Ответ: а) $a=3,$ $b=4;$ б) $ F_1(-5, 0),qquad F_2(5, 0);$ в) $e=frac<5><3>;$ г) $y=pmfrac<4><3>x;$ д ) $D_1: x=-frac<9><5>$ и $D_2: x=frac<9><5>.$
2.269 (a). Установить, что уравнение $16x^2-9y^2-64x-54y-161=0$ определяет гиперболу, найти ее центр $C,$ полуоси, эксцентриситет, уравнения асимптот и директрис.
Приведем заданное уравнение к каноническому виду, для этого выделим полные квадраты:
Это уравнение гиперболы. Центр имеет координаты $C=(x_0, y_0)=(2,-3);$ полуоси $a=3,$ $b=4.$
Асимптоты гиперболы c центром в начале координат, находим по формулам $y=pmfracx,$ а с центром в точке $C=(x_0, y_0) -$ по формуле $y-y_0=pmfrac(x-x_0),$
$$y+3=frac<4><3>(x-2)Rightarrow 3y+9=4x-8Rightarrow 4x-3y-17=0.$$
$$y+3=-frac<4><3>(x-2)Rightarrow 3y+9=-4x+8Rightarrow 4x+3y+1=0.$$
Уравнения директрис для эллипса с центром в начале координат находим по формулам $D_1: x=-a/e$ и $D_2: x=a/e:$
$D_1: x=-frac<3><5/3>=-frac<9> <5>$ и $D_2: x=frac<3><5/3>=frac<9><5>.$ Поскольку у заданного эллипса центр смещен, то директриссы будут иметь уравнения $D_1: x=x_0-a/e$ и $D_2: x=x_0+a/e:$
Ответ: $C=(2, -3);$ $a=3,$ $b=4;$ $ e=frac<5><3>,$ $4x-3y-17=0,$ $4x+3y+1=0,$ $D_1:5x-1=0, $ $D_2: 5x-19=0.$
2.272. Убедившись, что точка $M(-5, 9/4)$ лежит на гиперболе $frac<16>-frac<9>=1,$ найти фокальные радиусы этой точки и расстояния этой точки до директрис.
Решение.
Проверим, что заданная точка лежит на гиперболе:
Следовательно, точка $M(-5, 9/4)$ лежит на гиперболе $frac<16>-frac<9>=1.$
Для того, чтобы найти фокальные радиусы, найдем фокусы гиперболы:
$c=sqrtRightarrow c=sqrt<16+9>=sqrt <25>=5$ Следовательно, фокусы имеют координаты $F_1(-5, 0), F_2(5, 0).$
Фокальные радиусы точки, можно найти по формулам $r_1=|overline|$ и $r_2=|overline|.$
Чтобы найти расстояния от точки $M$ до директрис, найдем уравнения директрис по формулам $D_1: x=-a/e$ и $D_2: x=a/e:$
$D_1: x=-frac<4><5/4>Rightarrow x=-frac<16><5>Rightarrow 5x+16=0;$
$D_2: x=frac<4><5/4>Rightarrow x=frac<16><5>Rightarrow 5x-16=0;$
Расстояние от точки $P(x_0, y_0)$ до прямой $L: Ax+By+C=0$ вычисляется по формуле $$d=left|frac<sqrt>right|.$$
Таким образом, расстояние от точки $M(5, 9/4)$ до прямой $D_1: sqrt 5x+16=0$
расстояние от точки $M(5, 9/4)$ до прямой $D_2: sqrt 5x-16=0$
Ответ: $r_1=9/4,$ $r_2=frac<41><4>;$ $d_1=frac<41><5>;$ $d_2=frac<9><5>.$
2.273. Найти точки гиперболы $frac<9>-frac<16>=1,$ находящиеся на расстоянии $7$ от фокуса $F_1.$
Решение.
Из уравнения гиперболы находим полуоси: $a=3, , b=4.$ Следовательно, $c=sqrtRightarrow c=sqrt<9+16>=sqrt <25>=5.$
Отсюда находим $F_1=(-5, 0).$
Геометрическое место точек, расположенных на расстоянии $7$ от фокуса $F_1,$ это окружность с центром в точке $F_1=(-5, 0)$ и радиусом $r=7:$
Чтобы н айти точки гиперболы $frac<9>-frac<16>=1,$ находящиеся на расстоянии $7$ от фокуса $F_1,$ решим систему уравнений
Решим уравнение $5x^2+18x-72=0:$
Находим соответствующие координаты $y:$ $y_1=pmsqrt<24-2,4^2-10cdot 2,4>=sqrt<-5,76>$ — нет корней .
Ответ: $(-6, pm4sqrt 3).$
Парабола.
Парабола с каноническим уравнением $y^2=2px, p>0,$ и меет форму изображенную на рисунке.
Число $p$ называется параметром параболы. Точка $O -$ ее вершиной, а ось $Ox$ — осью параболы.
Точка $Fleft(frac
<2>, 0right)$ называется фокусом параболы, вектор $overline -$ фокальным радиус-векторам, а число $r=|overline| -$ фокальным радиусом точки $M,$ принадлежащей параболе.
Прямая $D: x=-p/2$ перпендикулярная оси и проходящая на расстоянии $p/2$ от вершины параболы, называется ее директрисой.
Примеры.
2.285 (а). Построить параболу $y^2=6x$ и найти ее параметры.
Решение.
Параметр $p$ параболы можно найти из канонического уравнения $y^2=2px: $
$$y^2=6xRightarrow y^2=2cdot 3xRightarrow p=2.$$
Ответ: $p=3.$
2.286 (а). Написать уравнение параболы с вершиной в начале координат, если известно, что парабола расположена в левой полуплоскости, симметрично относительно оси $Ox$ и $p=1/2.$
Решение.
Поскольку парабола расположена в левой полуплоскости, симметрично относительно оси $Ox,$ то уравнение параболы будет иметь вид $y^2=-2px.$ Подставляя заданное значение параметра, находим уравнение параболы:
Ответ: $y^2=-x.$
2.288 (а). Установить, что уравнение $y^2=4x-8$ определяет параболу, найти координаты ее вершины $A$ и величину параметра $p.$
Решение.
Уравнение параболы, центр которой сдвинут в точку $(x_0, y_0),$ имеет вид $(y-y_0)^2=2p(x-x_0)^2.$
Приведем заданное уравнние к такому виду:
Таким образом, $y^2=4(x^2-2)$ — парабола с центром в точке $(0, 2).$ Параметр $p=2.$
Ответ: $C(0, 2),$ $p=2.$
2.290. Вычислить фокальный параметр точки $M$ параболы $y^2=12x,$ если $y(M)=6.$
Решение.
Чтобы найти фокальный параметр точки $M,$ найдем ее координаты. Для этого подставим в уравнение параболы координату $y:$ $$6^2=12xRightarrow 36=12xRightarrow x=3.$$
Таким образом, точка $M$ имеет координаты $(3, 6).$
Из уравнения параболы $y^2=12x$ находим параметр параболы: $y^2=2cdot 6xRightarrow p=6.$ Следовательно фокус параболы имеет координаты $F(3, 0).$
Далее находим фокальный параметр точки:
Ответ: $6.$
2.298. Из фокуса параболы $y^2=12x$ под острым углом $alpha$ к оси $Ox$ направлен луч света, причем $tgalpha=frac<3><4>.$ Написать уравнение прямой, на которой лежит луч, отраженный от параболы.
Решение.
Найдем координаты фокуса. Из канонического уравнения параболы $y^2=2px$ находим параметр: $y^2=12x=2cdot 6xRightarrow p=6.$
Координаты фокуса $F(p/2, 0)Rightarrow F(3,0).$
Далее находим уравнение прямой, которая проходит через точку $(3, 0)$ под углом $alpha: tgalpha=frac<3><4>$ к оси $OX.$ Уравнение ищем в виде $y=kx+b,$ где $k=tgalpha=frac<3><4>.$
Чтобы найти $b,$ в уравнение прямой подставим координаты точки $(3, 0):$
$0=frac<3><4>cdot 3+bRightarrow b=-frac<9><4>.$ Таким образом, уравнение луча, направленного из фокуса $y=frac<3><4>x-frac<9><4>.$
Далее, найдем точку пересечения найденной прямой с параболой:
Поскольку по условию луч падает под острым углом, то мы рассматриваем только положительную координату $y=18.$ Соответствующее значение $x=frac<18^2><12>=frac<324><12>=27.$
Таким образом, луч пересекает параболу в точке $(27, 18).$
Далее найдем уравнение касательной к параболе в найденной точке $(27, 18)$ по формуле $(y-y_0)=y'(x_0)(x-x_0):$
Подставляем все найденные значения в уравнение касательной:
$y-18=frac<1><3>(x-27)Rightarrow 3y-54=x-27Rightarrow x-3y+27=0.$
Далее, найдем угол $beta$ между лучем $y=frac<3><4>x-frac<9><4>$ и касательной $x-3y+27=0.$ Для этого оба уравнения запишем в виде $y=k_1x+b_1$ и $y=k_2+b_2$ угол вычислим по формуле $tg(L_1, L_2)=frac<1+k_1cdot k_2>$
$$L_2: x-3y+27=0Rightarrow y=frac<1><3>x+9Rightarrow k_2=frac<1><3>.$$
Легко увидеть, что угол между лучем $L_1,$ направленным из фокуса и его отражением равен $pi-2beta,$ а угол между отраженным лучем и осью $Ox$ $pi-(pi-2beta)-alpha=2beta-alpha.$
Зная $tgbeta=frac<1><3>$ и $tgalpha=k_1=frac<3><4>$ и вспоминая формулы для двойного угла тангенса и тангенс разности, находим $tg(2beta-alpha):$
$$tg(2beta-alpha)=frac<1+tg2beta tgalpha>=frac<frac<3><4>-frac<3><4>><1+frac<3><4>frac<3><4>>=0.$$ Следовательно, прямая, содержащая отраженный луч параллельна оси $Ox.$ Так как она проходит через точку $(27, 18),$ то можно записать ее уравнение $y=18.$
Кривые второго порядка — определение и построение с примерами решения
Содержание:
Геометрической фигурой или просто фигурой на плоскости называется множество точек. Задать фигуру — значит указать, из каких точек плоскости она состоит. Одним из важных способов задания фигуры на плоскости является ее задание при помощи уравнений с двумя неизвестными. Произвольное уравнение с двумя неизвестными х и у записывается в виде
- Если точка М(а,Ь) принадлежит фигуре Ф, то координаты (а,Ь) являются решениями уравнения
- если пара чисел (c,d) является решением уравнения F(x,y) = 0, то точка N(c,d) принадлежит фигуре Ф.
Это определение в более компактной записи выглядит следующим образом. Уравнение называется уравнением фигуры, если , то есть (а, b) — решение уравнения F(x,y) = 0.
Из определения уравнения фигуры следует, что фигура Ф состоит только из тех точек плоскости, координаты которых являются решениями уравнения , т.е. уравнение фигуры задает эту фигуру.
Возможны два вида задач:
- дано уравнение и надо построить фигуру Ф, уравнением которой является ;
- дана фигура Ф и надо найти уравнение этой фигуры.
Первая задача сводится к построению графика уравнения и решается, чаще всего, методами математического анализа.
Для решения второй задачи, как следует из определения уравнения фигуры, достаточно:
- Задать фигуру геометрически, т.е. сформулировать условие, которому удовлетворяют только точки фигуры (довольно часто определение фигуры содержит такое условие);
- Записать в координатах условие, сформулированное в первом пункте.
Эллипс
Эллипсом называется линия, состоящая из всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек , есть величина постоянная (большая, чем расстояние между ).
Точки называются фокусами эллипса. Обозначив расстояние между фокусами через 2с, а сумму расстояний от точек эллипса до фокусов через 2а, имеем с b. В этом случае а называется большой полуосью, a b — малой.
Если а =Ь, то уравнение (7.3) можно переписать в виде:
(7.5)
Это уравнение окружности с центром в начале координат. Эллипс (3) можно получить из окружности (4) сжатием плоскости к оси Ох. Пусть на плоскости выбрана прямоугольная система координат Оху. Тогда преобразование, переводящее произвольную точку М(х,у) в точку координаты которой задаются формулами будет окружность (4) переводить в эллипс, заданный соотношением
Число называется эксцентриситетом эллипса. Эксцентриситет характеризует форму эллипса: чем ближе к нулю, тем больше эллипс похож на окружность; при увеличении становится более вытянутым
Фокальными радиусами точки М эллипса называются отрезки прямых, соединяющие эту точку с фокусами . Их длины и задаются формулами Прямые называются директрисами эллипса. Директриса называется левой, а — правой. Так как для эллипса и, следовательно, левая директриса располагается левее левой вершины эллипса, а правая — правее правой вершины.
Директрисы обладают следующим свойством: отношение расстояния г любой точки эллипса от фокуса к ее расстоянию d до соответствующей директрисы есть величина постоянная, равная эксцентриситету, т.е.
Гипербола
Гиперболой называется линия, состоящая из всех точек плоскости, модуль разности расстояний от которых до двух данных точек есть величина постоянная (не равная нулю и меньшая, чем расстояние между ).
Точки называются фокусами гиперболы. Пусть по-прежнему расстояние между фокусами равно 2с. Модуль расстояний от точек гиперболы до фокусов обозначим через а. По условию, а 0) (рис. 9.7). Ось абсцисс проведём через фокус F перпендикулярно директрисе. Начало координат расположим посередине между фокусом и директрисой. Пусть А — произвольная точка плоскости с координатами (х, у) и пусть . Тогда точка А будет лежать на параболе, если r=d, где d- расстояние от точки А до директрисы. Фокус F имеет координаты .
Тогда А расстояние Подставив в формулу r=d, будем иметь. Возведя обе части равенства в квадрат, получим
или
(9.4.1)
Уравнение (9.4.1)- каноническое уравнение параболы. Уравнения также определяют параболы.
Легко показать, что уравнение , определяет параболу, ось симметрии которой перпендикулярна оси абсцисс; эта парабола будет восходящей, если а > 0 и нисходящей, если а О. Для этого выделим полный квадрат:
и сделаем параллельный перенос по формулам
В новых координатах преобразуемое уравнение примет вид: где р — положительное число, определяется равенством .
Пример:
Пусть заданы точка F и прямая у =-1 (рис. 9.8). Множество точек Р(х, y) для которых расстояние |PF| равно расстоянию, называется параболой. Прямая у = -1 называется директрисой параболы, а точка F — фокусом параболы. Чтобы выяснить, как располагаются точки Р, удовлетворяющие условию, запишем это равенство с помощью координат: , или после упрощения . Это уравнение геометрического места точек, образующих параболу (рис. 9.8).
Кривые второго порядка на плоскости
Кривой второго порядка называется фигура на плоскости, задаваемая в прямоугольной системе координат уравнением второй степени относительно переменных х и у:
где коэффициенты А, В и С не равны одновременно нулю
Любая кривая второго порядка на плоскости принадлежит к одному из типов: эллипс, гипербола, парабола, две пересекающиеся прямые, 2 параллельные прямые, прямая, точка, пустое множество.
Кривая второго порядка принадлежит эллиптическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют одинаковые знаки: АС>0.
Кривая второго порядка принадлежит гиперболическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют противоположные знаки: АС 2с. Точка М(х,у) принадлежит эллипсу тогда и только тогда, когда ее координаты удовлетворяют уравнению
которое называют каноническим уравнением эллипса.
Число а называют большей полуосью эллипса, число — мень-
шей полуосью эллипса, 2а и 2b — соответственно большей и меньшей осями эллипса. Точки называют вершинами эллипса, а — его фокусами (рис. 12).
Координатные оси являются осями симметрии эллипса, а начало координат — его центром симметрии. Центр симметрии эллипса называется центром эллипса.
Замечание. Каноническое уравнение эллипса можно рассматривать и в случае b>а. Оно определяет эллипс с большей полуосью b, фокусы которого лежат на оси Оу.
В случае а=b каноническое уравнение эллипса принимает вид и определяет окружность радиуса а с центром в начале координат.
Эксцентриситетом эллипса называется отношение фокусного расстояния к длине большей оси.
Так, в случае а>b эксцентриситет эллипса выражается формулой:
Эксцентриситет изменяется от нуля до единицы и характеризует форму эллипса. Для окружности Чем больше эксцентриситет, тем более вытянут эллипс.
Пример:
Показать, что уравнение
является уравнением эллипса. Найти его центр, полуоси, вершины, фокусы и эксцентриситет. Построить кривую.
Решение:
Дополняя члены, содержащие х и у соответственно, до полных квадратов, приведем данное уравнение к каноническому виду:
— каноническое уравнение эллипса с центром в точке большей полуосью а=3 и меньшей полуосью
Найдем эксцентриситет эллипса:
Для вычисления вершин и фокусов удобно пользовать новой прямоугольной системой координат, начало которой находится в точке а оси параллельны соответственно осям Ох, Оу и имеют те же направления (осуществили преобразование параллельного переноса). Тогда новые координаты точки будут равны ее старым координатам минус старые координаты нового начала, т.е.
В новой системе координат координаты вершин и фокусов гиперболы будут следующими:
Переходя к старым координатам, получим:
Построим график эллипса.
Задача решена.
Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний до двух данных точек, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами.
Так же, как и для эллипса, геометрическое свойство точек гиперболы выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину обозначим через 2а: 2а
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Кривые второго порядка. Эллипс: формулы и задачи
Понятие о кривых второго порядка
Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.
Общий вид уравнения кривой второго порядка следующий:
,
где A, B, C, D, E, F — числа и хотя бы один из коэффициентов A, B, C не равен нулю.
При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.
Эллипс, заданный каноническим уравнением
Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.
Фокусы обозначены как и на рисунке ниже.
Каноническое уравнение эллипса имеет вид:
,
где a и b (a > b) — длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.
Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.
Ось абсцисс эллипс пересекает в точках (a, О) и (- a, О), а ось ординат — в точках (b, О) и (- b, О). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат — малой осью. Их отрезки от вершины до центра эллипса называются полуосями.
Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность — частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a/b раз вдоль оси Oy .
Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.
Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:
Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия — эллипс.
Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.
Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось — это a = 5 , меньшая полуось — это b = 4 . Получаем каноническое уравнение эллипса:
.
Точки и , обозначенные зелёным на большей оси, где
,
называются фокусами.
называется эксцентриситетом эллипса.
Отношение b/a характеризует «сплюснутость» эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.
Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.
Решение. Делаем несложные умозаключения:
— если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,
— если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.
Подставляем и вычисляем:
Результат — каноническое уравнение эллипса:
.
Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .
Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c, нужное для вычисления длины меньшей полуоси:
.
Вычисляем квадрат длины меньшей полуоси:
Составляем каноническое уравнение эллипса:
Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .
Решение. Следует найти число c, определяющее первые координаты фокусов эллипса:
.
Получаем фокусы эллипса:
Решить задачи на эллипс самостоятельно, а затем посмотреть решение
Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:
1) расстояние между фокусами 30, а большая ось 34
2) малая ось 24, а один из фокусов находится в точке (-5; 0)
3) эксцентриситет , а один из фокусов находится в точке (6; 0)
Продолжаем решать задачи на эллипс вместе
Если — произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и — расстояния до этой точки от фокусов , то формулы для расстояний — следующие:
.
Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a.
Прямые, определяемые уравнениями
,
называются директрисами эллипса (на чертеже — красные линии по краям).
Из двух вышеприведённых уравнений следует, что для любой точки эллипса
,
где и — расстояния этой точки до директрис и .
Пример 7. Дан эллипс . Составить уравнение его директрис.
Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. . Все данные для этого есть. Вычисляем:
.
Получаем уравнение директрис эллипса:
Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки , а директрисами являются прямые .
Решение. Смотрим в уравнение директрис, видим, что в нём можем заменить символ эксцентриситета формулой эксцентриситета как отношение первой координаты фокуса к длине большей полуоси. Так сможем вычислить квадрат длины большей полуоси. Получаем:
.
Теперь можем получить и квадрат длины меньшей полуоси:
Уравнение эллипса готово:
Пример 9. Проверить, находится ли точка на эллипсе . Если находится, найти расстояние от этой точки до фокусов эллипса.
Решение. Подставляем координаты точки x и y в уравнение эллипса, на выходе должно либо получиться равенство левой части уравнения единице (точка находится на эллипсе), либо не получиться это равенство (точка не находится на эллипсе). Получаем:
.
Получили единицу, следовательно, точка находится на эллипсе.
Приступаем к нахождению расстояния. Для этого нужно вычислить: число c, определяющее первые координаты фокусов, число e — эксцентриситет и числа «эр» с подстрочными индексами 1 и 2 — искомые расстояния. Получаем:
Проведём проверку: сумма расстояний от любой точки на эллипсе до фокусов должна быть равна 2a.
,
так как из исходного уравнения эллипса .
Одним из самых замечательных свойств эллипса является его оптическое свойство, состоящее в том, что прямые, соединяющие точку эллипса с его фокусами, пересекают касательную к эллипсу под разными углами. Это значит, что луч, пущенный из одного фокуса, после отраэения попадёт в другой. Это свойство лежит в основе аккустического эффекта, наблюдаемого в некоторых пещерах и искусственных сооружениях, своды которых имеют эллиптическую форму: если находиться в одном из фокусов, то речь человека, стоящего в другом фокусе, слышна так хорошо, как будто он находится рядом, хотя на самом деле расстояние велико.
http://www.evkova.org/krivyie-vtorogo-poryadka
http://function-x.ru/curves_ellipse.html
фокусы которого лежат на оси абсцисс симметрично
относительно начала координат, зная, кроме того,
что:
и 2;
равна 10, а расстояние между фокусами 2c=8;
24, а расстояние между фокусами 2c=10;
его фокусами 2c=6 и эксцентриситет e=3/5.
равна 20, а эксцентриситет e=3/5.
10, а эксцентриситет e=12/13;
его директрисами равно 5 и расстояние между
фокусами 2c=4;
равна 8, а расстояние между директрисами равно 16;
6, а расстояние между директрисами равно 13;
его директрисами равно 32 и e=1/2.
уравнение эллипса, фокусы которого лежат на оси
ординат симметрично начала координат, зная,
кроме того, что:
соответственно 7 и 2;
равна 10, а расстояние между фокусами 2c=8;
его фокусами 2c=24 и эксцентриситет e=12/13.
16, а эксцентриситет e=3/5.
его фокусами 2c=6 и расстояние между директрисами
равно 50/3;
его директрисами равно 32/3 и эксцентриситет e=3/4.
каждого из следующих эллипсов:
эксцентриситет, уравнения директрис.
четырехугольника, две вершины которого лежат в
фокусах эллипса
совпадают с концами его малой оси.
эксцентриситет, уравнения директрис.
четырехугольника, две вершины которого лежат в
фокусах эллипса
концами его малой оси.
расстояние от фокуса F(c; 0) эллипса
односторонней с этим фокусом директрисы.
циркулем, построить фокусы эллипса
что изображены оси координат и задана масштабная
единица).
–3.
из точек A1(-2; 3), A2(2; -2), A3(2;
-4), A4(-1; 3), A5(-4; -3), A6(3; -1), A7(3;
-2), A8(2; 1), A9(0; 15), A10(0; -16) лежат на эллипсе
внутри и какие вне его.
линии опеределяются следующими уравнениями.
Изобразить эти линии на чертеже.
эллипса e=2/3, фокальный радиус точки М эллипса
равен 10. Вычислить расстояние от точки М до
односторонней с этим фокусом директрисы.
эллипса e=2/5, расстояние от точки эллипса до
директрисы равно 20. Вычислить расстояние от
точки М до фокуса, односторонней с этой
директрисой.
уравнения прямых, на которых лежат фокальные
радиусы точки М1.
459
точка M1(-4; 2,4) лежит
на эллипсе
М1.
эллипса e=1/3, центр его совпадает с началом
координат, один из фокусов (-2; 0). Вычислить
расстояние от точки М1 эллипса с абсциссой, равной 2, до
директрисы, односторонней с данным фокусом.
эллипса e=1/2, центр его совпадает с началом
координат, одна из директрис дана уравнением x=16.
Вычислить расстояние от точки M1
эллипса с абсциссой, равной –4, до
фокуса, одностороннего с данной директрисой.
эллипса
правого фокуса равно 14.
эллипса
левого фокуса равно 2,5.
большой оси. Определить расстояния от точек
пересечения этого перпендикуляра с эллипсом до
фокусов.
уравнения эллипса, фокусы которого расположены
на оси абсцисс симметрично относительно начала
координат, если даны:
и его малая полуось b=3;
-2) эллипса и его большая полуось
a=4;
М2(
и его эксцентриситет e=2/3;
-5/3) эллипса и его эксцентриситет
e=2/3;
12) эллипса и расстояние r1=20
от нее до левого фокуса.
и расстояние между его директрисами, равное 10.
эксцентриситет e эллипса, если:
из фокусов под углом 600;
фокусами виден и вершин малой оси под прямым
углом;
директрисами в три раза больше расстояния между
фокусами;
перпендикуляра, опущенного из центра эллипса на
его директрису, делится вершиной эллипса
пополам.
эллипса проведен перпендикуляр к его большой оси
(см. рис.). Определить, при каком значении
эксцентриситета эллипса отрезки
параллельны.
уравнение эллипса с полуосями a, b и центром C(x0, y0), если
известно, что оси симметрии эллипса параллельны
осям координат.
абсцисс в точке А(3; 0) и оси ординат в точке В(0; -4).
Составить уравнение этого эллипса, зная, что его
оси симметрии параллельны координатным осям.
является центром эллипса, касающегося обеих
координатных осей. Составить уравнение этого
эллипса, зная, что его оси симметрии параллельны
координатным осям.
каждое из следующих уравнений определяет эллипс,
и найти координаты его центра С, полуоси,
эксцентриситет и уравнения директрис:
линии определяются следующими уравнениями.
Изобразить эти линии на чертеже.
уравнение эллипса, зная, что:
равна 26 и фокусы суть F1(-10; 0), F2(14;0);
473.2
2 и фокусы суть F1(-1; -1), F2(1;
1);
473.3
эксцентриситет e=
473.4
расстояние между директрисами равно
474
эксцентриситет
фокус F (-4; 1) и уравнение соответствующей
директрисы
уравнение эллипса, если известны его
эксцентриситет e=1/2, фокус F(-4; 1) и уравнение
соответствующей директрисы
на эллипсе, фокус которого F(-1; -4), а
соответствующая директриса дана уравнением
уравнение эллипса, если известны его
эксцентриситет e=1/2, фокус F(3; 0) и уравнение
соответствующей директрисы
-1) лежит на эллипсе, фокус
которого F(1; 0), а соответствующая директриса дана
уравнением
-1) является концом малой оси
эллипса, фокусы которого лежат на прямой
уравнение этого эллипса, зная его эксцентриситет
e=
пересечения прямой
пересечения прямой
пересечения прямой
расположена прямая относительно эллипса:
пересекает ли, касается или проходит вне его,
если прямая и эллипс заданы следующими
уравнениями:
каких начениях m прямая
эллипса.
при котором прямая
уравнение касательной к эллипсу
точке M1(x1; y1).
касательные к эллипсу
в концах одного и того же диаметра, параллельны.
(Диаметром эллипса называется его хорда,
проходящая через его центр).
уравнения касательных к эллипсу
прямой
уравнения касательных к эллипсу
к прямой
прямой
ближайшую к прямой
этой прямой.
проведены касательные к эллипсу
их уравнения.
проведены касательные к эллипсу
уравнение хорды, соединяющей точки касания.
проведены касательные к эллипсу
расстояние d от точки Р до хорды эллипса,
соединяющей точки касания.
через точку А(4; -1) и касается прямой
уравнение этого эллипса при условии, что его оси
совпадают с осями координат.
уравнение эллипса, касающегося двух прямых
условии, что его ося совпадают с осями координат.
произведение расстояний от центра эллипса до
точки пересечения любой его касательной с
фокальной осью и до основания перпендикуляра,
опущенного из точки касания на фокульную ось,
если величина постоянная, равная квадрату
большой полуоси эллипса.
произвдение расстояний от фокусов до любой
касательной к эллипсу равно квадрату малой
полуоси.
эллипса, фокусы которого находятся в точках F1(-3;
0), F2(3; 0). Составить
уравнение этого эллипса.
уравнение эллипса, фокусы которого расположены
на оси абсцисс симметрично относительно начала
координат, если известны уравнение касательной к
эллипсу
прямая, касающаяся эллипса в некоторой точке М,
составляет равные углы с фокальными радиусами F1M, F2M и проходит
вне угла F1MF2.
эллипса
Ox направлен луч света. Известно, что
до эллипса, луч на него отразился. Составить
уравнение прямой, на которой лежит отраженный
луч.
пересечения эллипсов
эллипсы
в четырех точках, лежающих на окружности с
центром в начале координат, определить радиус R
этой окружности.
полуоси эллипса, полученного проектированием на
плоскость
плоскости
полуось которого равна 6, является проекцией
окружности радиуса R=12. Опредилть угол
эллипс и окружность.
круглого цилиндра является окружность радиуса
R=8. Определить полуоси эллипса, полученного в
сечении этого цилиндра плоскостью, наклоненной к
его оси под уголом
круглого цилиндра является окружность радиуса R=
цилиндра нужно его пересечь плоскостью, чтобы в
сечении получить эллипс с большой полуосью a=2.
сжатием (или равномерным растяжением) плоскости
к оси абсцисс называется такое преобразование
точек плоскости, при котором произвольная точка
M(x; y) перемещается в точку M’(x’; y’) (рис.1 ) так, что
x’=x, y’=qy, где q>0 – постоянная, называемая
коэффициентом равномерного сжатия. Аналогично
рпи помощи уравнения x’=qx, y’=y определяется
равномерное сжатия плоскости к оси Oy (рис. 2).
Определить, в какую линию преобразуется
окружность
равномерного сжатия плоскости к оси абсцисс q=4/5.
равномерного сжатия плоскости к оси Oy равен 3/4.
Определить уравнение линии, в которую при таком
сжатии преобразуется эллипс
линии, в которую преобразуется эллипс
равномерных сжатиях плоскости к координатным
осям, если коэффициенты равномерного сжатия
плоскости к осям Ox и Oy равны соответственно 4/3 и
6/7.
коэффициент q равномерного сжатия плоскости к
оси Ox, при котором эллипс
в эллипс
коэффициент q равномерного сжатия плоскости к
оси Oy, при котором эллипс
в эллипс
коэффициенты q1, q2 двух последовательных равномерных
сжатий плоскости к осям Ox и Oy, при которых
эллипс
Определение
Гиперболой называется геометрическое место точек плоскости, для каждой из которых абсолютное значение разности расстояний до двух данных точек плоскости и
, называемых фокусами, есть величина постоянная, равная
.
Расстояние между фокусами – .
Если оси декартовой прямоугольной системы координат выбраны так, что фокусы данной гиперболы располагаются на оси абсцисс симметрично относительно начала координат (рис. 2.13.1), то каноническое уравнение гиперболы имеет вид
|
(2.13.1) |
Где . Уравнение вида (2.13.1) называется Каноническим Уравнением гиперболы. При указанном выборе системы координат оси координат являются Осями симметрии гиперболы, а начало координат – ее Центром симметрии. Ось
называется Действительной осью, а
– Мнимой осью гиперболы. Точки пересечения гиперболы с осью называются Вершинами гиперболы.
Рис. 2.13.1.
Прямоугольник со сторонами и
, расположенный симметрично относительно осей гиперболы и касающийся ее в вершинах, называется основным прямоугольником гиперболы. Диагонали основного прямоугольника (неограниченно продолженные) являются асимптотами гиперболы и определяются уравнениями
|
(2.13.2) |
Эксцентриситетом гиперболы (как и эллипса) называется число , где
– расстояние от центра гиперболы до ее вершины. Очевидно, что для любой гиперболы
.
Если – произвольная точка гиперболы, то отрезки
и
называются Фокальными радиусами точки М. Фокальные радиусы правой ветви гиперболы могут быть вычислены по формулам
и
. Фокальные радиусы левой ветви гиперболы – по формулам
и
.
Если гипербола задана уравнением (2.13.1), то прямые, определяемые уравнениями , называются ее Директрисами.
Пример
Составить уравнение гиперболы, фокусы которой лежат на оси абсцисс, симметрично относительно начала координат, если точка лежит на гиперболе и известны уравнения асимптот
.
Решение
Из уравнений для асимптот находим , или
. Поскольку точка
принадлежит гиперболе, ее координаты удовлетворяют уравнению (2.13.1):
, где
или
. Отсюда находим
, тогда
, следовательно, уравнение гиперболы имеет вид
.
Пример
Дана гипербола . Найти ее полуоси
и
, фокусы, эксцентриситет, уравнения асимптот.
Решение
Разделим обе части этого уравнения на 144. Получим . Значит
, следовательно оси гиперболы соответственно равны
и
. Так как
, то фокусы гиперболы находятся в точках
и
. Эксцентриситет гиперболы вычисляется по формуле
. В соответствии с (2.13.2), уравнения асимптот имеют вид:
.
< Предыдущая | Следующая > |
---|
Примеры решения задач
Задача 6.1.
Найти полуоси, координаты фокусов и
эксцентриситет эллипса
Решение.
Разделив данное уравнение эллипса на
,
приведем его к виду.
Отсюда следует, что большая полуось
эллипса,
а малая полуось.
Известно, что,
поэтому
.
Следовательно,
координаты фокусов
и
,
а его эксцентриситет.
Ответ.
Задача 6.2.
Эллипс касается оси ординат в начале
координат, а центр симметрии его находится
в точке
.
Составить уравнение эллипса, если его
эксцентриситет равен.
Решение.
Выполним чертеж (рис. 2.35).
Каноническое В |
Рис. 2.35 |
Известно, что
.
Следовательно, для нахождениянадо знать
.
Найдемиз формулы эксцентриситета:
,
,
откуда.
Значит,,
Итак, уравнение
искомого эллипса
Ответ.
Задача 6.3.
Определитель траекторию точки
,
которая при своем движении остается
втрое ближе к точке,
чем к прямой
Решение.
Расстояние между
Следовательно, |
Рис. |
После преобразований
получаем искомое уравнение:
.
Таким образом,
точка
движется по эллипсу. При этом большая
ось эллипса и его фокусы расположены
на оси
Ответ.
.
Задача 6.4.
Действительная
полуось гиперболы
,
эксцентриситетСоставить каноническое уравнение
гиперболы и начертить ее.
Решение.
Эксцентриситет гиперболы
Следовательно,
,
,
откуда фокусы
гиперболы
,
,
а мнимая полуось.
Искомым уравнением гиперболы будет
.
Рис. 2.37 |
Вершины гиперболы: |
Ответ.
.
Задача 6.5. Дана
равносторонняя гипербола
.
Найти уравнение эллипса, фокусы которого
находятся в фокусах гиперболы, если
известно, что эллипс проходит через
точку.
Решение.
Для данной гиперболы
.
Следовательно, из соотношенияполучаем
,
откуда.
Значит, фокусы гиперболыи
.
В этих же точках находятся фокусы
эллипса.
Обозначим через
и
соответственно большую и малую полуоси
эллипса. Тогда при условии, что,
будем иметьДля определения
и
используем еще одно условие: что точка
лежит на эллипсе, т.е. ее координаты
должны удовлетворять уравнению эллипса
(6.8)
Это значит, что
Таким образом, для определения
и
имеем систему уравнений
решив которую,
получим
,
Подставив эти значения в уравнение
(6.8), найдем
Ответ.
Задача 6.6.
Асимптоты гиперболы имеют уравнения
.
Фокусы лежат на осии расстояние между ними равно
.
Написать каноническое уравнение
гиперболы и начертить ее.
Решение.
Так как фокусы гиперболы лежат на оси
,
то ее каноническое уравнение имеет вид
Разрешив уравнение
асимптот относительно
,
получим,
откуда.
Кроме того,,
т.е.Так как для гиперболы
,
то для нахожденияи
получим систему уравнений
Рис. |
решив |
Ответ.
Задача 6.7.
Составить уравнение параболы и ее
директрисы, если парабола проходит
через точки пересечения прямой
и окружности
и симметрична относительно оси
.
Решение.
Найдем точки пересечения заданных
линий, решив совместно их уравнения:
В результате
получим два решения
и
.
Точки пересеченияи
.
Так как парабола проходит через точкуи симметрична относительно оси
,
то в этой точке будет находиться вершина
параболы. Поэтому уравнение параболы
имеет вид.
Так как парабола проходит через точку,
то координаты этой точки удовлетворяют
уравнению параболы:,
,
Итак, уравнением
параболы будет
,
уравнение директрисыили
,
откуда
Ответ.
;
Задача 6.8.
Мостовая арка имеет форму параболы.
Определить параметр
этой параболы, зная, что пролет арки
равен,
а высота
Решение. выберем
прямоугольную систему координат так,
чтобы вершина параболы (мостовой арки)
находилась в начале координат, а ось
симметрии совпадала с отрицательным
направлением оси
.
В таком случае каноническое уравнение
параболы имеет вид,
а концы хорды аркии
.
Подставив координаты одного из концов
хорды (например,)
в уравнение параболы и решив полученное
уравнение относительно,
получим
Ответ.
Задача 6.9.
Привести уравнение кривой
к каноническому виду и построить эту
кривую.
Решение.
В уравнении
,
,
,
,
,
Вычислим дискриминант старших членов:
.
Так как
,
данная линия является кривой эллиптического
типа.
Найдем центр кривой
из системы
Решив ее, получим
,
.
С помощью
параллельного переноса осей координат
в центр
уравнение кривой в новой системе
приводится к виду:
,
подставив в исходное
уравнение кривой, получим
(6.9)
Для дальнейшего
упрощения уравнения (6.9) применим правило
приведения квадратичной формы к
каноническому виду. Составим
характеристическое уравнение
или
.
Отсюда
.
Повернув теперь
оси координат так, чтобы направления
осей
и
совпадали с главными направлениями
квадратичной формы, уравнение (6.5)
приведем к каноническому виду
или
.
Из уравнения видно,
что это эллипс с полуосями
,
.
Чтобы построить этот эллипс найдем
главное направление, соответствующее
характеристическому числу(его мы приняли за ось
в каноническом уравнении). Подставив
коэффициенты нашего уравнения в систему
получим
Полагая
,
находим, что.
Единичный вектор
оси
имеет в системе
координаты
и
.
Следовательно,,
а.
Повернув систему Задача и |
Рис. 3.39 |
Решение.
В исходном уравнении
,
,
,
,
,
Дискриминант старших членов
Следовательно,
уравнение определяет нецентральную
линию второго порядка, т.е. линию
параболического типа.
Составим
характеристическое уравнение квадратичной
формы старших членов:
или
Отсюда
,
Найдем главное
направление, соответствующее
характеристическому числу
.
Для этого подставим в систему
коэффициенты
нашего уравнения. Получим
Полагая
,
имеем.
Следовательно, главное направление,
соответствующее характеристическому
числу,
определяется вектором.
Нормируя его, находим единичный вектор:.
Это значит, что,
а,
т.е. поворачиваем системуна угол
.
Используя теперь
равенства (6.10), имеем:
Следовательно,
уравнение (10.17) в системе координат
принимает вид
(6.11)
Уравнение (6.11)
определяет параболу. Для приведения
его к каноническому виду найдем координаты
нового начала. Сгруппируем члены с
одинаковыми переменными и выделим
полный квадрат:
Рис. |
После параллельного |
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Содержание:
Геометрической фигурой или просто фигурой на плоскости называется множество точек. Задать фигуру — значит указать, из каких точек плоскости она состоит. Одним из важных способов задания фигуры на плоскости является ее задание при помощи уравнений с двумя неизвестными. Произвольное уравнение с двумя неизвестными х и у записывается в виде
- Если точка М(а,Ь) принадлежит фигуре Ф, то координаты (а,Ь) являются решениями уравнения
- если пара чисел (c,d) является решением уравнения F(x,y) = 0, то точка N(c,d) принадлежит фигуре Ф.
Это определение в более компактной записи выглядит следующим образом. Уравнение называется уравнением фигуры, если
, то есть (а, b) — решение уравнения F(x,y) = 0.
Из определения уравнения фигуры следует, что фигура Ф состоит только из тех точек плоскости, координаты которых являются решениями уравнения , т.е. уравнение фигуры задает эту фигуру.
Возможны два вида задач:
- дано уравнение
и надо построить фигуру Ф, уравнением которой является
;
- дана фигура Ф и надо найти уравнение этой фигуры.
Первая задача сводится к построению графика уравнения и решается, чаще всего, методами математического анализа.
Для решения второй задачи, как следует из определения уравнения фигуры, достаточно:
- Задать фигуру геометрически, т.е. сформулировать условие, которому удовлетворяют только точки фигуры (довольно часто определение фигуры содержит такое условие);
- Записать в координатах условие, сформулированное в первом пункте.
Эллипс
Эллипсом называется линия, состоящая из всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек , есть величина постоянная (большая, чем расстояние между
).
Точки называются фокусами эллипса. Обозначив расстояние между фокусами через 2с, а сумму расстояний от точек эллипса до фокусов через 2а, имеем с<а. Если это условие не выполнено, то рассматриваемое множество точек либо отрезок прямой, заключенной между фокусами, либо не содержит ни одной точки.
Из определения эллипса вытекает следующий метод его построения: если концы нерастяжимой нити длины 2а закрепить в точках и натянуть нить острием карандаша, то при движении острия будет вычерчиваться эллипс с фокусами
и с суммой расстояний от произвольной точки эллипса до фокусов, равной 2 а (Рис. 7.1).
Составим уравнение эллипса. Для этой цели расположим декартову прямоугольную систему координат таким образом, чтобы ось Ох походила через фокусы положительное направление оси — от
, начало координат выберем в середине отрезка
. Тогда координаты точек
будут соответственно (-с,0) и (с,0).
Пусть М(х,у) — произвольная точка эллипса, тогда:
Подставляя сюда значения имеем:
(7.1)
Уравнение (1) и есть уравнение эллипса. Преобразуя, упростим
его:
Возведя обе части уравнения в квадрат и приведя подобные члены, получим:
Возведем еще раз обе части в квадрат и приведем подобные члены. Получаем или
(7.2)
Положительную величину обозначим через
. Тогда уравнение (7.2) примет вид:
(7.3)
Оно называется каноническим уравнение эллипса.
Координаты точек эллипса ограничены неравенствами. Значит, эллипс ограниченная фигура, не выходящая за пределы прямоугольника со сторонами 2а и 2b •
Заметим, что в уравнение (7.3) входят лишь четные степени х и у. Поэтому, если точка M(х,у) принадлежит эллипсу, то и точки также ему принадлежат. А это означает, что эллипс — линия симметричная относительно координатных осей Ох и Оу.
Поэтому для исследования формы эллипса достаточно рассмотреть его в первой координатной четверти, а в остальных четвертях его строение определяется по симметрии. Для первой четверти, из уравнения (7.3) имеем:
(7.4)
При возрастании x от 0 до а, у монотонно убывает от а до 0. График функции изображен на Рис. 7.4.
Рис. 7.4
Достроив остальные четверти эллипса по симметрии, получим весь эллипс (Рис. 7.5).
Рис. 7.5. Оси симметрии эллипса (оси Ох и Оу) называются просто его осями, а центр симметрии — точка О — центром эллипса. Точки пересечения эллипса с осями координат называются вершинами эллипса. Отрезки
, а также их длины а и Ь называются полуосями эллипса. В случае, когда фокусы эллипса находятся на оси Ох (как в нашем случае), из равенства
следует, что a>b. В этом случае а называется большой полуосью, a b — малой.
Если а =Ь, то уравнение (7.3) можно переписать в виде:
(7.5)
Это уравнение окружности с центром в начале координат. Эллипс (3) можно получить из окружности (4) сжатием плоскости к оси Ох. Пусть на плоскости выбрана прямоугольная система координат Оху. Тогда преобразование, переводящее произвольную точку М(х,у) в точку координаты которой задаются формулами
будет окружность (4) переводить в эллипс, заданный соотношением
Число называется эксцентриситетом эллипса. Эксцентриситет
характеризует форму эллипса: чем ближе к нулю, тем больше эллипс похож на окружность; при увеличении
становится более вытянутым
Фокальными радиусами точки М эллипса называются отрезки прямых, соединяющие эту точку с фокусами . Их длины
и
задаются формулами
Прямые
называются директрисами эллипса. Директриса
называется левой, а
— правой. Так как для эллипса
и, следовательно, левая директриса располагается левее левой вершины эллипса, а правая — правее правой вершины.
Директрисы обладают следующим свойством: отношение расстояния г любой точки эллипса от фокуса к ее расстоянию d до соответствующей директрисы есть величина постоянная, равная эксцентриситету, т.е.
Гипербола
Гиперболой называется линия, состоящая из всех точек плоскости, модуль разности расстояний от которых до двух данных точек есть величина постоянная (не равная нулю и меньшая, чем расстояние между
).
Точки называются фокусами гиперболы. Пусть по-прежнему расстояние между фокусами равно 2с. Модуль расстояний от точек гиперболы до фокусов
обозначим через а. По условию, а <с.
Выбрав декартову систему координат, как в случае эллипса, и используя определение гиперболы, составляем ее уравнение: (7.6) где ху — координаты произвольной точки гиперболы,
Уравнение (7.6) называется каноническим уравнением гиперболы.
Из уравнения (7.6) видно, что . Это означает, что вся гипербола располагается вне полосы, ограниченной прямыми х = -а и х = а.
Так как в уравнение входят только четные степени x и у, то гипербола симметрична относительно каждой из координатных осей и начала координат. Поэтому достаточно построить эту кривую в первой четверти: в остальных четвертях гипербола строится по симметрии. Из уравнения (7.6) для первой четверти, имеем:
График этой функции от точки A(а,0) уходит неограниченно вправо и вверх (Рис. 7.7), и как угодно близко подходит к прямой:
Поэтому говорят, что гипербола асимптоматически приближается к прямой (7.7), и эту прямую называют асимптотой гиперболы. Из симметрии гиперболы следует, что у нее две асимптоты
Построим гиперболу. Сначала строим, так называемый, основной прямоугольник гиперболы, центр которой совпадает с началом координат, а стороны равны 2а и 2Ь параллельны осям координат. Прямые, на которых расположены диагонали этого прямоугольника, являются асимптотами гиперболы. Сделаем рисунок гиперболы (Рис. 7.8).
Гипербола состоит из двух отдельных ветвей. Центр симметрии гиперболы называется ее центром, оси симметрии называются осями гиперболы. Точки , пересечения гиперболы с осью Ох называются вершинами гиперболы. Величины а и Ь называются полуосями гиперболы. Если а=Ь, то гипербола называется равносторонней.
Эксцентриситетом гиперболы называется число. Для любой гиперболы
. Эксцентриситет характеризует форму гиперболы: чем меньше, тем больше вытягивается гипербола вдоль оси Ох. На рисунке 7.9 изображены гиперболы с различными значениями £.
Фокальными радиусами точки гиперболы называются отрезки прямых, соединяющие эту точку с фокусами. Их длины
и
задаются формулами:
Для правой — ветви ,
Для левой — ветви
Прямые называются директрисами гиперболы. Как и в случае эллипса, точки гиперболы характеризуются соотношением
Парабола
Параболой называется линия, состоящая из всех точек плоскости, равноудаленных от данной точки F (фокуса) и данной прямой (директрисы).
Для вывода канонического уравнения параболы ось Ох проводят через фокус F перпендикулярно директрисе в направлении от директрисы к фокусу; начало координат берут в середине отрезка между фокусом F и точкой D пересечения оси Ох с директрисой
. Если обозначить через р расстояние фокуса от директрисы, то
и уравнение директрисы будет иметь вид
В выбранной системе координат уравнение параболы имеет вид:
(7.8)
Это уравнение называется каноническим уравнением параболы. Из уравнения (7.8) видно, что л: может принимать только неотрицательные значения. Значит, на рисунке вся парабола располагается справа от оси Оу. Так как уравнение (7.8) содержит у только в четной степени, то парабола симметрична относительно оси Ох и поэтому достаточно рассмотреть ее форму в первой четверти. В этой четверти .
При неограниченном возрастании x неограниченно растет и у. Парабола, выходя из начала координат, уходит неограниченно вправо и вверх, четвертой четверти парабола строится по симметрии. Сделаем рисунок параболы (Рис. 7.10).
Ось симметрии параболы называется ее осью. Точка пересечения с ее осью называется вершиной параболы.
Исследование на плоскости уравнения второй степени
Рассмотрим уравнение:
(7.9)
где среди коэффициентов А, В, С есть отличные от нуля, т.е. (7.9) — уравнение второй степени относительно х и у.
Возьмем на плоскости две прямоугольные системы координат: Оху, которую будем называть старой, и новую, полученную из Оху поворотом ее вокруг начала координат на угол
Старые координаты х, у выражаются через новые координаты по формулам:
(7.10)
Подставив выражения для х и у в уравнение (8), получим: (7.11)
Это уравнение в системе координат задает ту же линию, что и уравнение (7. 9) в системе Оху.
Если в уравнении (7.9) , то за счет выбора угла а в (7.10) можно добиться того, что В’ = 0. Для этого угол а надо взять таким, чтобы
. Поэтому будем считать В’= 0, тогда уравнение (7.11) примет вид:
(7.12)
Преобразуя это уравнение и применяя параллельный перенос координатных осей, придем к уравнению:
(7.13)
В зависимости от знаков коэффициентов уравнения (7.13) рассмотрим следующие случаи:
Рассматривая далее методично все случаи, придем к выводу: уравнение вида (7.9) задает одну из следующих фигур: эллипс, гиперболу, параболу, пару пересекающихся прямых, пару параллельных прямых, прямую, точку или пустое множество.
Кривые второго порядка в высшей математике
Выяснение взаимосвязей между различными показателями экономического характера часто приводит к форме этих связей в виде гиперболы и параболы. В этой лекции приведём краткие сведения обо всех кривых второго порядка.
Окружность
Определение 9.1. Окружностью называется геометрическое место точек, равноудаленных от данной точки — центра окружности.
Если точка — центр (рис.9.1), N(x,y) — произвольная точка окружности и R — её радиус, то согласно определения можно записать
или
Найдём условия, при которых общее уравнение второй степени с двумя переменными
определяет окружность. Раскрыв скобки в (9.1.1), получим
Сравнивая (9.1.2) и (9.1.3), находим условия А = С, В = О,
, при выполнении которых общее уравнение (9.1.2) определяет окружность.
Эллипс
Определение 9.2. Эллипсом называется геометрическое место точек, для которых сумма расстояний от двух фиксированных точек плоскости, называемых фокусами, есть постоянная величина, большая, чем расстояние между фокусами.
Пусть на плоскости хОу (рис. 9.2) дан эллипс с фокусами и
. Пусть начало координат лежит на середине отрезка
. Выведем уравнение эллипса.
Если точка А — произвольная точка эллипса с координатами (х, у), то
(9.2.1)
где — постоянная сумма. Так как
расположены симметрично относительно начала координат, то они имеют координаты (с,0) и (-с,0) соответственно. Воспользовавшись формулой для вычисления расстояния между двумя точками, находим . Подставив значения
и в (9.2.1), получаем уравнение
Обе части этого уравнения возведем в квад-Упростив и обозначив
получим. Разделим обе части уравнения на правую часть
Уравнение (9.2.2) называется каноническим уравнением эллипса, где а — большая полуось, b — малая полуось.
Это уравнение второго порядка, следовательно, эллипс есть линия второго порядка. Для определения формы эллипса служит его эксцентриситет , т.е. отношение расстояния между фокусами этого эллипса к длине его большей полуоси. Так как с
а, то эксцентриситет каждого эллипса меньше единицы. Поскольку
, то подставив значение
в равенство
, получим
Следовательно, эксцентриситет определяется отношение осей эллипса; а отношение осей определяется эксцентриситетом. Чем ближе эксцентриситет к единице, тем меньше , тем меньше, следовательно, отношение
. Это значит, что эллипс вытянут вдоль оси Ох. В случае Ь=а и
получаем окружность.
Две прямые, перпендикулярные к большей оси эллипса и расположенные симметрично относительно центра на расстоянии от него, называются директрисами эллипса. Уравнения директрис
Пример:
Исследовать, какая линия определяется уравнением
Решение:
Сгруппируем члены, содержащие одну и туже переменную, получим
Из второй скобки вынесем коэффициент при , после чего предыдущее уравнение примет вид
В каждой из скобок выделим полный квадрат
или
Произведём замену: . Исследуемое уравнение принимает вид:
.
Разделив обе части этого уравнения на , получим канонический вид данного уравнения:
Заданное уравнение определяет эллипс с полуосями , центр которого находится в точке
Выбираем на плоскости произвольным образом прямоугольную систему координат хОу. С помощью параллельного переноса переносим оси координат в новое начало в точку . В новой системе координат строим основной прямоугольник со сторонами
, стороны которого параллельны новым осям координат, а центр находится в точке
. Вписываем в него эллипс.
Гипербола
Определение 9.3.1. Гиперболой называется геометрическое место точек, для которых разность расстояний от двух фиксированных точек плоскости, называемых фокусами, есть постоянная величина, меньшая, чем расстояние между фокусами и отличная от нуля (указанная разность берется по абсолютному значению).
Пусть М- произвольная точка гиперболы с фокусами (рис. 9.4). Отрезки
называются фокальными радиусами точки М и обозначаются
По определению гиперболы
. Так как
и т.к.
расположены симметрично относительно начала координат, то, применяя формулу для вычисления расстояния между двумя точками, находим
. Заменяя
в равенстве
найденными выражениями, получаем:
.
Возведя в квадрат обе части этого уравнения и обозначая , получим:
или, разделив все члены уравнения на правую часть, приводим его к виду:
Уравнение (9.3.1)- это каноническое уравнение гиперболы, линии второго порядка.
Прямоугольник со сторонами 2а и 2b, расположенный симметрично относительно осей гиперболы и касающийся ее в вершинах, называется основным прямоугольником. Его диагонали совпадают с асимптотами гиперболы . Поэтому, если требуется построить гиперболу с полуосями а и b, то следует, прежде всего, построить ее основной прямоугольник, затем асимптоты.
Уравнение вида определяет гиперболу, вершины которой расположены на оси Оу (Рис. 9.5).
Форму гиперболы характеризует её эксцентриситет , т.е. отношение расстояния между фокусами этой гиперболы к расстоянию между её вершинами. Поскольку
, то подставив в формулу
получим
откуда
. Следовательно, эксцентриситет oредсляется отношением
, а отношение
— эксцентриситетом. Следовательно, эксцентриситет характеризует форму гиперболы. Чем меньше эксцентриситет, тем меньше отношение
, а это значит, что основной прямоугольник вытянут в направлении оси, соединяющей вершины.
Прямые, заданные уравнениями называются директрисами гиперболы.
Пример:
Составить уравнение геометрического места точек, отношение расстояний которых от данной точки А(4, 0) и от данной прямой х=1 равно 2.
Решение:
В системе координат хОу построим точку А(4, 0) и прямую х = 1. Пусть М(х, у) — произвольная точка искомого геометрического места точек. Опустим перпендикуляр MB на данную прямую х = 1 и определим координаты точки В. Так как точка В лежит на заданной прямой, то её абсцисса равна 1. Ордината точки В равна ординате точки М. Следовательно, B(1, у) (рис. 9.6).По условию задачи .Подставив значения расстояний
, которые находим по формуле расстояния между двумя точками, получим:
Возводя в квадрат левую и правую части равенства и последовательно преобразовывая, находим уравнение:
Полученное уравнение определяет гиперболу, у которой действительная полуось -а = 2, а мнимая .
Определим фокусы гиперболы. Для гиперболы выполняется равенство . Следовательно,
.А
— фокусы гиперболы. Как видно, заданная точка
А(4, 0) является правым фокусом гиперболы.
Эксцентриситет полученной гиперболы равен
Подставив значения а и b в уравнения асимптот и
у =—получим уравнения асимптот гиперболы:и
.
Для построения гиперболы строим основной прямоугольник с полуосями , затеем асимптоты
и
а далее строим и саму гиперболу (рис.9.6).
- Заказать решение задач по высшей математике
Парабола
Определение 9.4.1. Параболой называется геометрическое место точек, для каждой из которых, расстояние до некоторой фиксированной точки плоскости, называемой фокусом, равно расстоянию до некоторой фиксированной прямой, называемой директрисой,(директриса не проходит через фокус).
Обозначим фокус параболы — F, расстояние от фокуса до директрисы — р(р > 0) (рис. 9.7). Ось абсцисс проведём через фокус F перпендикулярно директрисе. Начало координат расположим посередине между фокусом и директрисой. Пусть А — произвольная точка плоскости с координатами (х, у) и пусть . Тогда точка А будет лежать на параболе, если r=d, где d- расстояние от точки А до директрисы. Фокус F имеет координаты
.
Тогда А расстояние
Подставив в формулу r=d, будем иметь
. Возведя обе части равенства в квадрат, получим
или
(9.4.1)
Уравнение (9.4.1)- каноническое уравнение параболы. Уравнения также определяют параболы.
Легко показать, что уравнение , определяет параболу, ось симметрии которой перпендикулярна оси абсцисс; эта парабола будет восходящей, если а > 0 и нисходящей, если а
О. Для этого выделим полный квадрат:
и сделаем параллельный перенос по формулам
В новых координатах преобразуемое уравнение примет вид: где р — положительное число, определяется равенством
.
Пример:
Пусть заданы точка F и прямая у =-1 (рис. 9.8). Множество точек Р(х, y) для которых расстояние |PF| равно расстоянию, называется параболой. Прямая у = -1 называется директрисой параболы, а точка F — фокусом параболы. Чтобы выяснить, как располагаются точки Р, удовлетворяющие условию
, запишем это равенство с помощью координат:
, или после упрощения
. Это уравнение геометрического места точек, образующих параболу (рис. 9.8).
Кривые второго порядка на плоскости
Кривой второго порядка называется фигура на плоскости, задаваемая в прямоугольной системе координат уравнением второй степени относительно переменных х и у:
где коэффициенты А, В и С не равны одновременно нулю
Любая кривая второго порядка на плоскости принадлежит к одному из типов: эллипс, гипербола, парабола, две пересекающиеся прямые, 2 параллельные прямые, прямая, точка, пустое множество.
Кривая второго порядка принадлежит эллиптическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют одинаковые знаки: АС>0.
Кривая второго порядка принадлежит гиперболическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют противоположные знаки: АС<0.
Кривая второго порядка принадлежит параболическому типу, если коэффициент В равен нулю: В=0 и только один из коэффициентов А и С не равен нулю: АС=0 и
Рассмотрим канонические (простейшие) уравнения эллипса, гиперболы и параболы.
Эллипсом называется множество всех точек плоскости, для которых сумма расстояний до двух данных точек, называемых фокусами, есть величина постоянная, большая расстояния между фокусами.
Геометрическое свойство точек эллипса выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину, о которой идет речь в определении эллипса, обозначим через 2а: 2а>2с. Точка М(х,у) принадлежит эллипсу тогда и только тогда, когда ее координаты удовлетворяют уравнению
которое называют каноническим уравнением эллипса.
Число а называют большей полуосью эллипса, число — мень-
шей полуосью эллипса, 2а и 2b — соответственно большей и меньшей осями эллипса. Точки называют вершинами эллипса, а
— его фокусами (рис. 12).
Координатные оси являются осями симметрии эллипса, а начало координат — его центром симметрии. Центр симметрии эллипса называется центром эллипса.
Замечание. Каноническое уравнение эллипса можно рассматривать и в случае b>а. Оно определяет эллипс с большей полуосью b, фокусы которого лежат на оси Оу.
В случае а=b каноническое уравнение эллипса принимает вид и определяет окружность радиуса а с центром в начале координат.
Эксцентриситетом эллипса называется отношение фокусного расстояния к длине большей оси.
Так, в случае а>b эксцентриситет эллипса выражается формулой:
Эксцентриситет изменяется от нуля до единицы и характеризует форму эллипса. Для окружности
Чем больше эксцентриситет, тем более вытянут эллипс.
Пример:
Показать, что уравнение
является уравнением эллипса. Найти его центр, полуоси, вершины, фокусы и эксцентриситет. Построить кривую.
Решение:
Дополняя члены, содержащие х и у соответственно, до полных квадратов, приведем данное уравнение к каноническому виду:
— каноническое уравнение эллипса с центром в точке
большей полуосью а=3 и меньшей полуосью
Найдем эксцентриситет эллипса:
Для вычисления вершин и фокусов удобно пользовать новой прямоугольной системой координат, начало которой находится в точке а оси
параллельны соответственно осям Ох, Оу и имеют те же направления (осуществили преобразование параллельного переноса). Тогда новые координаты точки будут равны ее старым координатам минус старые координаты нового начала, т.е.
В новой системе координат координаты вершин и фокусов гиперболы будут следующими:
Переходя к старым координатам, получим:
Построим график эллипса.
Задача решена.
Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний до двух данных точек, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами.
Так же, как и для эллипса, геометрическое свойство точек гиперболы выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину обозначим через 2а: 2а<2с. Точка М(х,у) принадлежит гиперболе тогда и только тогда, когда ее координаты удовлетворяют уравнению
которое называют каноническим уравнением гиперболы.
Число а называют действительной полуосью гиперболы, число
— мнимой полуосью гиперболы, 2а и 2b — соответственно действительной и мнимой осями гиперболы. Точки
называют вершинами гиперболы,
— ее фокусами (рис. 13).
Координатные оси являются осями симметрии гиперболы, а начало координат — ее центром симметрии. Центр симметрии гиперболы называется центром гиперболы.
Точки гиперболы по мере удаления от начала координат неограниченно (асимптотически) приближаются к прямым у=±kх (где ), которые называются асимптотами гиперболы.
Эксцентриситетом гиперболы называется отношение фокусного расстояния к длине действительной оси:
Эксцентриситет гиперболы изменяется от единицы до бесконечности и характеризует форму гиперболы. Чем меньше эксцентриситет гиперболы, тем ее ветви более сжаты к оси Ох.
Замечание. Каноническое уравнение определяет сопряженную гиперболу с действительной полуосью b, вершинами в точках
и фокусами на оси Оу.
Пример:
Составить каноническое уравнение гиперболы с центром в начале координат, если ее действительная полуось равна трем, а эксцентриситет -четырем третьим.
Решение:
Каноническое уравнение гиперболы имеет вид
По условию задачи нам известно: а=3,
Найдем мнимую полуось.
Следовательно, уравнение искомой гиперболы:
Задача решена.
Параболой называется множество всех точек плоскости, каждая из которых находится на одинаковом расстоянии от данной точки, называемой фокусом параболы, и от данной прямой, называемой директрисой и не проходящей через фокус.
Расстояние между фокусом и директрисой обозначим р. Для того чтобы точка М(х,у) принадлежала параболе, необходимо и достаточно, чтобы ее координаты удовлетворяли уравнению которое называется каноническим уравнением параболы.
Точка O(0,0) называется вершиной параболы, число р — параметром параболы, — директрисой пир,болы, а
— ее фокусом. Прямая у=0 является осью симметрии параболы, ветви которой направлены вправо. Центра симметрии у параболы нет (рис. 14).
Если поменять ролями оси Ох и Оу, то каноническое уравнение параболы примет вид (уравнение параболы с вертикальной осью, уравнением директрисы
фокусом
ветви направлены вверх).
Замечание. Канонические уравнения параболы можно рассматривать и в случае, когда ветви направлены влево или вниз:
Пример:
Составить уравнение параболы с вершиной в начале координат, симметричной относительно оси Оу и отсекающей на биссектрисе первого координатного угла отрезок длиной
Решение:
Каноническое уравнение параболы с вершиной в начале координат, симметричной относительно оси Оу и ветвями, направленными вверх, имеет вид:
Уравнение биссектрисы первого координатного угла у=х. Найдем точки пересечения параболы с биссектрисой. Для этого решим систему уравнений
Следовательно, точка М(2р,2р) будет принадлежать параболе. С другой стороны, парабола отсекает на биссектрисе отрезок длиной который является гипотенузой равнобедренного прямоугольного треугольника с катетами 2р.
По теореме Пифагора
Тогда искомое уравнение параболы
Уравнение директрисы параболы: у=-1, координаты ее фокуса F(0,1).
Задача решена.
- Евклидово пространство
- Матрица — виды, операции и действия с примерами
- Линейный оператор — свойства и определение
- Многочлен — виды, определение с примерами
- Числовые множества
- Вектор — определение и основные понятия
- Прямая — понятие, виды и её свойства
- Плоскость — определение, виды и правила