Эллипс:
Определение: Эллипсом называется геометрическое место точек, сумма расстояний от которых до двух выделенных точек
Получим каноническое уравнение эллипса. Выберем декартову систему координат так, чтобы фокусы
Рис. 29. Вывод уравнения эллипса.
Расстояние между фокусами (фокусное расстояние) равно Согласно определению эллипса имеем
Из треугольников
и
по теореме Пифагора найдем
соответственно. Следовательно, согласно определению имеем
Возведем обе части равенства в квадрат, получим
Перенося квадратный корень в левую часть, а все остальное в правую часть равенства, находим Раскроем разность квадратов
Подставим найденное выражение в уравнение и сократим обе части равенства на 4, тогда оно перейдет в уравнение
Вновь возведем обе части равенства в квадрат
Раскрывая все скобки в правой части уравнения, получим
Соберем не- известные в левой части, а все известные величины перенесем в правую часть уравнения, получим
Введем обозначение для разности, стоящей в скобках
Уравнение принимает вид
Разделив все члены уравнения на
получаем каноническое уравнение эллипса:
Если
то эллипс вытянут вдоль оси Ох, для противоположного неравенства — вдоль оси Оу (при этом фокусы тоже расположены на этой оси). Проанализируем полученное уравнение. Если точка М(х; у) принадлежит эллипсу, то ему принадлежат и точки
следовательно, эллипс симметричен относительно координатных осей, которые в данном случае будут называться осями симметрии эллипса. Найдем координаты точек пересечения эллипса с декартовыми осями:
Определение: Найденные точки называются вершинами эллипса.
Рис. 30. Вершины, фокусы и параметры эллипса
Определение: Если то параметр а называется большой, а параметр b — малой полуосями эллипса.
Определение: Эксцентриситетом эллипса называется отношение фокусного рас- стояния к большой полуоси эллипса
Из определения эксцентриситета эллипса следует, что он удовлетворяет двойному неравенству Кроме того, эта характеристика описывает форму эллипса. Для демонстрации этого факта рассмотрим квадрат отношения малой полуоси эллипса к большой полуоси
Если и эллипс вырождается в окружность. Если
и эллипс вырождается в отрезок
Пример:
Составить уравнение эллипса, если его большая полуось а = 5, а его эксцентриситет
Решение:
Исходя из понятия эксцентриситета, найдем абсциссу фокуса, т.е. параметр Зная параметр с, можно вычислить малую полуось эллипса
Следовательно, каноническое уравнение заданного эллипса имеет вид:
Пример:
Найти площадь треугольника, две вершины которого находятся в фокусах эллипса а третья вершина — в центре окружности
Решение:
Для определения координат фокусов эллипса и центра окружности преобразуем их уравнения к каноническому виду. Эллипс:
Следовательно, большая полуось эллипса
а малая полуось
Так как
то эллипс вытянут вдоль оси ординат Оу. Определим расположение фокусов данного эллипса
Итак,
Окружность:
Выделим полные квадраты по переменным
Следовательно, центр окружности находится в точке О(-5; 1).
Построим в декартовой системе координат треугольник Согласно школьной формуле площадь треугольника
равна
Высота
а основание
Следовательно, площадь треугольника
равна:
Эллипс в высшей математике
Рассмотрим уравнение
где и
—заданные положительные числа. Решая его относительно
, получим:
Отсюда видно, что уравнение (2) определяет две функции. Пока независимое переменное по абсолютной величине меньше
, подкоренное выражение положительно, корень имеет два значения. Каждому значению
, удовлетворяющему неравенству
соответствуют два значения
, равных по абсолютной величине. Значит, геометрическое место точек, определяемое уравнением (2), симметрично относительно оси
. Так же можно убедиться в том, что оно симметрично и относительно оси
. Поэтому ограничимся рассмотрением только первой четверти.
При , при
. Кроме того, заметим, что если
увеличивается, то разность
уменьшается; стало быть, точка
будет перемещаться от точки
вправо вниз и попадет в точку
. Из соображений симметрии изучаемое геометрическое место точек будет иметь вид, изображенный на рис. 34.
Полученная линия называется эллипсом. Число является длиной отрезка
, число
—длиной отрезка
. Числа
и
называются полуосями эллипса. Число
эксцентриситетом.
Пример:
Найти проекцию окружности на плоскость, не совпадающую с плоскостью окружности.
Решение:
Возьмем две плоскости, пересекающиеся под углом (рис. 35). В каждой из этих плоскостей возьмем систему координат, причем за ось
примем прямую пересечения плоскостей, стало быть, ось
будет общей для обеих систем. Оси ординат различны, начало координат общее для обеих систем. В плоскости
возьмем окружность радиуса
с центром в начале координат, ее уравнение
.
Пусть точка лежит на этой окружности, тогда ее координаты удовлетворяют уравнению
.
Обозначим проекцию точки на плоскость
буквой
, а координаты ее—через
и
. Опустим перпендикуляры из
и
на ось
, это будут отрезки
и
. Треугольник
прямоугольный, в нем
,
,
, следовательно,
. Абсциссы точек
и
равны, т. е.
. Подставим в уравнение
значение
, тогда cos
или
а это есть уравнение эллипса с полуосями и
.
Таким образом, эллипс является проекцией окружности на плоскость, расположенную под углом к плоскости окружности.
Замечание. Окружность можно рассматривать как эллипс с равными полуосями.
Уравнение эллипсоида
Определение: Трехосным эллипсоидом называется поверхность, полученная в результате равномерной деформации (растяжения или сжатия) сферы по трем взаимно перпендикулярным направлениям.
Рассмотрим сферу радиуса R с центром в начале координат:
где Х, У, Z — текущие координаты точки сферы.
Пусть данная сфера подвергнута равномерной деформации в направлении координатных осей с коэффициентами деформации, равными
В результате сфера превратится в эллипсоид, а точка сферы М (X, У, Z) с текущими координатами Х, У, Z перейдет в точку эллипсоидам (х, у, z) с текущими координатами х, у, г, причем
(рис. 206). Отсюда
Иными словами, линейные размеры сферы в направлении оси Ох уменьшаются в
раз, если
, и увеличиваются в
раз, если
и т. д.
Подставляя эти формулы в уравнение (1), будем иметь
где Уравнение (2) связывает текущие координаты точки М’ эллипсоида и, следовательно, является уравнением трехосного эллипсоида.
Величины называются полуосями эллипсоида; удвоенные величины
называются осями эллипсоида и, очевидно, представляют линейные размеры его в направлениях деформации (в данном случае в направлениях осей координат).
Если две полуоси эллипсоида равны между собой, то эллипсоид называется эллипсоидом вращения, так как может быть получен в результате вращения эллипса вокруг одной из его осей. Например, в геодезии считают поверхность земного шара эллипсоидом вращения с полуосями
а = b = 6377 км и с = 6356 км.
Если а = b = с, то эллипсоид превращается в сферу.
- Гипербола
- Парабола
- Многогранник
- Решение задач на вычисление площадей
- Шар в геометрии
- Правильные многогранники в геометрии
- Многогранники
- Окружность
Эллипсом
называется геометрическое место точек
плоскости, координаты которых удовлетворяют
уравнению
(9.7)
где
(9.8)
Уравнение (9.7)
называется
каноническим
уравнением эллипса.
Параметры эллипса
Точки F1(–c,
0) и F2(c,
0), где
называютсяфокусами
эллипса,
при этом величина 2c
определяет междуфокусное
расстояние.
Точки А1(–а,
0), А2(а,
0), В1(0,
–b),
B2(0,
b)
называются вершинами
эллипса
(рис. 9.2), при этом А1А2
= 2а
образует большую ось эллипса, а В1В2
– малую,
– центр эллипса.
Основные параметры
эллипса, характеризующие его форму:
ε
= с/a
– эксцентриситет
эллипса;
–фокальные
радиусы эллипса
(точка М
принадлежит эллипсу), причем r1
= a
+ εx,
r2
= a
– εx;
–директрисы
эллипса.
Рис. 9.2
Для эллипса
справедливо:
директрисы не пересекают границу и
внутреннюю область эллипса, а также
обладают свойством
Эксцентриситет
эллипса выражает его меру «сжатости».
Если b
> a
> 0, то
эллипс задается уравнением (9.7), для
которого вместо условия (9.8) выполняется
условие
.
(9.9)
Тогда 2а
– малая ось, 2b
– большая ось,
– фокусы (рис. 9.3). При этомr1
+ r2
= 2b,
ε
= c/b,
директрисы определяются уравнениями:
Рис. 9.3
При
условии
имеем (в виде частного случая эллипса)окружность
радиуса R
= a.
При этом с
= 0, а значит, ε = 0.
Точки эллипса
обладают характеристическим
свойством:
сумма расстояний от каждой из них до
фокусов есть величина постоянная, равная
2а
(рис. 9.2).
Для параметрического
задания эллипса
(формула (9.7)) в случаях выполнения условий
(9.8) и (9.9) в качестве параметра t
может быть взята величина угла между
радиус-вектором точки, лежащей на
эллипсе, и положительным направлением
оси Ox:
где
Если центр эллипса
с полуосями
находится в точке
то его уравнение имеет вид:
(9.10)
Пример 1.
Привести уравнение эллипса x2
+ 4y2
= 16 к каноническому виду и определить
его параметры. Изобразить эллипс.
Решение.
Разделим уравнение x2 + 4y2 = 16
на 16, после чего получим:
По виду полученного
уравнения заключаем, что это каноническое
уравнение эллипса (формула (9.7)), где а
= 4 – большая полуось, b
= 2 – малая полуось. Значит, вершинами
эллипса являются точки A1(–4, 0),
A2(4, 0),
B1(0, –2),
B2(0, 2).
Так как
– половина междуфокусного расстояния,
то точкиявляются фокусами эллипса. Вычислим
эксцентриситет:
Директрисы D1,
D2
описываются уравнениями:
Изображаем эллипс
(рис. 9.4).
Рис. 9.4
Пример 2.
Определить параметры эллипса
Решение.
Сравним данное уравнение с каноническим
уравнением эллипса
со смещенным центром. Находим центр
эллипсаС:
Большая полуось
малая полуось
прямые
– главные оси. Половина междуфокусного
расстоянияа значит, фокусы
Эксцентриситет
ДиректрисыD1
и D2
могут быть описаны с помощью уравнений:
(рис. 9.5).
Рис. 9.5
Пример 3.
Определить, какая кривая задается
уравнением, изобразить ее:
1) x2
+ y2
+ 4x
– 2y
+ 4 = 0; 2) x2
+ y2
+ 4x
– 2y
+ 6 = 0;
3) x2
+ 4y2
– 2x
+ 16y
+ 1 = 0; 4) x2
+ 4y2
– 2x
+ 16y
+ 17 = 0;
5)
Решение.
1) Приведем уравнение к каноническому
виду методом выделения полного квадрата
двучлена:
x2
+ y2
+ 4x
– 2y
+ 4 = 0;
(x2
+ 4x)
+ (y2
– 2y)
+ 4 = 0;
(x2
+ 4x
+ 4) – 4 + (y2
– 2y
+ 1) – 1 + 4 = 0;
(x
+ 2)2
+ (y
– 1)2
= 1.
Таким образом,
уравнение может быть приведено к виду
(x
+ 2)2
+ (y
– 1)2
= 1.
Это уравнение
окружности с центром в точке (–2, 1) и
радиусом R = 1
(рис. 9.6).
Рис. 9.6
2)
Выделяем полные квадраты двучленов в
левой части уравнения и получаем:
(x
+ 2)2
+ (y
– 1)2
= –1.
Это уравнение не
имеет смысла на множестве действительных
чисел, так как левая часть неотрицательна
при любых действительных значениях
переменных x
и y,
а правая – отрицательна. Поэтому говорят,
что это уравнение «мнимой окружности»
или оно задает пустое множество точек
плоскости.
3) Выделяем полные
квадраты:
x2
+ 4y2
– 2x
+ 16y
+ 1 = 0;
(x2
– 2x
+ 1) – 1 + 4(y2
+ 4y
+ 4) – 16 + 1 = 0;
(x
– 1)2
+ 4(y
+ 2)2
– 16 = 0;
(x
– 1)2
+ 4(y
+ 2)2
= 16.
Значит, уравнение
имеет вид:
или
Полученное
уравнение, а следовательно, и исходное
задают эллипс. Центр эллипса находится
в точке О1(1,
–2), главные оси задаются уравнениями
y
= –2, x
= 1, причем большая полуось а
= 4, малая полуось b
= 2 (рис. 9.7).
Рис. 9.7
4) После выделения
полных квадратов имеем:
(x
– 1)2
+ 4(y
+ 2)2
– 17 + 17 = 0 или (x
– 1)2
+ 4(y
+ 2)2
= 0.
Полученное уравнение
задает единственную точку плоскости с
координатами (1, –2).
5) Приведем уравнение
к каноническому виду:
Очевидно, оно
задает эллипс, центр которого находится
в точке
главные оси задаются уравнениями
причем большая полуось
малая полуось
(рис. 9.8).
Рис. 9.8
Пример 4.
Записать уравнение касательной к
окружности радиуса 2 с центром в
правом фокусе эллипса x2
+ 4y2
= 4 в точке пересечения с осью ординат.
Решение.
Уравнение эллипса приведем к каноническому
виду (9.7):
Значит,
и правый фокус –
Поэтому, искомое уравнение окружности
радиуса 2 имеет вид (рис. 9.9):
Окружность
пересекает ось ординат в точках,
координаты которых определяются из
системы уравнений:
Получаем:
Пусть это точки N
(0; –1) и М
(0; 1). Значит, можно построить две
касательные, обозначим их Т1
и Т2.
По известному свойству касательная
перпендикулярна радиусу, проведенному
в точку касания.
Пусть
Тогда
уравнение касательнойТ1
примет вид:
значит,
илиТ1:
Тогда уравнение
касательной Т2
примет вид:
значит,
илиТ2:
Рис. 9.9
Пример 5.
Записать уравнение окружности, проходящей
через точку М(1,
–2) и точки пересечения прямой x
– 7y
+ 10 = 0 с окружностью x2
+ y2
– 2x
+ 4y
– 20 = 0.
Решение.
Найдем точки пересечения прямой x
– 7y
+ 10 = 0 с окружностью x2
+ y2
– 2x
+ 4y
– 20 = 0, решив систему уравнений:
Выразим х
из первого уравнения системы:
x
= 7y
– 10.
Затем подставим
во второе:
(7y
– 10)2
+ y2
– 2(7y
– 10) + 4y
– 20 = 0.
Оно равносильно
уравнению
y2
– 3y
+ 2 = 0.
Используя формулы
корней квадратного уравнения, найдем
y1
= 1, y2
= 2, откуда x1
= –3, x2
= 4.
Итак, имеем три
точки, лежащие на окружности: M(1,
–2), M1(4,
2) и M2(–3,
1). Пусть О1(x0,
y0)
– центр окружности. Тогда
гдеR
– радиус окружности.
Найдем координаты
векторов:
Значит,
что равносильно
системе
Упрощаем ее:
Решая последнюю
систему, получаем ответ:
Таким образом,
центр окружности находится в точке
(0,5; 1,5), ее радиус
Тогда каноническое
уравнение искомой окружности имеет
вид:
Задания
Соседние файлы в папке Часть 2
- #
- #
- #
- #
- #
- #
- #
- #
- #
Эллипс: определение, свойства, построение
Эллипсом называется геометрическое место точек плоскости, сумма расстояний от каждой из которых до двух заданных точек , и
есть величина постоянная
, бо́льшая расстояния
между этими заданными точками (рис.3.36,а). Это геометрическое определение выражает фокальное свойство эллипса.
Фокальное свойство эллипса
Точки , и
называются фокусами эллипса, расстояние между ними
— фокусным расстоянием, середина
отрезка
— центром эллипса, число
— длиной большой оси эллипса (соответственно, число
— большой полуосью эллипса). Отрезки
и
, соединяющие произвольную точку
эллипса с его фокусами, называются фокальными радиусами точки
. Отрезок, соединяющий две точки эллипса, называется хордой эллипса.
Отношение называется эксцентриситетом эллипса. Из определения
следует, что
. При
, т.е. при
, фокусы
и
, а также центр
совпадают, и эллипс является окружностью радиуса
(рис.3.36,6).
Геометрическое определение эллипса, выражающее его фокальное свойство, эквивалентно его аналитическому определению — линии, задаваемой каноническим уравнением эллипса:
(3.49)
Действительно, введем прямоугольную систему координат (рис.3.36,в). Центр эллипса примем за начало системы координат; прямую, проходящую через фокусы (фокальную ось или первую ось эллипса), примем за ось абсцисс (положительное направление на ней от точки
к точке
); прямую, перпендикулярную фокальной оси и проходящую через центр эллипса (вторую ось эллипса), примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат
оказалась правой).
Составим уравнение эллипса, пользуясь его геометрическим определением, выражающим фокальное свойство. В выбранной системе координат определяем координаты фокусов . Для произвольной точки
, принадлежащей эллипсу, имеем:
Записывая это равенство в координатной форме, получаем:
Переносим второй радикал в правую часть, возводим обе части уравнения в квадрат и приводим подобные члены:
Разделив на 4, возводим обе части уравнения в квадрат:
Обозначив , получаем
. Разделив обе части на
, приходим к каноническому уравнению эллипса:
Следовательно, выбранная система координат является канонической.
Если фокусы эллипса совпадают, то эллипс представляет собой окружность (рис.3.36,6), поскольку . В этом случае канонической будет любая прямоугольная система координат с началом в точке
, a уравнение
является уравнением окружности с центром в точке
и радиусом, равным
.
Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.49), и только они, принадлежат геометрическому месту точек, называемому эллипсом. Другими словами, аналитическое определение эллипса эквивалентно его геометрическому определению, выражающему фокальное свойство эллипса.
Директориальное свойство эллипса
Директрисами эллипса называются две прямые, проходящие параллельно оси ординат канонической системы координат на одинаковом расстоянии от нее. При
, когда эллипс является окружностью, директрис нет (можно считать, что директрисы бесконечно удалены).
Эллипс с эксцентриситетом можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки
(фокуса) к расстоянию до заданной прямой
(директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету
(директориальное свойство эллипса). Здесь
и
— один из фокусов эллипса и одна из его директрис, расположенные по одну сторону от оси ординат канонической системы координат, т.е.
или
.
В самом деле, например, для фокуса и директрисы
(рис.3.37,6) условие
можно записать в координатной форме:
Избавляясь от иррациональности и заменяя , приходим к каноническому уравнению эллипса (3.49). Аналогичные рассуждения можно провести для фокуса
и директрисы
.
Уравнение эллипса в полярной системе координат
Уравнение эллипса в полярной системе координат (рис.3.37,в и 3.37(2)) имеет вид
где фокальный параметр эллипса.
В самом деле, выберем в качестве полюса полярной системы координат левый фокус эллипса, а в качестве полярной оси — луч
(рис.3.37,в). Тогда для произвольной точки
, согласно геометрическому определению (фокальному свойству) эллипса, имеем
. Выражаем расстояние между точками
и
(см. пункт 2 замечаний 2.8):
Следовательно, в координатной форме уравнение эллипса имеет вид
Уединяем радикал, возводим обе части уравнения в квадрат, делим на 4 и приводим подобные члены:
Выражаем полярный радиус и делаем замену
:
что и требовалось доказать.
Геометрический смысл коэффициентов в уравнении эллипса
Найдем точки пересечения эллипса (см. рис.3.37,а) с координатными осями (вершины зллипса). Подставляя в уравнение , находим точки пересечения эллипса с осью абсцисс (с фокальной осью):
. Следовательно, длина отрезка фокальной оси, заключенного внутри эллипса, равна
. Этот отрезок, как отмечено выше, называется большой осью эллипса, а число
— большой полуосью эллипса. Подставляя
, получаем
. Следовательно, длина отрезка второй оси эллипса, заключенного внутри эллипса, равна
. Этот отрезок называется малой осью эллипса, а число
— малой полуосью эллипса.
Действительно, , причем равенство
получается только в случае
, когда эллипс является окружностью. Отношение
называется коэффициентом сжатия эллипса.
Замечания 3.9
1. Прямые ограничивают на координатной плоскости основной прямоугольник, внутри которого находится эллипс (см. рис.3.37,а).
2. Эллипс можно определить, как геометрическое место точек, получаемое в результате сжатия окружности к ее диаметру.
Действительно, пусть в прямоугольной системе координат уравнение окружности имеет вид
. При сжатии к оси абсцисс с коэффициентом
координаты произвольной точки
, принадлежащей окружности, изменяются по закону
Подставляя в уравнение окружности и
, получаем уравнение для координат образа
точки
:
поскольку . Это каноническое уравнение эллипса.
3. Координатные оси (канонической системы координат) являются осями симметрии эллипса (называются главными осями эллипса), а его центр — центром симметрии.
Действительно, если точка принадлежит эллипсу
. то и точки
и
, симметричные точке
относительно координатных осей, также принадлежат тому же эллипсу.
4. Из уравнения эллипса в полярной системе координат (см. рис.3.37,в), выясняется геометрический смысл фокального параметра — это половина длины хорды эллипса, проходящей через его фокус перпендикулярно фокальной оси (
при
).
5. Эксцентриситет характеризует форму эллипса, а именно отличие эллипса от окружности. Чем больше
, тем эллипс более вытянут, а чем ближе
к нулю, тем ближе эллипс к окружности (рис.3.38,а). Действительно, учитывая, что
и
, получаем
где — коэффициент сжатия эллипса,
. Следовательно,
. Чем больше сжат эллипс по сравнению с окружностью, тем меньше коэффициент сжатия
и больше эксцентриситет. Для окружности
и
.
6. Уравнение при
определяет эллипс, фокусы которого расположены на оси
(рис.3.38,6). Это уравнение сводится к каноническому при помощи переименования координатных осей (3.38).
7. Уравнение определяет эллипс с центром в точке
, оси которого параллельны координатным осям (рис.3.38,в). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36).
При уравнение
описывает окружность радиуса
с центром в точке
.
Параметрическое уравнение эллипса
Параметрическое уравнение эллипса в канонической системе координат имеет вид
Действительно, подставляя эти выражения в уравнение (3.49), приходим к основному тригонометрическому тождеству .
Пример 3.20. Изобразить эллипс в канонической системе координат
. Найти полуоси, фокусное расстояние, эксцентриситет, коэффициент сжатия, фокальный параметр, уравнения директрис.
Решение. Сравнивая заданное уравнение с каноническим, определяем полуоси: — большая полуось,
— малая полуось эллипса. Строим основной прямоугольник со сторонами
с центром в начале координат (рис.3.39). Учитывая симметричность эллипса, вписываем его в основной прямоугольник. При необходимости определяем координаты некоторых точек эллипса. Например, подставляя
в уравнение эллипса, получаем
Следовательно, точки с координатами — принадлежат эллипсу.
Вычисляем коэффициент сжатия ; фокусное расстояние
; эксцентриситет
; фокальный параметр
. Составляем уравнения директрис:
.
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
Эллипс – это замкнутая плоская кривая, сумма расстояний от каждой точки до двух точек равняется постоянной величине.
Что такое эллипс и фокусное расстояние
Эллипс – это множество точек плоскости, сумма расстояний которых от двух заданных точек, что называются фокусами, есть постоянная величина и равна .
Обозначим фокусы эллипса и
. Допустим, что расстояние
=
– фокусное расстояние.
Рис. 1
– фокусы .
;
,
– половина расстояния между фокусами;
– большая полуось;
– малая полуось.
Теорема:
Фокусное расстояние и полуоси связаны соотношением:
Если точка находится на пересечении эллипса с вертикальной осью,
(теорема Пифагора). Если же точка
находится на пересечении его с горизонтальной осью,
. Так как по определению сумма
– постоянная величина, то приравнивая получается:
.
Уравнение эллипса
Уравнение элиппса бывает двух видов:
- Каноническое уравнение эллипса.
- Параметрическое уравнение эллипса.
Сначала рассмотрим каноническое уравнение эллипса:
Уравнение описывает эллипс в декартовой системе координат. Если центр эллипсa в начале системы координат, а большая ось лежит на абсциссе, то эллипс описывается уравнением:
Если центр эллипсa смещен в точку с координатами
тогда уравнение:
Чтобы получить каноническое уравнение эллипса, разместим и
на оси
симметричной к началу координат. Тогда у фокусов будут такие координаты
и
(см. рис. 2).
Пусть – произвольная точка эллипса. Обозначим через
и
– расстояние от точки
к фокусам. Согласно с определением эллипса:
(1)
Рис. 2
Подставим в (1) ,
и освободимся от иррациональности, подняв обе части к квадрату, получим:
(подносим к квадрату обе части): ,
Обозначим: , получаем каноническое уравнение эллипса:
(2)
Отметим, что по известному свойству треугольника (сумма двух сторон больше третьей) из у нас получается
. Так как
, тогда
, и поэтому
.
Для построения эллипса обратим внимание, что если точка принадлежит эллипсу, то есть удовлетворяет уравнение (2), тогда точки
тоже удовлетворяют это уравнение: из
.
Точки – расположены симметрично относительно осей координат. Значит, эллипс – фигура, симметричная относительно координатных осей. Поэтому достаточно построить график в первой четверти, а тогда симметрично продолжить его.
Из уравнения (2) находим , для первой четверти
.
Если , тогда
. Если же
, тогда
. Точки
и
, а также симметричные с ними
,
– вершины эллипса, точка
– центр эллипса,
=
большая ось,
– малая ось эллипса.
Если первой четверти, тогда из
получается, что при возрастании
от
к
значение
падает от
к
. (рис. 3)
Параметрическое уравнение выглядит так:
Основные свойства эллипса
Рассмотрим основные свойства эллипса, которые необходимы для решения многих задач.
1. Угол между касательной к эллипсу и фокальным радиусом равен углу между касательной и фокальным радиусом
.
2. Уравнение касательной к эллипсу в точке с координатами
:
.
3. Если эллипс пересекается двумя параллельными прямыми, то отрезок, который соединяет середины отрезков образовавшихся при пересечении прямых и эллипса, всегда проходит через середину (центр) эллипсa. (При помощи данного свойства можно построить эллипс при помощи циркуля и линейка, а также найти центр эллипса).
4. Эволюта эллипсa – это астероида, которая растянута вдоль короткой оси.
5. Если вписать эллипс с фокусами и
у треугольника
, тогда выполняется соотношение:
=
Эксцентриситет эллипса
Эксентриситет эллипса – это величина отношения межфокусного расстояния к большей оси и после сокращения на обозначается
Значения эксентриситета характеризует степень “сплющенность” эллипса. Если , тогда
– получается круг. Если же
, тогда
– эллипс превращается в отрезок. В некоторых случаях
. Для фокальных радиусов приведём без доказательства такие формулы:
Рис. 3
Эллипс можно построить механическим способом. Из канонического уравнения нужно найти полуоси и
, тогда вычислим
– полуфокусное расстояние.
Строим фокусы и
на расстоянии один от другого
Концы не растянутой нити длиной
закрепляем в точках
и
. Натягивая остриём карандаша нитку, водим остриём по плоскости таким образом, чтобы нитка скользила по острию. Карандаш при этом опишет полуось. Оттягивая нить в противоположную сторону, начертим вторую половину эллипса.
Примеры решения задач
Задача
Задан эллипс уравнением и точки
. Необходимо:
- убедиться, что точки
и
лежат на эллипсе;
- найти полуоси эллипса и координаты его фокусов;
- найти расстояние от точки
к фокусам;
- убедиться, что сумма этих расстояний равна длине большой оси;
- найти эксентриситет эллипса.
Решение
1. Подставим координаты точки
в левую часть уравнения эллипса:
– точка
лежит на эллипсе. Аналогично для
:
точка
лежит на эллипсе.
2. С канонического и данного уравнения
эллипса выходит:
Из равенства
получается:
– полуфокусное расстояние. Координаты фокусов
и
.
3. Найдём фокальные радиусы точки :
4. Найдём сумму , что отвечает определению эллипса.
5. Эксцентриситет находится по формуле .
Задача
Найти оси, вершины и фокусы эллипса
Решение
Сведём обычное уравнение к каноническому:
,
. Вершины эллипса в точках
,
,
,
. Строим вершины на координатных осях и соединяем плавной линией (см. рис. 2). Так как в данном случае
больше, чем
, то эллипс, который вытянут вдоль оси
, находим полуфокусное расстояние
.
Фокусы в точках и
. (см. рис. 3)
Рис. 4
Найти оси, вершины и фокусы эллипса или
. Построить эллипс.
Сравнивая последнее уравнение с уравнением (2), у нас получается:
,
. Откуда находим оси эллипса:
,
и координаты вершин:
,
,
,
. Дальше из формулы:
. Значит, фокусами эллипса есть точки:
и
. Для построения эллипса отложим на осях
и
вершины
соответственно соединим их плавной линией, (см. задачу 1).
Замечание! Если в каноническом уравнении большей полуосью будет
, тогда фокусы эллипса будут расположены на оси
и тогда
.
фокусы которого лежат на оси абсцисс симметрично
относительно начала координат, зная, кроме того,
что:
и 2;
равна 10, а расстояние между фокусами 2c=8;
24, а расстояние между фокусами 2c=10;
его фокусами 2c=6 и эксцентриситет e=3/5.
равна 20, а эксцентриситет e=3/5.
10, а эксцентриситет e=12/13;
его директрисами равно 5 и расстояние между
фокусами 2c=4;
равна 8, а расстояние между директрисами равно 16;
6, а расстояние между директрисами равно 13;
его директрисами равно 32 и e=1/2.
уравнение эллипса, фокусы которого лежат на оси
ординат симметрично начала координат, зная,
кроме того, что:
соответственно 7 и 2;
равна 10, а расстояние между фокусами 2c=8;
его фокусами 2c=24 и эксцентриситет e=12/13.
16, а эксцентриситет e=3/5.
его фокусами 2c=6 и расстояние между директрисами
равно 50/3;
его директрисами равно 32/3 и эксцентриситет e=3/4.
каждого из следующих эллипсов:
эксцентриситет, уравнения директрис.
четырехугольника, две вершины которого лежат в
фокусах эллипса
совпадают с концами его малой оси.
эксцентриситет, уравнения директрис.
четырехугольника, две вершины которого лежат в
фокусах эллипса
концами его малой оси.
расстояние от фокуса F(c; 0) эллипса
односторонней с этим фокусом директрисы.
циркулем, построить фокусы эллипса
что изображены оси координат и задана масштабная
единица).
–3.
из точек A1(-2; 3), A2(2; -2), A3(2;
-4), A4(-1; 3), A5(-4; -3), A6(3; -1), A7(3;
-2), A8(2; 1), A9(0; 15), A10(0; -16) лежат на эллипсе
внутри и какие вне его.
линии опеределяются следующими уравнениями.
Изобразить эти линии на чертеже.
эллипса e=2/3, фокальный радиус точки М эллипса
равен 10. Вычислить расстояние от точки М до
односторонней с этим фокусом директрисы.
эллипса e=2/5, расстояние от точки эллипса до
директрисы равно 20. Вычислить расстояние от
точки М до фокуса, односторонней с этой
директрисой.
уравнения прямых, на которых лежат фокальные
радиусы точки М1.
459
точка M1(-4; 2,4) лежит
на эллипсе
М1.
эллипса e=1/3, центр его совпадает с началом
координат, один из фокусов (-2; 0). Вычислить
расстояние от точки М1 эллипса с абсциссой, равной 2, до
директрисы, односторонней с данным фокусом.
эллипса e=1/2, центр его совпадает с началом
координат, одна из директрис дана уравнением x=16.
Вычислить расстояние от точки M1
эллипса с абсциссой, равной –4, до
фокуса, одностороннего с данной директрисой.
эллипса
правого фокуса равно 14.
эллипса
левого фокуса равно 2,5.
большой оси. Определить расстояния от точек
пересечения этого перпендикуляра с эллипсом до
фокусов.
уравнения эллипса, фокусы которого расположены
на оси абсцисс симметрично относительно начала
координат, если даны:
и его малая полуось b=3;
-2) эллипса и его большая полуось
a=4;
М2(
и его эксцентриситет e=2/3;
-5/3) эллипса и его эксцентриситет
e=2/3;
12) эллипса и расстояние r1=20
от нее до левого фокуса.
и расстояние между его директрисами, равное 10.
эксцентриситет e эллипса, если:
из фокусов под углом 600;
фокусами виден и вершин малой оси под прямым
углом;
директрисами в три раза больше расстояния между
фокусами;
перпендикуляра, опущенного из центра эллипса на
его директрису, делится вершиной эллипса
пополам.
эллипса проведен перпендикуляр к его большой оси
(см. рис.). Определить, при каком значении
эксцентриситета эллипса отрезки
параллельны.
уравнение эллипса с полуосями a, b и центром C(x0, y0), если
известно, что оси симметрии эллипса параллельны
осям координат.
абсцисс в точке А(3; 0) и оси ординат в точке В(0; -4).
Составить уравнение этого эллипса, зная, что его
оси симметрии параллельны координатным осям.
является центром эллипса, касающегося обеих
координатных осей. Составить уравнение этого
эллипса, зная, что его оси симметрии параллельны
координатным осям.
каждое из следующих уравнений определяет эллипс,
и найти координаты его центра С, полуоси,
эксцентриситет и уравнения директрис:
линии определяются следующими уравнениями.
Изобразить эти линии на чертеже.
уравнение эллипса, зная, что:
равна 26 и фокусы суть F1(-10; 0), F2(14;0);
473.2
2 и фокусы суть F1(-1; -1), F2(1;
1);
473.3
эксцентриситет e=
473.4
расстояние между директрисами равно
474
эксцентриситет
фокус F (-4; 1) и уравнение соответствующей
директрисы
уравнение эллипса, если известны его
эксцентриситет e=1/2, фокус F(-4; 1) и уравнение
соответствующей директрисы
на эллипсе, фокус которого F(-1; -4), а
соответствующая директриса дана уравнением
уравнение эллипса, если известны его
эксцентриситет e=1/2, фокус F(3; 0) и уравнение
соответствующей директрисы
-1) лежит на эллипсе, фокус
которого F(1; 0), а соответствующая директриса дана
уравнением
-1) является концом малой оси
эллипса, фокусы которого лежат на прямой
уравнение этого эллипса, зная его эксцентриситет
e=
пересечения прямой
пересечения прямой
пересечения прямой
расположена прямая относительно эллипса:
пересекает ли, касается или проходит вне его,
если прямая и эллипс заданы следующими
уравнениями:
каких начениях m прямая
эллипса.
при котором прямая
уравнение касательной к эллипсу
точке M1(x1; y1).
касательные к эллипсу
в концах одного и того же диаметра, параллельны.
(Диаметром эллипса называется его хорда,
проходящая через его центр).
уравнения касательных к эллипсу
прямой
уравнения касательных к эллипсу
к прямой
прямой
ближайшую к прямой
этой прямой.
проведены касательные к эллипсу
их уравнения.
проведены касательные к эллипсу
уравнение хорды, соединяющей точки касания.
проведены касательные к эллипсу
расстояние d от точки Р до хорды эллипса,
соединяющей точки касания.
через точку А(4; -1) и касается прямой
уравнение этого эллипса при условии, что его оси
совпадают с осями координат.
уравнение эллипса, касающегося двух прямых
условии, что его ося совпадают с осями координат.
произведение расстояний от центра эллипса до
точки пересечения любой его касательной с
фокальной осью и до основания перпендикуляра,
опущенного из точки касания на фокульную ось,
если величина постоянная, равная квадрату
большой полуоси эллипса.
произвдение расстояний от фокусов до любой
касательной к эллипсу равно квадрату малой
полуоси.
эллипса, фокусы которого находятся в точках F1(-3;
0), F2(3; 0). Составить
уравнение этого эллипса.
уравнение эллипса, фокусы которого расположены
на оси абсцисс симметрично относительно начала
координат, если известны уравнение касательной к
эллипсу
прямая, касающаяся эллипса в некоторой точке М,
составляет равные углы с фокальными радиусами F1M, F2M и проходит
вне угла F1MF2.
эллипса
Ox направлен луч света. Известно, что
до эллипса, луч на него отразился. Составить
уравнение прямой, на которой лежит отраженный
луч.
пересечения эллипсов
эллипсы
в четырех точках, лежающих на окружности с
центром в начале координат, определить радиус R
этой окружности.
полуоси эллипса, полученного проектированием на
плоскость
плоскости
полуось которого равна 6, является проекцией
окружности радиуса R=12. Опредилть угол
эллипс и окружность.
круглого цилиндра является окружность радиуса
R=8. Определить полуоси эллипса, полученного в
сечении этого цилиндра плоскостью, наклоненной к
его оси под уголом
круглого цилиндра является окружность радиуса R=
цилиндра нужно его пересечь плоскостью, чтобы в
сечении получить эллипс с большой полуосью a=2.
сжатием (или равномерным растяжением) плоскости
к оси абсцисс называется такое преобразование
точек плоскости, при котором произвольная точка
M(x; y) перемещается в точку M’(x’; y’) (рис.1 ) так, что
x’=x, y’=qy, где q>0 – постоянная, называемая
коэффициентом равномерного сжатия. Аналогично
рпи помощи уравнения x’=qx, y’=y определяется
равномерное сжатия плоскости к оси Oy (рис. 2).
Определить, в какую линию преобразуется
окружность
равномерного сжатия плоскости к оси абсцисс q=4/5.
равномерного сжатия плоскости к оси Oy равен 3/4.
Определить уравнение линии, в которую при таком
сжатии преобразуется эллипс
линии, в которую преобразуется эллипс
равномерных сжатиях плоскости к координатным
осям, если коэффициенты равномерного сжатия
плоскости к осям Ox и Oy равны соответственно 4/3 и
6/7.
коэффициент q равномерного сжатия плоскости к
оси Ox, при котором эллипс
в эллипс
коэффициент q равномерного сжатия плоскости к
оси Oy, при котором эллипс
в эллипс
коэффициенты q1, q2 двух последовательных равномерных
сжатий плоскости к осям Ox и Oy, при которых
эллипс