Как найти проекцию высоты на гипотенузу

Так как высота, проведенная к гипотенузе, представляет собой проведенный к ней перпендикуляр, то катеты — это наклонные, а отрезки гипотенузы, на которые делит ее высота — проекции катетов на гипотенузу прямоугольного треугольника.

proektsii katetov na gipotenuzuВ треугольнике ABC, изображенном на рисунке, AD — проекция катета AC на гипотенузу AB, BD — проекция катета BC на гипотенузу.

Катеты, их проекции на гипотенузу, гипотенуза и высота прямоугольного треугольника связаны между собой формулами.

1) Свойство высоты, проведенной к гипотенузе.

Высота прямоугольного треугольника, проведенная к гипотенузе, есть среднее геометрическое (среднее пропорциональное) между проекциями катетов на гипотенузу.

    [CD = sqrt {AD cdot BD} ,]

или

    [C{D^2} = AD cdot BD.]

2) Свойства катетов прямоугольного треугольника.

Катет прямоугольного треугольника есть среднее геометрическое (среднее пропорциональное) между гипотенузой и проекцией этого катета на гипотенузу.

    [AC = sqrt {AB cdot AD} ]

    [BC = sqrt {AB cdot BD} ]

или

    [A{C^2} = AB cdot AD]

    [B{C^2} = AB cdot BD.]

Высота прямоугольного треугольника, проведенная к гипотенузе

Как и в любом треугольнике прямоугольный треугольник имеет три высоты. Две из них совпадают с катетами, а вот третья высота, проведенная к гипотенузе, постоянно будоражит наши умы.

Поэтому представляю вашему вниманию основные формулы для ее нахождения.

Начну с самой важной.

1. Высота, проведенная к гипотенузе равна корню квадратному из произведения проекций катетов на эту гипотенузу.

2. Высоту, проведенную к гипотенузе, можно найти, разделив удвоенную площадь прямоугольного треугольника на гипотенузу.

Такая формула получается из классический формулы нахождения площади треугольника: половина произведения основания на высоту, проведенную к этому основанию.

3. Высота, проведенная к гипотенузе, равна произведению катетов, деленному на гипотенузу.

Эта формула получится из второй если заменить площадь на половину произведения катетов.

Т.к. АВ — гипотенуза, то ее можно выразить через катеты АС и ВС, используя теорему Пифагора. Тогда формула примет другой вид:

4. Высота, проведенная к гипотенузе, равна произведению катетов, деленному на диаметр описанной вокруг треугольника окружности (или на удвоенный радиус).

Так получается потому, что центр описанной окружности лежит в середине гипотенузы, значит, гипотенуза равна 2R или d.

5. Высоту, проведенную к гипотенузе, можно найти, используя геометрические определения синуса, тангенса и котангенса.

Надеюсь, что данная статья оказалась полезной!)

Готовься к экзамену вместе с нами! Заходи на нашу страницу в ВК.

§1. Прямоугольный треугольник. Метрические соотношения.

Основные метрические сооьтношения в прямоугольном треугольнике

Пусть `ABC` прямоугольный треугольник с прямым углом `C` и острым углом при вершине `A`, равным `alpha` (рис. 1).

Используем обычные обозначения:

`c` — гипотенуза `AB`;

`a`  и `b` – катеты `BC` и `AC` (по-гречески «kathetos — катет» означает отвес, поэтому такое изображение прямоугольного треугольника нам представляется естественным);

`a_c` и `b_c` – проекции `BD`  и `AD`  катетов на гипотенузу;

`h` – высота `CD`, опущенная на гипотенузу;

`m_c` – медиана `CM`, проведённая к гипотенузе;

`R` – радиус описанной окружности;

`r` – радиус вписанной окружности.

Напомним, что если `alpha` — величина острого угла `A` прямоугольного треугольника `ABC` (см. рис. 1), то

`sin alpha = a/c`,  `cos alpha = b/c`   и    `»tg»alpha = a/b`.

Значения синуса, косинуса и тангенса острого угла прямоугольного треугольника зависят только от меры угла и не зависят от размеров и расположения треугольника.

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов:

`c^2 = a^2 + b^2`

Доказательство теоремы повторите по учебнику.

Выведем ряд соотношений между элементами прямоугольного треугольника.

Квадрат катета равен произведению гипотенузы и его проекции на гипотенузу

`a^2 = c * a_c`

`b^2 = c * b_c` 

Если `/_ A = alpha`   (см. рис. 1), то `/_ CBD = 90^@ — alpha`   и `/_ BCD = alpha`.  Из треугольника `ABC` `sin alpha = (BC)/(AB)`,  а из треугольника `BCD` `sin alpha = (BD)/(BC)`.

Значит, `(BC)/(AB) = (BD)/(BC)`, откуда  `BC^2 = AB * BD`, т. е. `a^2 = c * a_c` Аналогично доказывается второе равенство. 

Квадрат высоты, опущенной на гипотенузу, равен произведению проекции катетов на гипотенузу

`h^2 = a_c * b_c`

Из треугольника `ACD`  (рис. 1) имеем `»tg»alpha = (CD)/(AD)`, а из треугольника `BCD` `»tg»alpha = (BD)/(CD)`.

Значит `(BD)/(CD) = (CD)/(AD)`,  откуда `CD^2 = AD * BD`,  т.  е.  `h^2 = a_c * b_c`.

Произведение катетов равно произведению гипотенузы и высоты, опущенной на гипотенузу

`a * b = c * h`

Из треугольника `ABC` имеем `sin alpha = (BC)/(AB)`, а из треуольника `ACD`  `sin alpha = (CD)/(AC)`.

Таким образом, `(BC)/(AB) = (CD)/(AC)`,  откуда `BC * AC = AB * CD`, т. е.  `a * b = c * h`.

Медиана, проведённая к гипотенузе, равна половине гипотенузы, т. е.

`m_c = 1/2 c`

Пусть `AM = BM`. Проведём $$ MKVert BC$$ (рис. 2), тогда по теореме Фалеса  `AK = CK`

.

Кроме того, из того, что `BC _|_ AC`  и  $$ MKVert BC$$  следует `MK _|_ AC`. В прямоугольных треугольниках `CMK` и `AMK` катет `MK` общий, катеты `CK` и `AK` равны.  Эти треугольники равны и `CM = AM`,  т. е.  `CM = 1/2 AB`.

Полезно также запомнить, что медиана к гипотенузе разбивает треугольник на два равнобедренных треугольника.

Радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы

`R = m_c = 1/2 c` 

Это следует из Свойства 4, действительно, `MA = MB = MC`,  следовательно, окружность с центром в точке  `M` и  радиуса `c/2` проходит через три вершины.

Сумма катетов равна удвоенной сумме радиусов описанной и вписанной окружностей

`a + b = 2(R + r)`    или    `a + b = c + 2r`

Пусть `O` — центр вписанной окружности и `F`, `N`  и `S` — точки касания сторон треугольника `ABC` (рис. 3), тогда `OF_|_ BC`, `ON _|_ AC`, `OS _|_ AB`   и   `OF = ON = OS = r`. Далее, `OFCN` — квадрат со стороной `r`, поэтому `BF = BC — FC`,  `AN = AC — CN`,  т. е.  `BF = a — r`  и `AN = b — r`.

Прямоугольные треугольники `AON` и `AOS` равны (гипотенуза `AO` — общая, катеты `ON` и `OS`  равны), следовательно,  `AS = AN`,  т.  е.  `AS = b — r`.

Аналогично доказывается, что  `BS = a — r`, поэтому из `AB = AS + BS`  следует   `c = (b — r) + (a — r)`,  т. е. `a + b = c + 2r`. Зная, что  `c = 2R`, окончательно получаем  `a + b = 2(R + r)`.

Равенства, доказанные в Свойствах 1 и 2, записываются также как:

`a = sqrt(c * a_c)`

`b = sqrt(c * b_c)`

`h = sqrt(a_c * b_c)`

и, соответственно, формулируются утверждения

Катет есть среднее пропорциональное между гипотенузой и его проекцией на гипотенузу.

Высота, опущенная на гипотенузу, есть среднее пропорциональное между проекциями катетов на гипотенузу.

Приведём примеры применения доказанных метрических соотношений в прямоугольном треугольнике. 

Проекции катетов прямоугольного треугольника на гипотенузу равны `9` и `16` . Найти радиус вписанной окружности.

1. Пусть  `a_c = 9`, `b_c = 16` (рис. 4),  тогда  `c = a_c + b_c = 25`.

2. По Свойству 1:  `a = sqrt(c * a_c) = 15`,   `b = sqrt(c * b_c) = 20`.

3. По Свойству 6:  находим радиус   `r = 1/2 (a + b — c) = 5`.

В прямоугольном треугольнике из вершины прямого угла проведены медиана и высота (рис. 5), расстояние между их основаниями равно `1`. Найти катеты, если известно, что один из них в два раза больше другого.

1. Заметим, что `a_c = c/2 — 1`, a `b_c = c/2 + 1`  (рис. 5), откуда  `a^2 = c * a_c = c(c/2 — 1)`  и  `b^2 = c * b_c = c(c/2 + 1)`.

2. По условию  `b = 2a`,  значит  `b^2 = 4a^2`,  т. е.  `c(c/2 + 1) = 4c(c/2 — 1)`.
   Находим  `c = (10)/3`,  и  `a = sqrt(c(c/2 — 1)) = 2/3 sqrt5`  и  `b = 2a = 4/3 sqrt5`.

Высота в прямоугольном треугольнике

Вспомним определение. Высота треугольника — это перпендикуляр, опущенный из его вершины на противоположную сторону.

В прямоугольном треугольнике катеты являются высотами друг к другу. Главный интерес представляет высота, проведённая к гипотенузе.

Один из типов экзаменационных задач в банке заданий ФИПИ — такие, где в прямоугольном треугольнике высота проведена из вершины прямого угла. Посмотрим, что получается:

angle BAC =angle BCH;

angle ABC =angle ACH;

sin Adisplaystyle = frac{a}{c}=frac{h}{b}=frac{BH}{a};

cos Adisplaystyle = frac{b}{c}=frac{h}{a}=frac{AH}{b};

displaystyle S_{ABC}= frac{ab}{2}=frac{ch}{2}.

Высота проведена к гипотенузе AB. Она делит треугольник ABC на два прямоугольных треугольника — AC mkern -3mu H и C mkern -3mu H mkern -3mu B. Смотрим внимательно на рисунок и находим на нем равные углы. Это и есть ключ к задачам по геометрии, в которых высота опущена на гипотенузу.

Мы помним, что сумма двух острых углов прямоугольного треугольника равна 90^{circ}. Значит, angle AC mkern -3mu H=90^{circ}-angle C mkern -3mu AH, то есть угол AC mkern -3mu H равен углу ABC. Аналогично, угол C mkern -3mu AB равен углу H mkern -3mu C mkern -3mu B.

Иными словами, каждый из трех углов треугольника ABC равен одному из углов треугольника AC mkern -3mu H (и треугольника BC mkern -3mu H). Треугольники ABC, AC mkern -3mu H и BC mkern -3mu H называются подобными. Давайте нарисуем их рядом друг с другом.

Подобные треугольники

Они отличаются только размерами. Стороны подобных треугольников пропорциональны. Что это значит?

Возьмем треугольники AC mkern -3mu H и ABC. Стороны треугольника ABC длиннее, чем стороны треугольника AC mkern -3mu H в k раз:

genfrac{}{}{}{0}{displaystyle AC}{displaystyle A mkern -3mu H} =genfrac{}{}{}{0}{displaystyle BC}{displaystyle C mkern -3mu H} = genfrac{}{}{}{0}{displaystyle AB}{displaystyle AC}.

Мы доказали свойство высоты прямоугольного треугольника. Его можно сформулировать как теорему.

Теорема 1. Высота прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, делит треугольника на три подобных друг другу треугольника:

triangle AHC approx triangle CHB approx triangle ACB.

При решении задач нам пригодится равенство углов треугольников ABC, AC mkern -3mu H и BC mkern -3mu H, а также пропорциональность их сторон. Обратите также внимание, что площадь треугольника ABC можно записать двумя разными способами: как половину произведения катетов и как половину произведения гипотенузы на проведенную к ней высоту. В геометрии это называется «метод площадей» и часто применяется в решении задач.

Задача 1.

В треугольнике ABC угол C равен 90^{circ}, CH — высота, BC = 3, cos A = genfrac{}{}{}{0}{displaystyle sqrt{35}}{displaystyle 6}. Найдите AH.

Решение:

Рассмотрим треугольник ABC. В нем известны косинус угла A и противолежащий катет BC. Зная синус угла A, мы могли бы найти гипотенузу AB. Так давайте найдем sin A:

sin{}^2A + cos{}^2A = 1.

Эта формула – основное тригонометрическое тождество. Конечно, вы его знаете:

sin{}^2 A + genfrac{}{}{}{0}{displaystyle 35}{displaystyle 36} = 1;

sin{}^2 A = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 36};

sin A= genfrac{}{}{}{0}{displaystyle 1}{displaystyle 6} (поскольку значение синуса острого угла положительно).

Тогда:

AB=BC: sin A = 3: genfrac{}{}{}{0}{displaystyle 1}{displaystyle 6}=3 cdot 6=18.

Рассмотрим прямоугольный треугольник BC mkern -3mu H, angle H = 90^{circ}. Поскольку angle H mkern -3mu C mkern -3mu B = angle A,

sin H mkern -3mu C mkern -3mu B = H mkern -3mu B : BC.

Отсюда H mkern -3mu B=BC cdot sin HC mkern -3mu B = 3 cdot genfrac{}{}{}{0}{displaystyle 1}{displaystyle 6}=0,5.

A mkern -3mu H = A mkern -3mu B - H mkern -3mu B=18-0,5=17,5.

Ответ: 16.

Задача 2.

В треугольнике ABC угол C равен 90{}^{circ}, AB = 13, tg A = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 5}. К гипотенузе проведена высота CH. Найдите AH.

Решение:

Это чуть более сложная задача. Ведь вам неизвестны катеты a и b.

Запишем теорему Пифагора: a^2 + b^2 = 13^2. (1)

Нам известно также, что:

tg A = genfrac{}{}{}{0}{displaystyle a}{displaystyle b} = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 5}. (2)

Решая уравнения (1) и (2), найдем:

a = sqrt{6,5}:b=5sqrt{6,5}.

Запишем площадь треугольника AВС двумя способами:

S = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 2} ab = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 2} ch

и найдем длину CH = 2,5.

Найти высоту, проведенную из вершины прямого угла, можно было и другим способом. Мы выбрали самый короткий путь — составили и решили систему уравнений, как в алгебре.

Теорема 2. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, равна произведению катетов, деленному на гипотенузу.

Доказательство:

Из прямоугольного треугольника ABC с прямым углом C и гипотенузой AB:

sindisplaystyle (angle BAC)=frac{a}{c}.

Из прямоугольного треугольника AНС с прямым углом Н и гипотенузой AС:

sindisplaystyle (angle BAC)=frac{h}{b}.

Мы разными способами вычислили синус одного и того же угла. Приравняем полученные выражения:

displaystyle frac{h}{b}=frac{a}{c}.

Найдем высоту:

displaystyle h= frac{ab}{c}.

Что и требовалось доказать.

Задача 3. Катеты прямоугольного треугольника равны 15 и 20.
Найдите высоту, проведенную к гипотенузе.

Решение:

Воспользуемся теоремой 2 о высоте прямоугольного треугольника:

Катеты BС и AС нам известны: BC = 15, AC = 20. Найдем гипотенузу AB с помощью теоремы Пифагора:

{AB}^2={BC}^2+{AC}^2={15}^2+{20}^2={25}^2,    AB=25.

Найдем высоту, проведенную из вершины прямого угла:

displaystyle CH=frac{15cdot 20}{25}=12.

Ответ: 12.

Теорема 3. В прямоугольном треугольнике квадрат высоты, проведенной из вершины прямого угла, равен произведению проекций катетов на гипотенузу.

CH^2=BHcdot AH.

Сейчас мы докажем эту полезную формулу.

Вспомним, что такое проекция точки на прямую. Например, из точки С опускаем СН — перпендикуляр к прямой AВ. Точка Н и будет проекцией точки С. Тогда AН – проекция катета AВ, а BН – проекция катета BС.

Обозначим: BH=c_a, AH=c_b.

Доказательство проведем двумя способами.

Первый способ доказательства:

Из прямоугольного треугольника BНС с прямым углом Н и гипотенузой BС:

tgdisplaystyle (angle CBH)=frac{h}{c_a}.

Из прямоугольного треугольника AНС с прямым углом Н и гипотенузой AС:

ctgdisplaystyle (angle CAH) = frac{c_b}{h}.

Заметим, что угол CBН – это угол CBA, а угол CAН – это угол BAC. Тогда:

tg(angle ABC)=ctg(angle BAC);

tg(angle CBH)=ctg(angle CAH);

displaystyle frac{h}{c_a}=frac{c_b}{h}.

Мы воспользовались тем, что тангенс и котангенс двух разных острых углов прямоугольного треугольника равны друг другу. Это следует из определения тангенса и котангенса.

Преобразуем получившееся выражение:

displaystyle h=frac{c_a cdot c_b}{h} Rightarrow h^2 = c_a c_b .

Что и требовалось доказать.

Второй способ доказательства:

Воспользуемся подобием треугольников, о которых говорится в теореме 1.

Рассмотрим пару прямоугольных треугольников AНC и BНC. Как было показано выше, эти треугольники подобны по двум углам, поэтому

displaystyle frac{h}{c_a}=frac{c_b}{h}.

Мы получили такое же соотношение, как и в первом способе доказательства.

Далее аналогично получим, что

h^2 = c_a c_b .

Что и требовалось доказать.

Задача 4. На гипотенузу AB прямоугольного треугольника ABC опущена высота CH, AH = 4, BH = 16. Найдите длину CH.

Решение:

Воспользуемся теоремой 3 о высоте прямоугольного треугольника:

CH^2=BHcdot AH.

Подставим данные задачи.

{CH}^2=4cdot 16=64, CH = 8.

Ответ: 8.

Разберем решения других задач ОГЭ и ЕГЭ по теме «Свойства высоты в прямоугольном треугольнике».

Задача 5. Катеты прямоугольного треугольника относятся как 3:4, а гипотенуза равна 50. Найти высоту, проведенную из вершины прямого угла и отрезки, на которые гипотенуза делится высотой.

Решение:

Рассмотрим прямоугольный треугольник ABС с гипотенузой AB. Проведем высоту CD=h.

Учитывая отношение катетов, обозначим их длины как: BC = 3x, AC = 4x.

Тогда по теореме Пифагора получим:

AB=sqrt{9x^2 +16 x^2} = sqrt{25 x^2}=5x.

По условию гипотенуза AB = 50. Следовательно, х = 10, BC = 30, AC = 40.

Далее можно действовать разными способами. Например, так.

displaystyle CD=frac{BCcdot AC}{AB}=frac{30cdot 40}{50}=24.

AD=ACcdot {cos A},; BD=BCcdot {cos B}, где по определению косинуса:

cos A displaystyle =frac{AC}{AB}=frac{4}{5},; cos Bdisplaystyle =frac{BC}{AB}=frac{3}{5}.

displaystyle AD=ACcdot frac{4}{5}=32,; BD=BCcdot frac{3}{5}=18.

Ответ: CD=24, ; AD=32,; BD=18.

Задача 6. В прямоугольном треугольнике ABC высота CD делит гипотенузу на отрезки AD = 3 см и BD = 2 см. Найти катеты треугольника.

Решение:

Найдем квадрат длины высоты с помощью теоремы 3:

{CD}^2=ADcdot BD=3cdot 2=6.

Из прямоугольного треугольника ADC по теореме Пифагора найдем

{AC}^2={AD}^2+{CD}^2=9+6=15,; AC= sqrt{15} см.

Из прямоугольного треугольника BDC по теореме Пифагора найдем

{BC}^2={BD}^2+{CD}^2=4+6=10,; BC= sqrt{10} см.

Ответ: sqrt{15} см и sqrt{10} см.

Задача 7. Точка D является основанием высоты, проведенной из вершины прямого угла C треугольника ABC к гипотенузе AB. Найдите AC, если AD=8, AB=32.

Указание:

Найдите отрезок BD = AB — AD, после чего задача сводится к предыдущей.

Длину высоты прямоугольного треугольника можно также найти, если известны гипотенуза и один из острых углов треугольника.

h = c sinalpha cosalpha = c sinbeta cosbeta.

Докажем эту формулу.

Рассмотрим прямоугольный треугольник ACD: CD=AC cos alpha.

В то же время из треугольника AВC: AC=AB sin alpha.

Таким образом, h = CD = AC cos⁡alpha = AB sinalpha cosalpha = c sinalpha cos⁡alpha.

Аналогично, из треугольника BCD получим: h = CD = BC cosbeta = AB sin⁡beta cosbeta = c sin beta cos⁡beta.

Задача 8. В прямоугольном треугольнике гипотенуза равна 10, а один из острых углов 15 градусов. Найти высоту, проведенную из вершины прямого угла.

Решение:

Воспользуемся доказанной выше формулой:

h = c sinalpha cosalpha = 10 sin {15}^circcos {15}^circ = 5sin {30}^circ = 2,5.

Ответ: 2,5.

Задача 9. Высота прямоугольного треугольника делит его гипотенузу на отрезки 6 см и 4 см. Найдите площадь этого треугольника.

Решение:

Гипотенуза прямоугольного треугольника равна сумме данных отрезков:

c=6+4=10 см.

Найдем высоту, проведенную из вершины прямого угла к гипотенузе: h=sqrt{6cdot 4}=2sqrt{6} см.

Площадь треугольника:

displaystyle S=frac{1}{2}ch=frac{1}{2}cdot 10cdot 2sqrt{6}=10sqrt{6} см{}^2.

Ответ: 10sqrt{6} см{}^2.

Если вам понравился наш материал — записывайтесь на курсы подготовки к ЕГЭ по математике онлайн

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Высота в прямоугольном треугольнике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Как построить высоту треугольника — основные способы

С применением циркуля

Если нужно нарисовать высоту (перпендикуляр к противоположной стороне) в произвольном треугольнике и измерить её, то лучше всего воспользоваться классическим методом построения. Он предусматривает использование циркуля в качестве основной рабочей принадлежности. Кроме этого, для работы понадобится лист бумаги, небольшая линейка, ластик и простой карандаш.

Способ начертить искомый отрезок:

  • На листе бумаги чертят треугольник (можно нарисовать заранее, чтобы сэкономить время).
  • Рисунок располагают так, чтобы вершина угла, из которого нужно начертить высоту, находилась сверху, а противоположная ему сторона фигуры была расположена горизонтально (по отношению к ученику).
  • Иглу циркуля ставят в вершине любого угла у основания.
  • Ножку с грифелем ставят в верхнюю точку треугольника, из которой проводится высота.
  • Циркулем рисуют окружность и делают пометку в месте её пересечения с основанием фигуры.
  • Аналогичным способом чертят круг из другого угла при основании. При этом важно определить новый радиус, который будет равен длине второй стороны треугольника.
  • Делают пометку в месте пересечения начерченных окружностей.
  • Ластиком стирают лишние линии, оставляя лишь поставленную точку.
  • С помощью карандаша и линейки из неё проводят отрезок к вершине, который и будет высотой треугольника.
  • Стирают линии, находящиеся под основанием.

Таким же способом можно с помощью циркуля построить высоту треугольника из любого другого угла.

С помощью линейки

Начертить и обозначить высоту можно и без циркуля. Для этого следует воспользоваться чертёжным угольником, 2 стороны которого перпендикулярны друг другу. Альтернативой этой школьной принадлежности могут стать 2 прямые линейки, соединённые между собой под прямым углом.

В остроугольном треугольнике

Провести высоту в треугольнике, где все углы острые (менее 90 градусов), довольно просто.

Чтобы справиться с этой задачей, нужно подготовить все необходимое и заранее начертить на бумаге геометрическую фигуру.

Правильная последовательность действий:

  • Находят вершину, из которой хотят провести перпендикуляр.
  • Совмещают угольник с противоположной стороной фигуры.
  • Перемещают чертёжную принадлежность до тех пор, пока её перпендикулярная сторона не пройдёт через вершину.
  • Простым карандашом проводят линию, которая и будет искомым отрезком.

В тупоугольной фигуре

Трёхсторонняя фигура, у которой один из углов тупой (более 90 градусов) имеет только 1 внутреннюю высоту. Для её проведения используют то же, что и в предыдущем случае.

Порядок действий:

  • Располагают чертёж так, чтобы тупой угол оказался у основания.
  • Угольник прикладывают к наибольшей стороне фигуры.
  • Совмещают перпендикулярную сторону линейки с вершиной тупого угла.
  • Соединяют 2 точки простым карандашом, получая искомую линию.

В прямоугольном и равнобедренном

В прямоугольном треугольнике нужно находить только 1 высоту. Две другие будут совпадать с катетами.

Пошаговая инструкция:

  • Прикладывают одну из перпендикулярных сторон угольника к гипотенузе.
  • Вторую сторону линейки совмещают с вершиной прямого угла.
  • Проводят линию, которая будет высотой.

Проще всего проводить перпендикуляр из верхней точки равнобедренного треугольника.

Он будет совпадать с биссектрисой и медианой фигуры. Начертить его можно таким же способом, что и для остроугольной фигуры. Более простой метод предусматривает выполнение следующих действий:

  • Линейкой замеряют длину основания.
  • Эту величину делят на 2.
  • Полученное значение откладывают от вершины одного из углов при основании.
  • Отмечают середину стороны и соединяют её с верхней точкой фигуры.

Проведение высоты в треугольнике — это простая задача, с которой легко справится каждый ученик.

Для этого достаточно сделать чертёж геометрической фигуры и воспользоваться одним из существующих способов построения. Такая работа потребует минимум времени и не отнимет у школьника много сил.

Проекции катетов на гипотенузу

Так как высота, проведенная к гипотенузе, представляет собой проведенный к ней перпендикуляр, то катеты — это наклонные, а отрезки гипотенузы, на которые делит ее высота — проекции катетов на гипотенузу прямоугольного треугольника.

В треугольнике ABC, изображенном на рисунке, AD — проекция катета AC на гипотенузу AB, BD — проекция катета BC на гипотенузу.

Катеты, их проекции на гипотенузу, гипотенуза и высота прямоугольного треугольника связаны между собой формулами.

1) Свойство высоты, проведенной к гипотенузе.

Высота прямоугольного треугольника, проведенная к гипотенузе, есть среднее геометрическое (среднее пропорциональное) между проекциями катетов на гипотенузу.

2) Свойства катетов прямоугольного треугольника.

Катет прямоугольного треугольника есть среднее геометрическое (среднее пропорциональное) между гипотенузой и проекцией этого катета на гипотенузу.

Свойства высоты прямоугольного треугольника

В данной публикации мы рассмотрим основные свойства высоты в прямоугольном треугольнике, а также разберем примеры решения задач по этой теме.

Примечание: треугольник называется прямоугольным, если один из его углов является прямым (равняется 90°), а два остальных – острые ( Содержание скрыть

Свойства высоты в прямоугольном треугольнике

Свойство 1

В прямоугольном треугольнике две высоты (h1 и h2) совпадают с его катетами.

Третья высота (h3) опускается на гипотенузу из прямого угла.

Свойство 2

Ортоцентр (точка пересечения высот) прямоугольного треугольника находится в вершине прямого угла.

Свойство 3

Высота в прямоугольном треугольнике, проведенная к гипотенузе, делит его на два подобных прямоугольных треугольника, которые также подобны исходному.

Аналогичным образом доказывается, что ∠ABD = ∠DAC.

Свойство 4

В прямоугольном треугольнике высота, проведенная к гипотенузе, вычисляется следующим образом:

1. Через отрезки на гипотенузе, образованные в результате ее деления основанием высоты:

2. Через длины сторон треугольника:

Данная формула получена из Свойства синуса острого угла в прямоугольном треугольнике (синус угла равен отношению противолежащего катета к гипотенузе) :


Примечание: к прямоугольному треугольнику, также, применимы общие свойства высоты, представленные в нашей публикации – “Высота в треугольнике abc: определение, виды, свойства”.

Пример задачи

Задача 1
Гипотенуза прямоугольного треугольника поделена высотой, проведенной к ней, на отрезки 5 и 13 см. Найдите длину этой высоты.

Решение
Воспользуемся первой формулой, представленной в Свойстве 4:

Задача 2
Катеты прямоугольного треугольника равны 9 и 12 см. Найдите длину высоты, проведенной к гипотенузе.

Решение
Для начала найдем длину гипотенузы по теореме Пифагора (пусть катеты треугольника – это “a” и “b”, а гипотенуза – “c”):
c 2 = a 2 + b 2 = 9 2 + 12 2 = 225.
Следовательно, с = 15 см.

Теперь можно применить вторую формулу из Свойства 4, рассмотренного выше:

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти лавандовые поля
  • Как найти территорию по октмо
  • Как найти точность измерения в процентах
  • Как найти утерянное кольцо дома
  • Как найти гайды бесплатно

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии