Как найти проекцию угла на ось

Преподаватель который помогает студентам и школьникам в учёбе.

Проекция вектора на ось в физике — формулы и определения с примерами

Содержание:

Проекция вектора на ось:

Вы уже знаете, что вектор имеет модуль и направление. При решении задач часто используется понятие проекция вектора на ось. Что такое проекция вектора? Как ее определяют?

Начнем с понятия проекция точки на ось.

Проекция точки — это основание перпендикуляра, опущенного из данной точки на ось.

На рисунке 24 точка Проекция вектора на ось в физике - формулы и определения с примерами

Проекция вектора на ось в физике - формулы и определения с примерами

Как определяют проекцию вектора на ось

Проекция вектора на ось — это длина отрезка между проекциями начала и конца вектора, взятая со знаком «+» или «-». Знак «+» берут, если угол между вектором и осью острый, а знак «-» — если угол тупой.

На рисунке 25 проекция вектора Проекция вектора на ось в физике - формулы и определения с примерами на ось Ох обозначена через Проекция вектора на ось в физике - формулы и определения с примерами а проекция вектора Проекция вектора на ось в физике - формулы и определения с примерами — через Проекция вектора на ось в физике - формулы и определения с примерами
Проекция вектора на ось в физике - формулы и определения с примерами
Проекция Проекция вектора на ось в физике - формулы и определения с примерами — число положительное, т. к. угол Проекция вектора на ось в физике - формулы и определения с примерами на рисунке 25, а — острый. Проекция Проекция вектора на ось в физике - формулы и определения с примерами — число отрицательное Проекция вектора на ось в физике - формулы и определения с примерами т. к. угол Проекция вектора на ось в физике - формулы и определения с примерами на рисунке 25, б — тупой.

А если вектор перпендикулярен оси? Тогда его проекция на эту ось равна нулю (рис. 26).

Проекция вектора на ось в физике - формулы и определения с примерами

Проекцию вектора можно выразить через его модуль и угол между вектором и осью.

Рассмотрим треугольник Проекция вектора на ось в физике - формулы и определения с примерами на рисунке 25, а. Его гипотенуза Проекция вектора на ось в физике - формулы и определения с примерами катет Проекция вектора на ось в физике - формулы и определения с примерами а угол между ними равен Проекция вектора на ось в физике - формулы и определения с примерами Следовательно,

Проекция вектора на ось в физике - формулы и определения с примерами

Проекция вектора на ось равна модулю вектора, умноженному на косинус угла между вектором и осью.

Это правило справедливо при любых углах между вектором и осью. Подтвердите это с помощью рисунков 25 и 26.

Обратим внимание на еще одно важное свойство проекций: проекция суммы векторов на ось равна сумме их проекций на эту ось.

Проекция вектора на ось в физике - формулы и определения с примерами

С помощью рисунка 27, а, б убедитесь, что из векторного равенства Проекция вектора на ось в физике - формулы и определения с примерами следует равенство для проекций: Проекция вектора на ось в физике - формулы и определения с примерами Не забывайте о знаках проекций.

Можно ли найти модуль и направление вектора по его проекциям на координатные оси

Проекция вектора на ось в физике - формулы и определения с примерами

Рассмотрим вектор Проекция вектора на ось в физике - формулы и определения с примерами лежащий в плоскости Проекция вектора на ось в физике - формулы и определения с примерами (рис. 28). Его проекции на оси Проекция вектора на ось в физике - формулы и определения с примерами определим из рисунка: Проекция вектора на ось в физике - формулы и определения с примерами

Модуль вектора Проекция вектора на ось в физике - формулы и определения с примерами находим по теореме Пифагора из треугольника ACD: Проекция вектора на ось в физике - формулы и определения с примерами Разделив Проекция вектора на ось в физике - формулы и определения с примерами на Проекция вектора на ось в физике - формулы и определения с примерами получим: Проекция вектора на ось в физике - формулы и определения с примерами По значению косинуса находим угол Проекция вектора на ось в физике - формулы и определения с примерами

Таким образом, вектор, лежащий в заданной плоскости, полностью определяется двумя проекциями на оси координат.

Вектор в пространстве определяется тремя проекциями: Проекция вектора на ось в физике - формулы и определения с примерами(рис. 29).
Проекция вектора на ось в физике - формулы и определения с примерами
 

Главные выводы:

  1. Проекция вектора на ось — это длина отрезка, заключенного между проекциями начала и конца вектора на эту ось, взятая со знаком «+» или «-».
  2. Если угол между вектором и осью острый, то его проекция на эту ось положительна, если угол тупой — отрицательна, если прямой — равна нулю.
  3. Проекция вектора на ось равна произведению его модуля на косинус угла между вектором и осью.
  4. Проекция суммы векторов на ось равна сумме их проекций на эту ось.

Пример №1

Проекция вектора на ось в физике - формулы и определения с примерами

1. Определите сумму и разность взаимно перпендикулярных векторов Проекция вектора на ось в физике - формулы и определения с примерами (рис. 30). Найдите модули векторов суммы Проекция вектора на ось в физике - формулы и определения с примерами и разности Проекция вектора на ось в физике - формулы и определения с примерами

Решение

Сумму векторов Проекция вектора на ось в физике - формулы и определения с примерами находим по правилу треугольника (рис. 31, а) или параллелограмма (рис. 31, б). Так как векторы Проекция вектора на ось в физике - формулы и определения с примерами взаимно перпендикулярны, модуль вектора Проекция вектора на ось в физике - формулы и определения с примерами находим по теореме Пифагора: Проекция вектора на ось в физике - формулы и определения с примерами Разность векторов Проекция вектора на ось в физике - формулы и определения с примерами определим по правилам вычитания векторов (рис. 32, а, б).

Проекция вектора на ось в физике - формулы и определения с примерами

Модуль вектора Проекция вектора на ось в физике - формулы и определения с примерами находим аналогично:

Проекция вектора на ось в физике - формулы и определения с примерами

Ответ: Проекция вектора на ось в физике - формулы и определения с примерами

  • Заказать решение задач по физике

Пример №2

Выразите вектор Проекция вектора на ось в физике - формулы и определения с примерами через векторы Проекция вектора на ось в физике - формулы и определения с примерами (рис. 33). Как связаны между собой проекции этих векторов на оси Ох и Оу?

Решение

Проекция вектора на ось в физике - формулы и определения с примерами

По правилу треугольника находим: Проекция вектора на ось в физике - формулы и определения с примерами Отсюда Проекция вектора на ось в физике - формулы и определения с примерами Определив координаты Проекция вектора на ось в физике - формулы и определения с примерами начальных и конечных точек векторов Проекция вектора на ось в физике - формулы и определения с примерами находим проекции этих векторов: Проекция вектора на ось в физике - формулы и определения с примерами Проекция вектора на ось в физике - формулы и определения с примерами

Вычислением убедимся, что проекции векторов связаны теми же равенствами, что и сами векторы: Проекция вектора на ось в физике - формулы и определения с примерами

Ответ: Проекция вектора на ось в физике - формулы и определения с примерами

  • Путь и перемещение
  • Равномерное прямолинейное движение
  • Прямолинейное неравномерное движение 
  • Прямолинейное равноускоренное движение
  • Колебательное движение
  • Физический и математический маятники
  • Пружинные и математические маятники
  • Скалярные и векторные величины и действия над ними

Как найти проекции на оси

Чтобы найти проекцию вектора или отрезка на координатные оси, нужно опустить перпендикуляры с крайних точек на каждую из осей. Если же известны координаты вектора или отрезка, его проекцию на оси можно вычислить. То же можно сделать, если известна длина вектора и угол между ним и осью.

Как найти проекции на оси

Вам понадобится

  • — понятие о декартовой системе координат;
  • — тригонометрические функции;
  • — действия с векторами.

Инструкция

Изобразите вектор или отрезок в системе координат. Затем, из одного из концов отрезка или вектора опустите перпендикуляры на каждую из осей. На пересечении перпендикуляра и каждой оси отметьте точку. Повторите эту процедуру для второго конца отрезка или вектора.

Измерьте расстояние от начала координат, до каждой из точек пересечения перпендикуляров с системой координат. На каждой оси от большего расстояния вычтите меньшее — это и будет проекция отрезка или вектора на каждую из осей.

Если известны координаты окончаний вектора или отрезка, чтобы найти его проекции на оси, от координат конца вычтите соответствующие координаты начала. Если значение получается отрицательным, берите его модуль. Знак минус означает, что проекция находится в отрицательной части координатной оси. Например, если координаты начала вектора (-2;4;0), а координаты конца (2;6;4), то проекция на ось ОХ равна 2-(-2)=4, на ось OY: 6-4=2, на ось OZ: 4-0=4.

Если даны координаты вектора, то они и являются проекциями на соответствующие оси. Например, если вектор имеет координаты (4;-2;5), то это значит, что проекция на ось ОХ равна 4, на ось OY: 2, на ось OZ: 5. Если координата вектора равна 0, то и его проекция на эту ось тоже равна 0.

В том случае, если известна длина вектора и угол между ним и осью (как в полярных координатах), то для того, чтобы найти его проекцию на эту ось, нужно умножить длину этого вектора на косинус угла между осью и вектором. Например, если известно, что длина вектора составляет 4 см, а угол между ним и осью OX в системе координат XOY равен 60º.

Чтобы найти его проекцию на ось OX, умножьте 4 на cos(60º). Расчет 4•cos(60º)=4•1/2=2 см. Найдите проекцию на ось OY, найдя угол между ней и вектором 90º-60º=30º. Тогда его проекция на эту ось составит 4•cos(30º)=4•0,866=3,46 см.

Источники:

  • найти проекцию вектора

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Проекция вектора на ось

Вектор может отбрасывать тень (проекцию) на какую-нибудь ось

На рисунке изображены векторы и их проекции на ось Ox

Рис. 1. Векторы и их проекции на ось Ox

На рисунке 1 изображены векторы ( vec{a} ), ( vec{b} ), ( vec{c} ), ( vec{g} ) и их проекции на ось Ox.

Если:

  • вектор параллелен оси, то «его проекция = его длина», пример для вектора ( vec{g} );
  • вектор перпендикулярен оси, то его проекция равна нулю, пример для вектора ( vec{b} );
  • проекция направлена против оси, то её записывают со знаком «-», пример для вектора ( vec{a} ).
  • чем больше вектор наклоняется к оси, тем больше его проекция на эту ось. Сравните проекции векторов ( vec{c} ) и ( vec{g} ).

Примечание:

Длина вектора – это положительная величина, а проекция вектора может быть отрицательной

Как разложить вектор на проекции

Мы уже находили длину и направление вектора по его координатам.

Теперь решим обратную задачу: пользуясь длиной и направлением вектора, найдем его координаты.

На плоскости (две оси) легко разложить вектор на проекции, если известны:

  • длина вектора и
  • угол между вектором и какой-либо осью (угол обозначается дугой).

Алгоритм действий для разложения вектора на проекции

  1. Проводим прямоугольник так, чтобы вектор стал его диагональю.
  2. Диагональ разделит прямоугольник на треугольники. Эти два треугольника прямоугольные.
  3. Выберем треугольник, в котором угол отмечен дугой.
  4. Дуга одним своим концом всегда касается гипотенузы, а вторым концом – одного из катетов.

Важно! Вектор, который мы раскладываем, всегда является гипотенузой.

На рисунке изображен вектор, угол между вектором и осью, проекции вектора

Рис. 2. Проекции вектора поможет найти угол между вектором и осью

Формулы разложения вектора на проекции

Формулы разложения легко запомнить с помощью фразы:

Гипотенузу умножаем на косинус (угла), получаем катет, который касается (дуги).

На языке математики эта фраза запишется так:

[ |vec{m}| cdot cos(alpha) = m_{x} ]

Катет ( m_{x} ) – это «x» координата вектора.

Если длину вектора умножим на синус, то получим второй катет:

[ |vec{m}| cdot sin(alpha) = m_{y} ]

Катет ( m_{y} ) – это «y» координата вектора.

Обе формулы запишем в виде системы:

[ large boxed {begin{cases}  left|vec{m}right| cdot cos(alpha) = m_{x} \ left|vec{m}right| cdot sin(alpha) = m_{y} end{cases}} ]

Величина ( |vec{m}| ) — это длина вектора ( vec{m} )

Оценка статьи:

Загрузка…

Векторное описание движения является полезным, так как на одном чертеже всегда можно изобразить много разнообразных векторов и получить перед глазами наглядную «картину» движения. Однако всякий раз использовать линейку и транспортир, чтобы производить действия с векторами, очень трудоёмко. Поэтому эти действия сводят к действиям с положительными и отрицательными числами – проекциями векторов.

Проекцией вектора на ось называют скалярную величину, равную произведению модуля проектируемого вектора на косинус угла между направлениями вектора и выбранной координатной оси.

_?_

На левом чертеже показан вектор перемещения, модуль которого 50 км, а его направление образует тупой угол 150° с направлением оси X. Пользуясь определением, найдём проекцию перемещения на ось X:

sx  =  s · cos(α)  =  50 км · cos( 150°)  =  –43 км

Поскольку угол между осями 90°, легко подсчитать, что направление перемещения образует с направлением оси Y острый угол 60°. Пользуясь определением, найдём проекцию перемещения на ось Y:

sy  =  s · cos(β)  =  50 км · cos( 60°)  =  +25 км

Как видите, если направление вектора образует с направлением оси острый угол, проекция положительна; если направление вектора образует с направлением оси тупой угол, проекция отрицательна.

На правом чертеже показан вектор скорости, модуль которого 5 м/с, а направление образует угол 30° с направлением оси X. Найдём проекции:

υx  =  υ · cos(α)  =  5 м/c · cos( 30°)  =  +4,3 м/с
υy  =  υ · cos(β)  =  5 м/с · cos( 120°)  =  –2,5 м/c

Гораздо проще находить проекции векторов на оси, если проецируемые векторы параллельны или перпендикулярны выбранным осям. Обратим внимание, что для случая параллельности возможны два варианта: вектор сонаправлен оси и вектор противонаправлен оси, а для случая перпендикулярности есть только один вариант.

Проекция вектора, перпендикулярного оси, всегда равна нулю (см. sy и ay на левом чертеже, а также sx и υx на правом чертеже). Действительно, для вектора, перпендикулярного оси, угол между ним и осью равен 90°, поэтому косинус равен нулю, значит, и проекция равна нулю.

_?_

Проекция вектора, сонаправленного с осью, положительна и равна его модулю, например, sx = +s (см. левый чертёж). Действительно, для вектора, сонаправленного с осью, угол между ним и осью равен нулю, и его косинус «+1», то есть проекция равна длине вектора: sx = x – xo = +s .

Проекция вектора, противонаправленного оси, отрицательна и равна его модулю, взятому со знаком «минус», например, sy = –s (см. правый чертёж). Действительно, для вектора, противонаправленного оси, угол между ним и осью равен 180°, и его косинус «–1», то есть проекция равна длине вектора, взятой с отрицательным знаком: sy = y – yo = –s .

На правых частях обоих чертежей показаны другие случаи, когда векторы параллельны одной из координатных осей и перпендикулярны другой. Предлагаем вам убедиться самостоятельно, что и в этих случаях тоже выполняются правила, сформулированные в предыдущих абзацах.

Автор статьи

Анна Кирпиченкова

Эксперт по предмету «Геометрия»

Задать вопрос автору статьи

Для понятия проекции вектора на ось или какой-либо другой вектор существуют понятия ее геометрической проекции и числовой (или алгебраической) проекции. Результатом геометрической проекции будет вектор, а результатом алгебраической – неотрицательное действительное число. Но перед тем, как перейти к этим понятиям вспомним необходимую информацию.

Предварительные сведения

Основное понятие – непосредственно понятие вектора. Для того, чтобы ввести определение геометрического вектора вспомним, что такое отрезок. Введем следующее определение.

Определение 1

Отрезком будем называть часть прямой, которая имеет две границы в виде точек.

Отрезок может иметь 2 направления. Для обозначения направления будем называть одну из границ отрезка его началом, а другую границу — его концом. Направление указывается от его начала к концу отрезка.

Определение 2

Вектором или направленным отрезком будем называть такой отрезок, для которого известно, какая из границ отрезка считается началом, а какая его концом.

Обозначение: Двумя буквами: $overline{AB}$ – (где $A$ его начало, а $B$ – его конец).

Одной маленькой буквой: $overline{a}$ (рис. 1).

а) вектор $overline{a}$. б) вектор $overline{AB}$

Введем еще несколько понятий, связанных с понятием вектора.

Определение 3

Два ненулевых вектора будем называть коллинеарными, если они лежат на одной и той же прямой или на прямых, параллельных друг другу (рис.2).

«Проекция вектора на ось. Как найти проекцию вектора» 👇

Определение 4

Два ненулевых вектора будем называть сонаправленными, если они удовлетворяют двум условиям:

  1. Эти векторы коллинеарны.
  2. Если они будут направлены в одну сторону (рис. 3).

Обозначение: $overline{a}↑↑overline{b}$

Определение 5

Два ненулевых вектора будем называть противоположно направленными, если они удовлетворяют двум условиям:

  1. Эти векторы коллинеарны.
  2. Если они направлены в разные стороны (рис. 4).

Обозначение: $overline{a}↑↓overline{d}$

Определение 6

Длиной вектора $overline{a}$ будем называть длину отрезка $a$.

Обозначение: $|overline{a}|$

Перейдем к определению равенства двух векторов

Определение 7

Два вектора будем называть равными, если они удовлетворяют двух условиям:

  1. Они сонаправлены;
  2. Их длины равны (рис. 5).

Геометрическая проекция

Как мы уже сказали ранее, результатом геометрической проекции будет вектор.

Определение 8

Геометрической проекцией вектора $overline{AB}$ на ось будем называть такой вектор, который получается следующим образом: Точка начала вектора $A$ проецируется на данную ось. Получаем точку $A’$ — начало искомого вектора. Точка конца вектора $B$ проецируется на данную ось. Получаем точку $B’$ — конец искомого вектора. Вектор $overline{A’B’}$ и будет искомым вектором.

Рассмотрим задачу:

Пример 1

Постройте геометрическую проекцию $overline{AB}$ на ось $l$, изображенные на рисунке 6.

Решение.

Проведем из точки $A$ перпендикуляр к оси $l$, получим на ней точку $A’$. Далее проведем из точки $B$ перпендикуляр к оси $l$, получим на ней точку $B’$ (рис. 7).

Полученный на оси $l$ вектор $overline{A’B’}$ и будет искомой геометрической проекцией.

Замечание 1

Заметим, что если угол между вектором и осью острый, то проекция сонаправлена с осью, а если тупой, то проекция противоположно направлена с осью.

Числовая проекция

Как мы уже знаем, результатом алгебраической проекции будет неотрицательное действительное число.

Определение 9

Числовой (алгебраической) проекцией на ось будем называть неотрицательное число, равное длине вектора геометрической проекции.

Рассмотрим это понятие на примере задачи:

Пример 2

Найти числовую проекцию вектора $overline{F} на сонаправленную ему ось $x$, если угол между ними равняется $α$ (рис. 8). (рис. 8).

Решение.

Введем на рисунке следующие обозначения:

Видим, что длина вектора геометрической проекции, равняется длине $XY$. Из определения косинуса получим, что

$XY=|overline{F}|cosα$

где $|overline{F}|$ — длина вектора $overline{F}$. Это и будет искомая алгебраическая проекция на ось.

Другие случаи можете видеть на рисунке 9.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти высоту треугольник с помощью циркуля
  • Как найти делитель 882
  • Как найти шрифт с тенью
  • Как найти раненого в госпитале санкт петербурга
  • Как найти скрытых друзей контакт

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии