В этой статье будут рассмотрены основные нюансы расчета прогибов, методом начальных параметров, на примере консольной балки. А также рассмотрим пример, где с помощью универсального уравнения, определим прогиб балки и угол поворота.
Теория по методу начальных параметров
Возьмем консольную балку, нагруженную сосредоточенной силой, моментом, а также распределенной нагрузкой. Таким образом, зададимся такой расчетной схемой, где присутствуют все виды нагрузок, тем самым охватим всю теоретическую часть по максимуму.
Обозначим опорные реакции в жесткой заделке, возникающие под действием внешней нагрузки:
Выбор базы и системы координат
Для балки выберем базу с левой стороны, от которой будем отсчитывать расстояния до приложения сил, моментов, начала и конца распределенной нагрузки.
Базу обозначим буквой O и проведем через нее систему координат:
Базу традиционно выбирают с левого краю балки, но можно выбрать ее и справа. Тогда в уравнении будут противоположные знаки, это может пригодиться в некоторых случаях — упростит немного решение. Понимание, когда принимать базу слева или справа, придет с опытом использования метода начальных параметров (МНП).
Универсальное уравнение МНП
После введения базы, системы координат и обозначения расстояний а, б, в, г записываем универсальное уравнение МНП, с помощью которого, будем рассчитывать прогиб балки (вертикальное перемещение сечения K, находящегося на свободном торце балки):
Теперь поговорим об этой формуле, проанализируем, так сказать:
- E – модуль упругости;
- I – момент инерции;
- VK – прогиб сечения K;
- VO – прогиб сечения O;
- θO – угол поворота сечения О.
Не буду приводить вывод этой формулы, не хочу отпугивать читателей, продвинутые студенты могут ознакомиться с выводом самостоятельно в учебнике по сопромату. Я только расскажу об основных закономерностях этого уравнения и как записать его для любой балки постоянного сечения.
Итак, изучаем эту формулу слева направо. В левой части уравнения обознается искомый прогиб, в нашем случае VK, который дополнительно умножается на жесткость балки — EI:
В уравнении всегда учитывается прогиб сечения балки, совпадающего с нашей базой EIVO:
Также всегда учитывается угол поворота сечения, которое совпадает с выбранной базой. Причем произведение EIθO всегда умножается на расстояние от базы до сечения, прогиб которого рассчитывается, в нашем примере — это расстояние г.
Следующие компоненты этого уравнения учитывают всю нагрузку, которая находится слева от рассматриваемого сечения. В скобках расстояния от базы до сечения отнимаются расстояния от базы до соответствующей силы или момента, начала или конца распределенной нагрузки.
Скобка, в случае с сосредоточенными силами, возводится в 3 степень и делится на 6. Если сила смотрит вверх, то считаем ее положительной, если вниз, то в уравнении она записывается с минусом:
В случае с моментами скобка возводится во 2 степень и делится на 2. Знак у момента будет положительный, когда он направлен по часовой стрелке и отрицательным, соответственно, если против часовой стрелки:
Учет распределенной нагрузки
Теперь поговорим о распределенной нагрузке. Как уже говорилось, в уравнении метода начальных параметров должно учитываться начало и конец распределенной нагрузки. Но так как, конец распределенной нагрузки совпадает с сечением, прогиб которого мы хотим вычислить, в этом случае, в уравнении учитывается только ее начало.
Причем важно, даже если бы в этом сечении была сила или момент, их бы также не учитывали. Нас интересует все, что находится слева от рассматриваемого сечения.
Для распределенной нагрузки скобка возводится в 4 степень и делится на 24. А правило знаков такое же, как и для сосредоточенных сил.
Граничные условия
Чтобы решить уравнение, нам понадобятся еще кое-какие данные. С первого взгляда в уравнении у нас наблюдается три неизвестных: VK, VO и θO. Но кое-что мы можем почерпнуть из самой схемы. Мы знаем, в жесткой заделке не может быть никаких прогибов, и никаких поворотов, то есть VO = 0 и θO = 0, это и есть так называемые начальные параметры или их еще называют граничными условиями. Теперь, если бы у нас была реальная задача, мы бы подставили все численные данные и нашли перемещение сечения K.
Если бы балка была закреплена с помощью шарнирно-подвижной и неподвижной опоры, тогда мы бы приняли прогибы в опорах равными нулю, но угол поворота в опорах был уже отличен от нуля. Более подробно об этом рассказано в другой моей статье, посвященной методу начальных параметров на примере балки на двух опорах.
Чуть не забыл про еще одну величину, которую часто требуется определять методом начальных параметров. Как известно, при изгибе, поперечные сечения балок, помимо того, что перемещаются вертикально (прогибаются) так еще и поворачиваются на какой-то угол. Углы поворота и прогибы поперечных сечений связаны дифференциальной зависимостью.
Если продифференцировать уравнение, которое мы получили для прогиба поперечного сечения K, то получим уравнение угла поворота этого сечения:
Пример расчета прогиба балки
Для закрепления пройденного материала предлагаю рассмотреть пример с заданными численными значениями всех параметров балки и нагрузок.
Условие задачи
Возьмем также консольную балку, которая жестко закреплена с правого торца. Будем считать, что балка изготовлена из стали (модуль упругости E = 2·105 МПа), в сечении у нее двутавр №16 (момент инерции по сортаменту I = 873 см4). Рассчитывать будем прогиб свободного торца, находящегося слева.
Подготовительный этап
Проводим подготовительные действия, перед расчетом прогиба: помечаем базу O, с левого торца балки проводим координатные оси и показываем реакции, возникающие в заделке, под действием заданной нагрузки:
В методе начальных параметров есть еще одна особенность, которая касается распределенной нагрузки. Если на балку действует распределенная нагрузка, то ее конец, обязательно должен находиться на краю балки (в точке наиболее удаленной от заданной базы). Только в таком случае рассматриваемый метод будет работать.
В нашем примере, нагрузка, как видно, начинается на расстоянии 2 м от базы и заканчивается на 4 м. В таком случае нагрузка продлевается до конца балки, а искусственное продление компенсируется дополнительной, противоположно направленной нагрузкой. Тем самым в расчете прогибов будет уже учитываться 2 распределенные нагрузки:
Расчет прогиба
Записываем граничные условия для заданной расчетной схемы:
VA = 0 при x = 6м
θA = 0 при x = 6м
Напомню, что нас, в этом примере интересует прогиб сечения O (VO). Для его нахождения составим уравнение, для сечения A, в которое будет входить искомая величина:
В полученном уравнении у нас содержится две неизвестные величины: искомый прогиб VO и угол поворота этого сечения — θO:
Но чтобы решить поставленную задачу, составим дополнительное уравнение, но только теперь, не прогибов, а углов поворотов, для сечения A:
Из второго уравнения найдем угол поворота:
После чего рассчитываем искомый прогиб:
Таким образом, свободный торец такой балки, прогнется практически на 6 см. Данную задачу, можно решить несколько проще, если ввести базу с правого торца. В таком случае для решения потребовалось бы лишь одно уравнение, однако, оно было бы немного объемнее, т.к. включало реакции в заделке.
Метод начальных параметров (сокр. — МНП) позволяет определять прогибы и углы наклона сечений в прямых балках с постоянной жесткостью поперечного сечения EIx.
МНП является одним из относительно простых способов расчета угловых и линейных перемещений при изгибе в балках с любым количеством силовых участков.
Пример расчета перемещений сечений балки смотрите в нашем видеоуроке:
Другие видео
Для применения метода начальных параметров есть ограничения: рассчитываемая балка должна быть выполнена из однородного материала, иметь прямую ось и постоянные форму и размеры поперечного сечения.
Универсальные уравнения МНП
Для балок с типичным набором нагрузок универсальные уравнения метода начальных параметров имеют вид:
где
θz, yz – соответственно угловое и линейное перемещения рассматриваемого сечения балки;
θ0, y0 – угол наклона и прогиб сечения балки в выбранном начале координат (НК). Это и есть начальные параметры (являются постоянными интегрирования) по которым назван сам метод. Определяются из соответствующих опорных условий;
m, F и q – все сосредоточенные моменты (пары сил), силы (включая опорные реакции) и распределенные нагрузки (в т.ч. компенсирующие) приложенные к рассматриваемой балке;
z – расстояние от выбранного начала координат до рассматриваемого сечения балки (положение сечения);
a и b – расстояния от начала координат до соответствующих моментов и сосредоточенных сил;
c – расстояние от НК до начала действия распределенной нагрузки;
E – модуль продольной упругости материала балки;
Ix — момент инерции сечения относительно оси x.
Данные уравнения МНП являются лишь шаблонами, по которым записываются уравнения для конкретных расчетных схем (пример рассмотрен ниже).
Примечания к методу
Перед записью уравнений метода начальных параметров выбирается начало координат балки.
Начало координат выбирается в крайнем левом или правом конце балки (лучше в том, который расположен на опоре).
Слагаемые в уравнениях записываются последовательно по силовым участкам от начала координат.
Знаки отдельных слагаемых в универсальных уравнениях МНП принимаются по правилу знаков для изгибающего момента, т.е. слагаемые с нагрузками, которые на рассматриваемом участке стремятся сжать верхние слои балки, записываются положительными.
Другие видео
Если распределенная нагрузка q действует в пределах части длины балки (обрывается, не доходя до конца), то ее действие продлевается в сторону, противоположную от начала координат, до конца балки и добавляется компенсирующая нагрузка той же интенсивности но обратного направления.
Начальные параметры универсальных уравнений МНП определяются из условий закрепления балки в опорах.
На шарнирных опорах вертикальные линейные перемещения (прогибы) равны нулю, т.е. yA=0 и yB=0.
В жесткой заделке отсутствуют (равны нулю) и угловые и линейные перемещения (θA=0, yA=0).
Положительное значение рассчитанного прогиба yz соответствует перемещениям сечения вверх по отношению к продольной оси балки.
Знак угла поворота θz зависит от выбора начала координат: при выборе НК в крайнем левом сечении балки угол θz будет считаться положительным при повороте сечения против хода часовой стрелки
Соответственно, если начало координат выбрано справа – положительным считается угол при повороте по часовой стрелке.
Пример составления уравнений МНП
Порядок составления уравнений МНП и расчета перемещений рассмотрим на примере двухопорной балки
Выбор начала координат
Начало координат в данной расчетной схеме выбираем в самой правой точке D балки, так как она расположена на опоре, и, следовательно, прогиб в этой точке будет отсутствовать.
Ось z направляем соответственно влево.
Теперь для данной балки правый торец будем считать ее началом, левый – соответственно концом.
Действия с распределенной нагрузкой
Как видно по схеме, действие распределенной нагрузки обрывается в точке B, не доходя до конца балки.
Поэтому ее действие необходимо продлить
при этом схема нагружения балки изменилась. Теперь, чтобы вернуться к начальной системе нагрузок, добавляем компенсирующую распределенную нагрузку обратного направления.
Это действие выполняется, потому что в уравнениях МНП параметр «c» учитывает только начало действия нагрузки.
Составление уравнений МНП
Универсальные уравнения МНП для заданной балки записываются последовательно по участкам со стороны начала координат.
При этом желательно отделять части уравнения для каждого из участков.
Запишем уравнение угловых перемещений θz метода начальных параметров.
Участок CD
Мысленно закрепив балку между сечениями C и D,
в стороне начала балки видим только опорную реакцию RD которая по правилу знаков записывается положительной, так как сжимает верхние слои балки.
Участок BC
На этом участке, как и на всех остальных, закрепив балку в произвольном месте, смотрим в сторону НК.
Видим момент m и распределенную нагрузку q.
Момент положителен т.к. сжимает верхние слои балки, нагрузка q отрицательна т.к. сжимает ее нижние слои.
Заметим, что здесь мы записали сразу всю «верхнюю» распределенную нагрузку q. В данном уравнении для других участков ее записывать больше не надо.
Участок AB
При рассмотрении данного участка к уравнению добавляются реакция в опоре B и «нижняя» компенсирующая нагрузка q.
Записываем их положительными, т.к. они стремятся сжать верхние слои балки.
Силы и моменты, приложенные в самом конце балки, в уравнения не входят.
На вопрос «Разве сила F не влияет на перемещение сечений?» ответ следующий: В уравнениях метода начальных параметров поперечная сила и момент, приложенные к концу балки оказывают влияние на перемещения опосредованно, через опорные реакции R.
Уравнение метода начальных параметров для прогибов составляется аналогично.
Определение начальных параметров
В правой части полученных уравнений известны все параметры кроме начальных θ0 и y0 (переменная z задается при решении).
Прогиб и угол наклона сечения в начале координат определим из опорных условий.
Балка закреплена на двух шарнирных опорах (точки B и D), в которых прогибы всегда равны нулю.
Граничные условия метода начальных параметров:
Так как точка D была принята за начало координат, то прогиб в этой точке и есть y0, т.е. правильно выбрав НК, мы сразу определили один из двух начальных параметров.
Угловое перемещение в начале координат θ0 рассчитаем из оставшегося (первого) опорного условия.
Для этого запишем уравнение прогибов для точки B, которое равно нулю
От НК до сечения B два участка, поэтому берется не все уравнение, а только его части, включающие нагрузки на соответствующих участках (CD и BC).
Из него выражаем и находим значение θ0.
Теперь можно рассчитывать перемещения любого сечения балки.
Расчет перемещений
Для определения перемещений сечения расположенного на i-м участке от начала координат в расчете участвуют только части уравнений от НК до i-го участка включительно.
Выбирая нужное уравнение и задавая положение z сечений от начала координат определяются их угловые и линейные перемещения.
Например, для расчета угла наклона и прогиба сечения K расположенного на расстоянии zK от НК
уравнения метода начальных параметров будут иметь вид:
Остается только подставить значения и провести расчеты.
Пример расчета перемещений сечений балки методом начальных параметров >
Примеры решения задач >
Лекции по сопромату >
Расчет балки на прогиб нужно проводить практически для любой конструкции, чтобы проверить ее надежность и прочность. Под влиянием внешних, внутренних факторов, природных явлений балка подвержена деформации.
Балку сравнивают со стержнем, закрепленным на опорах. Чем больше опор, тем сложнее провести расчет самостоятельно. Основная нагрузка считается путем сложения сил, перпендикулярно направленных к сечению.
Данный расчет – основы сопромата, помогает определить наивысшую деформацию. Значения показателей должны входить в рамки допустимых величин.
Виды балок
При возведении зданий используется балки разных конфигураций, размеров, профиля, характера сечения. Их изготавливают из металла и дерева. Для любого вида используемого материала нужен индивидуальный расчёт изгиба.
Виды балок:
-
Деревянные — их используют в основном при строительстве индивидуальных построек. Они применяются при возведении полов, потолков, несущих перекрытий. Дерево – капризный материал и подвержено деформации. Для определения максимального изгиба, существенны такие параметры: используемый профиль, размер, нагрузка, характер поперечного сечения.
-
Металлические — такие балки изготавливают из сплава металлов и сечение у них сложное. Поэтому особое внимание уделяется жесткости, а также прочности соединений. Балки из металла применяются в возведении многоэтажек, сооружений, требующих высокой прочности.
Прочность и жесткость балки
При проектировании следует учесть изгиб балок, чтобы конструкция была надежная, качественная, прочная и практичная.
На эти параметры влияют следующие факторы:
-
величина наружных нагрузок, их положение;
-
параметры, характер, нахождение поперечного сечения;
-
продольные величины;
-
материал;
-
число опор, метод их закрепления.
Выделяют 2 метода исчисления: простой – применяется увеличительный коэффициент, и точный – дополнительно включает пограничные подсчеты.
Построение эпюр балки
Эпюра распределения величины нагрузки на объект:
Расчет на жесткость
Алгоритм исчисления:
В формуле обозначены:
-
M – max момент, возникающий в брусе;
-
Wn,min – момент сопротивления сечения (табличный показатель);
-
Ry – сопротивление на изгиб (расчётный показатель);
-
γc – показатель условий труда (табличный показатель).
Такой расчет не трудоемок, но для более верного значения требуется следующее:
-
рабочий план объекта;
-
определение характеристик балки, характер сечения;
-
определение max нагрузки, воздействующей на брус;
-
оценка точки max прогиба;
-
проверка прочности max изгибающего момента.
Расчет моментов инерции и сопротивления сечения
Алгоритм исчисления:
Где:
-
J – момент инерции сечения;
-
W – момент сопротивления.
Для определения данных параметров необходимо учитывать сечение по грани разреза. Если момент инерции возрастает, величина жесткости также возрастает.
Нахождение максимальной нагрузки и прогиба
Формула для вычисления:
Здесь обозначены:
-
q – нагрузка равномерно-распределенная;
-
E – гибкость (табличный показатель);
-
l – длина;
-
I – момент инерции сечения.
Нагрузки учитываются статические и периодические.
Расчет на прогиб и его особенности
Он необходим для всех перекрытий при высоких эксплуатационных нагрузках.
При применении соответствующих коэффициентов, придерживаются следующего:
-
балка, держащаяся на одной жесткой и одной шарнирной опоре, подвергающаяся воздействию сосредоточенной нагрузки;
-
балка, держащаяся на жесткой и шарнирной опоре, подвергающаяся воздействию распределенной нагрузки;
-
нагрузка консольного типа;
-
воздействие комплексной нагрузки.
Пример расчет балки на прогиб
Рассмотрим задачу из курса сопромата.
Дано: балка четырехугольного сечения 20 на 30 см; поперечная сила Q = 19 кН; изгибающий момент М = 28 кНм.
Необходимо рассчитать напряжение: нормальное и в пределе К, отдаленной на 11 см от оси, узнать прочность бруса из дерева, при [σ] = 10 МПа, [τ] = 3 МПа.
Решение.
Чтобы узнать σ(К), τ(К), σmax, τmax
определяем значение осевого момента инерции общего сечения IН.О., осевого момента сопротивления WН.О., статического момента отсеченного ряда и статического момента середины сечения Smax:
Из этого следует:
Определение прочности по нормальному напряжению:
Определение прочности по касательному напряжению:
Задача решена.
При проектировании конструкций важно соблюдать все физико-механические вычисления на прочность. Удобно и качественно произвести расчеты может онлайн, что существенно сократит временные сроки.
Калькулятор выполняет подробный подсчет на основе формул, эпюр усилий, подбирает номер сечения металлической балки из прокатных профильных, двутавровых материалов, а также из металлических труб.
Расчет балки на изгиб — «вручную»!
Опубликовано 28 Апр 2013
Рубрика: Механика | 100 комментариев
Расчет балки на изгиб «вручную», по-дедовски, позволяет познать один из важнейших, красивейших, четко математически выверенных алгоритмов науки сопротивление материалов. Использование многочисленных программ типа «ввел исходные данные…
…– получи ответ» позволяет современному инженеру сегодня работать гораздо быстрее, чем его предшественникам сто, пятьдесят и даже двадцать лет назад. Однако при таком современном подходе инженер вынужден полностью доверять авторам программы и со временем перестает «ощущать физический смысл» расчетов. Но авторы программы – это люди, а людям свойственно ошибаться. Если бы это было не так, то не было бы многочисленных патчей, релизов, «заплаток» практически к любому программному обеспечению. Поэтому, мне кажется, любой инженер должен уметь иногда «вручную» проверить результаты расчетов.
Справка (шпаргалка, памятка) для расчётов балок на изгиб представлена ниже на рисунке.
Давайте на простом житейском примере попробуем ей воспользоваться. Допустим, я решил сделать в квартире турник. Определено место – коридор шириной один метр двадцать сантиметров. На противоположных стенах на необходимой высоте напротив друг друга надежно закрепляю кронштейны, к которым будет крепиться балка-перекладина – пруток из стали Ст3 с наружным диаметром тридцать два миллиметра. Выдержит ли эта балка мой вес плюс дополнительные динамические нагрузки, которые возникнут при выполнении упражнений?
Чертим схему для расчета балки на изгиб. Очевидно, что наиболее опасной будет схема приложения внешней нагрузки, когда я начну подтягиваться, зацепившись одной рукой за середину перекладины.
Исходные данные:
F1 = 900 н – сила, действующая на балку (мой вес) без учета динамики
b1 = 0 м
b2 = 0,6 м
b3 = 1,2 м
d = 32 мм – наружный диаметр прутка, из которого сделана балка
E = 206000 н/мм^2 — модуль упругости материала балки стали Ст3
[σи] = 250 н/мм^2 — допустимые напряжения изгиба (предел текучести) для материала балки стали Ст3
Граничные условия:
Мx (0) = 0 н*м – момент в точке z = 0 м (первая опора)
Мx (1,2) = 0 н*м– момент в точке z = 1,2 м (вторая опора)
V (0) = 0 мм – прогиб в точке z = 0 м (первая опора)
V (1,2) = 0 мм – прогиб в точке z = 1,2 м (вторая опора)
Расчет:
1. Для начала вычислим момент инерции Ix и момент сопротивления Wx сечения балки. Они нам пригодятся в дальнейших расчетах. Для кругового сечения (каковым является сечение прутка):
Ix = (π*d^4)/64 = (3.14*(32/10)^4)/64 = 5,147 см^4
Wx = (π*d^3)/32 = ((3.14*(32/10)^3)/32) = 3,217 см^3
2. Составляем уравнения равновесия для вычисления реакций опор R1 и R2:
Qy = -R1+F1-R2 = 0
Мx (0) = F1*(0-b2) -R2*(0-b3) = 0
Из второго уравнения: R2 = F1*b2/b3 = 900*0.6/1.2 = 450 н
Из первого уравнения: R1 = F1-R2 = 900-450 = 450 н
3. Найдем угол поворота балки в первой опоре при z = 0 из уравнения прогиба для второго участка:
V (1.2) = V (0)+U (0)*1.2+(-R1*((1.2-b1)^3)/6+F1*((1.2-b2)^3)/6)/
/(E*Ix) = 0
U (0) = (R1*((1.2-b1)^3)/6 -F1*((1.2-b2)^3)/6)/(E*Ix)/1,2 =
= (450*((1.2-0)^3)/6 -900*((1.2-0.6)^3)/6)/
/(206000*5,147/100)/1,2 = 0,00764 рад = 0,44˚
4. Составляем уравнения для построения эпюр для первого участка (0<z<b2):
Поперечная сила: Qy (z) = -R1
Изгибающий момент: Мx (z) = -R1*(z-b1)
Угол поворота: Ux (z) = U (0)+(-R1*((z-b1)^2)/2)/(E*Ix)
Прогиб: Vy (z) = V (0)+U (0)*z+(-R1*((z-b1)^3)/6)/(E*Ix)
z = 0 м:
Qy (0) = -R1 = -450 н
Мx (0) = 0
Ux (0) = U (0) = 0,00764 рад
Vy (0) = V (0) = 0 мм
z = 0,6 м:
Qy (0,6) = -R1 = -450 н
Мx (0,6) = -R1*(0,6-b1) = -450*(0,6-0) = -270 н*м
Ux (0,6) = U (0)+(-R1*((0,6-b1)^2)/2)/(E*Ix) =
= 0,00764+(-450*((0,6-0)^2)/2)/(206000*5,147/100) = 0 рад
Vy (0,6) = V (0)+U (0)*0,6+(-R1*((0,6-b1)^3)/6)/(E*Ix) =
= 0+0,00764*0,6+(-450*((0,6-0)^3)/6)/ (206000*5,147/100) = 0,003 м
Балка прогнется по центру на 3 мм под тяжестью моего тела. Думаю, это приемлемый прогиб.
5. Пишем уравнения эпюр для второго участка (b2<z<b3):
Поперечная сила: Qy (z) = -R1+F1
Изгибающий момент: Мx (z) = -R1*(z-b1)+F1*(z-b2)
Угол поворота: Ux (z) = U (0)+(-R1*((z-b1)^2)/2+F1*((z-b2)^2)/2)/(E*Ix)
Прогиб: Vy (z) = V (0)+U (0)*z+(-R1*((z-b1)^3)/6+F1*((z-b2)^3)/6)/(E*Ix)
z = 1,2 м:
Qy (1,2) = -R1+F1 = -450+900 = 450 н
Мx (1,2) = 0 н*м
Ux (1,2) = U (0)+(-R1*((1,2-b1)^2)/2+F1*((1,2-b2)^2)/2)/(E*Ix) =
= 0,00764+(-450*((1,2-0)^2)/2+900*((1,2-0,6)^2)/2)/
/(206000*5,147/100) = -0.00764 рад
Vy (1,2) = V (1,2) = 0 м
6. Строим эпюры, используя данные полученные выше.
7. Рассчитываем напряжения изгиба в наиболее нагруженном сечении – посередине балки и сравниваем с допустимыми напряжениями:
σи = Mx max/Wx = (270*1000)/(3,217*1000) = 84 н/мм^2
σи = 84 н/мм^2 < [σи] = 250 н/мм^2
По прочности на изгиб расчет показал трехкратный запас прочности – турник можно смело делать из имеющегося прутка диаметром тридцать два миллиметра и длиной тысяча двести миллиметров.
Таким образом, вы теперь легко можете произвести расчет балки на изгиб «вручную» и сравнить с результатами, полученными при расчете по любой из многочисленных программ, представленных в Сети.
Другие статьи автора блога
На главную