из статьи.

Содержание:

  • Что такое сложная функция?

  • «Распаковка» сложной функции

  • Внутренняя и внешняя функция

  • Производная сложной функции. Примеры

Что такое сложная функция?

Представь, что ты переезжаешь в другую квартиру и поэтому собираешь вещи в большие коробки. Пусть надо собрать какие-нибудь мелкие предметы, например, школьные письменные принадлежности. Если просто скидать их в огромную коробку, то они затеряются среди других вещей. Чтобы этого избежать, ты сначала кладешь их, например, в пакет, который затем укладываешь в большую коробку, после чего ее запечатываешь. Этот «сложнейший» процесс представлен на схеме ниже:

_производная сложной функции.png

Казалось бы, причем здесь математика? Да притом, что сложная функция формируется ТОЧНО ТАКИМ ЖЕ способом! Только «упаковываем» мы не тетради и ручки, а (x), при этом «пакетами» и «коробками» служат разные функции.

Например, возьмем x и «запакуем» его в функцию косинуса:

упаковка косинус икс

В результате получим, ясное дело, (cos⁡x). Это наш «пакет с вещами». А теперь кладем его в «коробку» — запаковываем, например, в кубическую функцию.

упаковка косинус икс в третью степень

Что получится в итоге? Да, верно, будет «пакет с вещами в коробке», то есть «косинус икса в кубе».

как получается сложная функция

Получившаяся конструкция и есть сложная функция. Она отличается от простой тем, что к одному иксу применяется НЕСКОЛЬКО «воздействий» (упаковок) подряд и получается как бы «функция от функции» — «упаковка в упаковке».

В школьном курсе видов этих самых «упаковок» совсем мало, всего четыре :

виды функций

Давай теперь «упакуем» икс сначала в показательную функцию с основанием 7, а потом в тригонометрическую функцию тангенс. Получим:

(x → 7^x → tg⁡(7^x))

А теперь «упакуем» икс два раза в тригонометрические функции, сначала в синус, а потом в котангенс:

(x → sin⁡x → ctg⁡ (sin⁡x ))

Просто, правда?

Напиши теперь сам функции, где икс:
   — сначала «упаковывается» в косинус, а потом в показательную функцию с основанием (3);
   — сначала в пятую степень, а затем в тангенс;
   — сначала в логарифм по основанию (4), затем в степень (-2). 


Ответы на это задание посмотри в конце статьи.

А можем ли мы «упаковать» икс не два, а три раза? Да, без проблем! И четыре, и пять, и двадцать пять раз. Вот, например, функция, в которой икс «упакован» (4) раза:

(y=5^{log_2⁡{sin⁡(x^4 )}})

Но такие формулы в школьной практике не встретятся (студентам повезло больше — у них может быть и посложнее☺).

«Распаковка» сложной функции

Посмотри на предыдущую функцию еще раз. Сможешь ли ты разобраться в последовательности «упаковки»? Во что икс запихнули сначала, во что потом и так далее до самого конца. То есть — какая функция вложена в какую? Возьми листок и запиши, как ты считаешь. Можно сделать это цепочкой со стрелками как мы писали выше или любым другим способом.

Сделал?

Теперь правильный ответ: сначала икс «упаковали» в (4)-ую степень, потом результат упаковали в синус, его в свою очередь поместили в логарифм по основанию (2), и в конце концов всю эту конструкцию засунули в степень пятерки.

То есть разматывать последовательность надо В ОБРАТНОМ ПОРЯДКЕ. И тут подсказка как это делать проще: сразу смотри на икс – от него и надо плясать. Давай разберем несколько примеров.

Например, вот такая функция: (y=tg⁡(log_2⁡x )). Смотрим на икс – что с ним происходит сначала? Берется логарифм от него. А потом? Берется тангенс от результата. Вот и последовательность будет такая же:

(x → log_2⁡x → tg⁡(log_2⁡x ))

Еще пример: (y=cos⁡{(x^3 )}). Анализируем – сначала икс возвели в куб, а потом от результата взяли косинус. Значит, последовательность будет: (x → x^3 → cos⁡{(x^3 )}). Обрати внимание, функция вроде бы похожа на самую первую (там, где с картинками). Но это совсем другая функция: здесь в кубе икс (то есть (cos⁡{(x·x·x)})), а там в кубе косинус (x) (то есть, (cos⁡x·cos⁡x·cos⁡x)). Эта разница возникает из-за разных последовательностей «упаковки».

Последний пример (с важной информацией в нем): (y=sin⁡{(2x+5)}). Понятно, что здесь сначала сделали арифметические действия с иксом, потом от результата взяли синус: (x → 2x+5 → sin⁡{(2x+5)}). И это важный момент: несмотря на то, что арифметические действия функциями сами по себе не являются, здесь они тоже выступают как способ «упаковки». Давай немного углубимся в эту тонкость.

Как я уже говорил выше, в простых функциях икс «упаковывается» один раз, а в сложных — два и более. При этом любая комбинация простых функций (то есть их сумма, разность, умножение или деление) — тоже простая функция. Например, (x^7) – простая функция и (ctg x) — тоже. Значит и все их комбинации являются простыми функциями:

(x^7+ ctg x) — простая,
(x^7· ctg x) – простая,
(frac{x^7}{ctg x}) – простая и т.д.

Однако если к такой комбинации применить еще одну функцию – будет уже сложная функция, так как «упаковок» станет две. Смотри схему:

как получается сложная функция

Хорошо, давай теперь сам. Напиши последовательность «заворачивания» функций:

   (y=cos{⁡(sin⁡x)})


   (y=5^{x^7})


   (y=arctg⁡{11^x})


   (y=log_2⁡(1+x))


Ответы опять в конце статьи.

Внутренняя и внешняя функции

Зачем же нам нужно разбираться во вложенности функций? Что нам это дает? Дело в том, что без такого анализа мы не сможем надежно находить производные разобранных выше функций.

И для того, чтобы двигаться дальше, нам будут нужны еще два понятия: внутренняя и внешняя функции. Это очень простая вещь, более того, на самом деле мы их уже разобрали выше: если вспомнить нашу аналогию в самом начале, то внутренняя функция — это «пакет», а внешняя – это «коробка». Т.е. то, во что икс «заворачивают» сначала – это внутренняя функция, а то, во что «заворачивают» внутреннюю – уже внешняя. Ну, понятно почему – она ж снаружи, значит внешняя.

Вот в этом примере: (y=tg⁡(log_2⁡x )), функция (log_2⁡x) – внутренняя, а тангенс — внешняя.

А в этом: (y=cos⁡{(x^3+2x+1)}),   (x^3+2x+1) — внутренняя,  а косинус — внешняя.

Выполни последнюю практику анализа сложных функций, и перейдем, наконец, к тому, ради чего всё затевалось — будем находить производные сложных функций:

Заполни пропуски в таблице:

задание на определение сложной функции

Производная сложной функции

Браво нам, мы всё ж таки добрались до «босса» этой темы – собственно, производной сложной функции, а конкретно, до той самой ужасной формулы из начала статьи.☺

((f(g(x)))’=f'(g(x))cdot g'(x))

Формула эта читается так:

Производная сложной функции равна произведению производной внешней функции по неизменной внутренней на производную внутренней функции.

И сразу смотри схему разбора «по словам» чтобы понимать, что к чему относится:

как брать производную сложной функции

Надеюсь, термины «производная» и «произведение» затруднений не вызывают. «Сложную функцию» — мы уже разобрали. Загвоздка в «производной внешней функции по неизменной внутренней». Что это такое?

Ответ: это обычная производная внешней функции, при которой изменяется только внешняя функция, а внутренняя остается такой же. Все равно непонятно? Хорошо, давай на примере.

Пусть у нас есть функция (y=sin⁡(x^3 )). Понятно, что внутренняя функция здесь (x^3), а внешняя синус . Найдем теперь производную внешней по неизменной внутренней.

Из таблицы производных мы знаем, что производная синуса икс есть косинус икс (табличные значения надо знать наизусть!):      (({sin⁡{x}})’=cos⁡{x}).

Тогда производная внешней функции по неизменной внутренней для нашего случая будет (cos⁡(x^3)). То есть, мы взяли ее как обычную производную синуса, а содержимое синуса (внутреннюю функцию) просто скопировали в полученную производную (косинус), ничего в ней не меняя.

Таким образом, на данный момент имеем:

пример взятия производной сложной функции по формуле

Осталась «производная внутренней функции». Ну, это совсем легко – обычная производная от внутренней функции, при этом внешняя не влияет вообще никак. В нашем примере, производная от (x^3).

((x^3 )’=3x^2)

Все, теперь можем писать ответ:

производная сложной функции синус

Вот так. Давай еще один пример разберем.

Пусть надо найти производную функции (y=(sin⁡x )^3).

Анализируем. Последовательность «заворачивания» у нас такая: (x → sin⁡x → (sin⁡x )^3). Значит, в данном примере внутренняя функция это (sin⁡x), а внешняя возведение в куб.

Производная внешней по внутренней – это производная куба (содержимое куба при этом не меняется). Так как производная от степенной функции, а в нашем случае в куб «завернут» (sin⁡x), то производная внешней будет (3(sin⁡x)^2). То есть, имеем:

синус в кубе взятие производной

Ну, а производная внутренней – это просто производная синуса икс, то есть косинус икс.

В итоге, имеем:

(y’=((sin⁡x )^3 )’=3(sin⁡x )^2·(sin⁡x )’=3(sin⁡x )^2·cos⁡x)

Понятно?
Ладно, ладно, вот еще один пример с разбором. ☺

Пример. Найти производную сложной функции (y=ln(x^2-x)).

Разбираем вложенность функций: (x → x^2-x → ln⁡(x^2-x)).
Внутренняя: (x^2-x).            Внешняя: натуральный логарифм.  
Из таблицы производных знаем:производная натурального логарифма.
То есть производная внешней по внутренней будет: (ln⁡(x^2-x)’=) (frac{1}{x^2-x}).
Производная внутренней: ((x^2-x)’= (x^2)’-(x)’=2x-1).
В итоге, согласно большой и страшной формуле имеем:

(y ‘=(ln⁡(x^2-x) )’=)(frac{1}{x^2-x})(·(2x-1))

Ну и напоследок можно немного «причесать» ответ, чтоб никто не докопался:

(y ‘=(ln⁡(x^2-x))’=)(frac{1}{x^2-x})(·(2x-1)=)(frac{2x-1}{x^2-x})

Готово.

Что, еще примеров желаешь? Легко.

Пример. Найти производную сложной функции (y=sin⁡{(cos⁡x)}).
Вложенность функций: (x → cos⁡x → sin⁡{(cos⁡x)})
Внутренняя: (cos⁡x)    Внешняя:синус
Производная внешней по внутренней: (sin{⁡(cos⁡x )}’=cos⁡{cos⁡x})
Производная внутренней: ((cos⁡x )’= -sin⁡x)
Имеем: (y’=(sin⁡{(cos⁡x)})’=cos⁡{cos⁡x}·(-sin⁡x )=-cos⁡{cos⁡x} ·sin⁡x)

Замечание: Обрати внимание, что заменить запись (cos⁡{cos⁡x}) на (cos^2⁡x) НЕЛЬЗЯ, так как (cos^2⁡x) — это комбинация простых функций (cos^ 2⁡x=cos⁡x·cos⁡x), а (cos⁡{cos⁡x}) – сложная функция: косинус от косинуса икс. Это абсолютно разные функции.

Еще пример с важным замечанием в нем.

Пример. Найти производную сложной функции (y=sqrt{x^6} )
Вложенность функций: (x → x^6 → sqrt{x^6})
Внутренняя: (x^6)      Внешняя: корень
Производная внешней по внутренней: (sqrt{x^6}’=)(frac{1}{2sqrt{x^6}})
Производная внутренней: ((x^6)’= 6x^5)
Имеем: ((sqrt{x^6})’=)(frac{1}{2sqrt{x^6}})(·6x^5)
И теперь упростим ответ. Вспомним свойство корня: (sqrt[b]{x^a} =x^{frac{a}{b}}). Тогда (sqrt{x^6}=x^{frac{6}{2}}=x^3). С учетом этого получаем:

(y’=( sqrt{x^6})’=)(frac{1}{2sqrt{x^6}})(·6x^5=)(frac{1}{2x^3})(·6x^5=)(frac{6x^5}{2x^3})(=3x^2)

Всё. А теперь, собственно, важное замечание:

Тот же самый ответ, но значительно меньшими усилиями мы могли бы получить, упростив исходную функцию сразу. Воспользуемся тем же свойством корня: (sqrt[b]{x^a} =x^{frac{a}{b}}). Тогда исходная функция приобретает вид: (y=sqrt{x^6}=x^{frac{6}{2}}=x^3). А производная куба это практически табличное значение! Готов ответ: (y’=(sqrt{x^6})’=(x^3 )’=3x^2). Немножко проще предыдущего решения, правда ☺? Поэтому прежде чем искать производную, посмотрите, можно ли исходную функцию упростить, чтоб решать было проще.

Давай рассмотрим пример, где эта идея нам сильно поможет.

Пример. Найти производную сложной функции (y=ln⁡(x^3)).
Можно, конечно, рассмотреть вложенность функций: (x → x^3 → ln⁡(x^3 )), разобрать на внутреннюю и внешнюю и так далее. Но можно вспомнить свойство логарифма: (log_a⁡{b^c}=c·log_a{⁡b}). И тогда функция получается (y=ln⁡(x^3 )=3ln⁡x). Отлично! Берем производную:

(y’=(ln⁡(x^3 ) )’=(3ln⁡x )’=3(ln⁡x )’=3·)(frac{1}{x}=frac{3}{x})

Вуаля!

Теперь задачка посложнее, для продвинутых. Решим пример с тройной вложенностью!

Пример. Найти производную сложной функции (y=3^{sin⁡(x^4+1)}).
Вложенность функций: (x → x^4+1 → sin⁡(x^4+1) → 3^{sin⁡(x^4+1)})
Внутренняя: (x^4+1)    Средняя: синус     Внешняя: возведение в куб
Сначала производная внешней по средней. Вспоминаем таблицу производных: производная от показательной функции. Значит, в нашем случае будет (3^{sin⁡(x^4+1)}·ln⁡3).
Хорошо, теперь производная средней по внутренней. По таблице: производная синуса. Значит, мы получим, (sin⁡(x^4+1)’=cos⁡(x^4+1)).
И наконец, производная внутренней: ((x^4+1)’=(x^4 )’+(1)’=4x^3).
Отлично. Теперь собираем все вместе, перемножая отдельные производные:

((3^{sin⁡(x^4+1)})’=3^{sin⁡(x^4+1)} ·ln⁡3·cos⁡{(x^4+1)}·4x^3)

Готово. Да, это ответ. ☺

Ну, а что ты хотел, я сразу сказал – пример для продвинутых! А представь, что будет с четырехкратной или пятикратной вложенностью? ☺

Пример: Найти производную сложной функции (y=tg⁡(7^x)).

Разбираем вложенность функций: (x : → :7^x : → :tg⁡(7^x)).
Внутренняя: (7^x)       Внешняя: (tg⁡(7^x)).
Ищем производную самой внешней функции, внутреннюю при этом не трогаем.
Из таблицы производных знаем: производная тангенса.
То есть, в нашем случае производная внешней по внутренней будет:  (frac{1}{cos^2⁡(7^x)}).
Теперь ищем производную внутренней. Этой формулой мы уже пользовались, так что сразу пишем ответ: ((7^x)’=7^x·ln⁡7).
И перемножаем результаты:

(y’=tg⁡(7^x)’=)(frac{1}{cos^2⁡(7^x)}·7^x·ln⁡7)

И «причесываем»:   (y’=(tg⁡(7)^x))’=)(frac{1}{cos^2⁡(7^x )})( ·7^x·ln⁡7=)(frac{ln⁡7·7^x}{cos^2⁡(7^x)}).

Ну, теперь думаю всё понятно? И снова повторю – не пугайся сложных конструкций в ответах и промежуточных вычислениях. Они «на лицо ужасные», но зато добрые (в смысле простые) внутри. ☺ Пойми принцип и делай все последовательно.

Последний пример. Такие задания в разных вариациях весьма часто дают на контрольных и тестах. Он вроде как считается сложным. ☺ Хех, наивные учителя. ☺

Пример: Найти производную сложной функции (y=sqrt[3]{(x^5+2x-5)^2}).

Казалось бы, опять у нас тройная вложенность функций:

(x → x^5+2x-5 → (x^5+2x-5)^2 → sqrt[3]{(x^5+2x-5)^2}).

Но давай снова воспользуемся свойством корня (sqrt[b]{x^a} =x^{frac{a}{b}}) и преобразуем нашу функцию к виду:

(y=sqrt[3]{(x^5+2x-5)^2}=(x^5+2x-5)^{frac{2}{3}})

Вот так. И теперь у нас вложенность двойная: (x → x^5+2x-5 → (x^5+2x-5)^{frac{2}{3}})
При этом функция осталась той же! Удобное свойство, однако. Стоит его запомнить, да? ☺ Ладно, поехали дальше.
Внутренняя функция: (x^5+2x-5).    Внешняя: степенная функция.
Производная внешней по внутренней. По таблице производных общая формула производной степенной функции: производная степенной функции  . Получаем: _производная сложной функции(23).png  . Тогда в нашем случае будет: (frac{2}{3}(x^5+2x-5)^{-frac{1}{3}}).
Производная внутренней: ((x^5+2x-5)’=5x^4+2).
Общий результат: (y ‘=(sqrt[3]{(x^5+2x-5)^2})’=((x^5+2x-5)^{frac{2}{3}} )’=frac{2}{3}(x^5+2x-5)^{-frac{1}{3}}·(5x^4+2)).

В принципе, ответ найден. Но здесь можно сильно «причесать» результаты. Это может показаться сложным, но это не так, просто опять нагромождения символов большое и возникает такое ложное ощущение. На всякий случай помни: «не причесанный» ответ – тоже ответ. Поэтому если не поймешь дальнейших преобразований – не критично. Ладно, расческу в руки и вперед.
Вспоминаем свойство отрицательной степени (a^{-n}=)(frac{1}{a^n}). Получаем:

(y ‘=frac{2}{3}(x^5+2x-5)^{-frac{1}{3}}·(5x^4+2)=)(frac{2}{3})(·)(frac{1}{(x^5+2x-5)^{frac{1}{3}}})(·(5x^4+2))

А теперь применяем свойство корня (sqrt[b]{x^a} =x^{frac{a}{b}}) в обратную сторону. То есть, вот так (x^{frac{a}{b}}=sqrt[b]{x^a}). В результате имеем:

(y’=)(frac{2}{3})(frac{1}{(x^5+2x-5)^{frac{1}{3}}})(·(5x^4+2)=)(frac{2}{3})(frac{1}{sqrt[3]{x^5+2x-5}})(·(5x^4+2))

Ну, и перемножаем дроби.

(y’=)(frac{2}{3})(frac{1}{sqrt[3]{x^5+2x-5}})(·(5x^4+2)=)(frac{2(5x^4+2)}{3sqrt[3]{x^5+2x-5}})(=)(frac{10x^4+4}{3sqrt[3]{x^5+2x-5}})

ВСЁ!!! А теперь сам.

Найти производные функций:

a. (y=ctg⁡(x^7))
b. (y=e^{x^4+5x^3})
c. (y=sqrt{cos⁡x})
d. (y=log_5⁡{5^x})
e. (y=(tg⁡x)^3)
f. (y=sin⁡(ln⁡(x^2)))

Ответы ко всем заданиям (вперемежку).

(y=tg⁡(x^5))

(y=log^{-2}_{4}{⁡x})


(y=3^{cos⁡x})

(x → 1+x → log_2⁡{(1+x)} )

(x → 11^x → arctg⁡(11^x) )


(x → x^7 → 5^{x^7})


(x → sin⁡x → cos⁡(sin⁡x))

ответы

ответы на взятие производной.png

Сошлось? Красавчик!

когда научился брать производные сложной функции

Заказать задачи по любым предметам можно здесь от 10 минут

Производная синуса

Определение
Производная синуса равна положительному косинусу одно и того же аргумента: $$ (sin x)’ = cos x $$

Если же аргумент синуса представляе собой функцию $ f(x) $, то производная синуса сложной функции находится по формуле: $$ (sin f(x))’ = cos f(x) cdot ( f(x) )’ = f'(x) cos f(x) $$

Пример 1
Найти производную синуса двойного угла: $ y = sin 2x $
Решение

Так как аргумент синуса представляет собой сложную функцию $ f(x)=2x $, то используем вторую формулу.

Находим производную $ f(x) $:

$$ f'(x) = (2x)’ = 2 $$

Теперь подставляем всё в формулу и записываем:

$$ y’ = (sin 2x)’ = cos 2x cdot (2x)’ = 2cos 2x $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ y’ = 2cos 2x $$
Пример 2
Чему равна производная синуса в квадрате? $ y = sin^2 x $
Решение

В этом примере синус представляет собой степенную функцию. Поэтому сначала берем производную по правилу: $ (x^p)’=px^{p-1} $, а затем производную от $ sin x $.

Записываем:

$$ y’=(sin^2 x)’ = 2sin^2 x cdot (sin x)’ = 2sin^2 x cdot cos x $$

Ответ
$$ y’ = 2sin^2 x cos x $$
Пример 3
Найти производную синуса в кубе: $ y = sin^3 x $
Решение

Это задание полностью аналогичное предыдущему, только вместо квадрата стоит куб:

$$ y’ = (sin^3 x)’ = 3sin^2 x cdot (sin x)’ = 3sin^2 x cdot cos x $$

Ответ
$$ y’ = 3sin^2 x cos x $$
Пример 4
Чему равна производная сложной функции синус корень икс? $ y = sin sqrt{x} $
Решение

Формула производной квадратного корня: $$ (sqrt{x})’ = frac{1}{2sqrt{x}} $$

Возвращаемся к заданию и находим производную:

$$ y’ = (sin sqrt{x})’ = cos sqrt{x} cdot (sqrt{x})’ = cos sqrt{x} cdot frac{1}{2sqrt{x}} = frac{cos sqrt{x}}{2sqrt{x}} $$

Ответ
$$ y’ = frac{cos sqrt{x}}{2sqrt{x}} $$

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти проблематику текста
  • Как найти мужа миллионера фильм
  • Как найти длину одной стороны прямоугольника
  • Как найти пук код билайн
  • Как найти морозную пещеру в скайриме

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии