Плотность вещества
О чем эта статья:
Масса
Начнем с самого сложного — с массы. Казалось бы, это понятие мы слышим с самого детства, примерно знаем, сколько в нас килограмм, и ничего сложного здесь быть не может. На самом деле, все сложнее.
До недавнего времени в Международном бюро мер и весов в Париже хранился цилиндр массой один килограмм. Цилиндр был изготовлен из сплава иридия и платины и служил для всего мира эталоном килограмма. Правда, со временем его масса изменилась, и пришлось придумать новый эталон — электромагнитные весы.
Высота этого цилиндра была приблизительно равна 4 см, но чтобы его поднять, нужно было приложить немалую силу. Необходимость эту силу прикладывать обуславливается инерцией тел и математически записывается через второй закон Ньютона.
Второй закон Ньютона
F = ma
a — ускорение [м/с 2 ]
В этом законе массу можно считать неким коэффициентом, который связывает ускорение и силу. Также масса важна при расчете силы тяготения. Она является мерой гравитации: именно благодаря ей тела притягиваются друг к другу.
Закон всемирного тяготения
F — сила тяготения [Н]
M — масса первого тела (часто планеты) [кг]
m — масса второго тела [кг]
R — расстояние между телами [м]
G — гравитационная постоянная
G = 6,67 · 10 −11 м 3 · кг −1 · с −2
Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше в шесть раз. Когда думаешь об этом, хочется взвешиваться исключительно на Луне. 🙃
Откуда берется масса
Физики убеждены, что у элементарных частиц должна быть масса. Доказано, что у электрона, например, масса есть. В противном случае они не могли бы образовать атомы и всю видимую материю.
Вселенная без массы представляла бы собой хаос из различных излучений, двигающихся со скоростью света. Не существовало бы ни галактик, ни звезд, ни планет. Здорово, что это не так, и у элементарных частиц есть масса. Только вот пока непонятно, откуда эта масса у них берется.
Мужчину на этой фотографии зовут Питер Хиггс. Ему мы обязаны за предположение, экспериментально доказанное в 2012 году, что массу всех частиц создает некий бозон.
Бозон Хиггса невозможно представить. Это точно не частица в форме шарика, как обычно рисуют электрон в учебнике. Представьте, что вы бежите по песку. Бежать ощутимо сложно, как будто бы увеличилась масса. Частицы пробираются в поле Хиггса и получают таким образом массу.
Объем тела
Объем — это физическая величина, которая показывает, сколько пространства занимает тело. Это важный навык — уметь объемы соотносить. Например, чтобы посчитать, сколько пластиковых шариков помещается в гигантский бассейн.
Скажем, чтобы рассчитать объем прямоугольного параллелепипеда, нам нужно перемножить три его параметра.
Формула объема параллелепипеда
V = abc
А для цилиндра будет справедлива такая формула:
Формула объема цилиндра
V = Sh
S — площадь основания [м 2 ]
Плотность вещества
Плотность — скалярная физическая величина. Определяется как отношение массы тела к занимаемому этим телом объему.
Формула плотности вещества
р — плотность вещества [кг/м 3 ]
m — масса вещества [кг]
V — объем вещества [м 3 ]
Плотность зависит от температуры, агрегатного состояния вещества и внешнего давления. Обычно если давление увеличивается, то молекулы вещества утрамбовываются плотнее — следовательно, плотность больше. А рост температуры, как правило, приводит к увеличению расстояний между молекулами вещества — плотность понижается.
Ниже представлены значения плотностей для разных веществ. В дальнейшем это поможет при решении задач.
Как найти площадь треугольника – все способы от самых простых до самых сложных
Зависит от того, какой треугольник.
Чтобы найти площадь треугольника, надо сначала определить тип треугольника: прямоугольный, равнобедренный, равносторонний. Если он у вас не такой – отталкивайтесь от других данных: высоты, вписанной или описанной окружности, длин сторон. Привожу все формулы ниже.
Если треугольник прямоугольный
То есть один из его углов равен 90 градусам.
Надо перемножить катеты и поделить на два. Катеты – это две меньшие стороны, в сравнении с гипотенузой. Гипотенуза – это самая длинная сторона, она всегда находится напротив угла в 90 градусов.
Если он равнобедренный
То есть у него равны боковые стороны. В таком случае надо провести высоту к основанию (той стороне, которая не равна «бедрам»), перемножить высоту с основанием и поделить результат на два.
Если он равносторонний
То есть все три стороны равны. Ваши действия такие:
- Найдите квадрат стороны – умножьте эту сторону на нее же. Если у вас сторона равна 4, умножьте 4 на 4, будет 16.
- Умножьте полученное значение на корень из 3. Это примерно 1,732050807568877293527.
- Поделите все на 4.
Если известна сторона и высота
Площадь любого треугольника равна половине произведения стороны на высоту, которая к этой стороне проведена. Именно к этой, а не к какой-то другой.
Чтобы провести высоту к стороне, надо найти вершину (угол), которая противоположна этой стороне, а потом опустить из нее на сторону прямую линию под углом в 90 градусов. На картинке высота обозначена синим цветом и буквой h, а линия, на которую она опускается, красным цветом и буквой a.
Если известны две стороны и градус угла между ними
Если вы знаете, чему равны две стороны и угол между ними, то надо найти синус этого угла, умножить его на первую сторону, умножить на вторую и еще умножить на ½:
Если известны длины трех сторон
- Найдите периметр. Для этого сложите все три стороны.
- Найдите полупериметр – разделите периметр на два. Запомните значение.
- Отнимите от полупериметра длину первой стороны. Запомните.
- Отнимите от полупериметра длину второй стороны. Тоже запомните.
- Отнимите от полупериметра длину третьей стороны. И ее запомните.
- Умножьте полупериметр на каждое из этих чисел (разницу с первой, второй и третьей стороной).
- Найдите квадратный корень.
Эта формула еще называется формулой Герона. Возьмите на заметку, если вдруг учитель спросит.
Если известны три стороны и радиус описанной окружности
Окружность вы можете описать вокруг любого треугольника. Чтобы найти площадь «вписанного» треугольника – того, который «вписался» в окружность, надо перемножить три его стороны и поделить их на четыре радиуса. Смотрите картинку.
Если известны три стороны и радиус вписанной окружности
Если вам удалось вписать в треугольник окружность, значит она обязательно касается каждой из его сторон. Следовательно, расстояние от центра окружности до каждой из сторон треугольника – ее радиус.
Чтобы найти площадь, посчитайте сначала полупериметр – сложите все стороны и поделите на два. А потом умножьте его на радиус.
Это были все способы найти площадь треугольника. Спасибо, что дочитали статью до конца. Лайкните, если не трудно.
Площадь равнобедренного треугольника — формулы вычисления
Площадь равнобедренного треугольника важна для вычисления многих геометрических и математических задач. Например, определение площади любого многоугольника связано с его разделением на ряд треугольников и расчетом площади каждого из них.
Геометрическое тело, обладающее двумя равными сторонами и углами – есть частный случай простого разностороннего многоугольника.
Каждая из идентичных линий называется боковой, а третья – основанием.
Если в таком треугольнике опустить среднюю линию из его вершины на 3-ю сторону, то образовавшиеся два плоских тела будут идентичны (так как имеют все признаки подобия).
Площадь (S) фигуры с тремя углами возможно установить:
по двум сторонам и высоте;
через угол между двумя сторонами и величину одной из них;
по двум сторонам;
через синус противолежащего основанию угла;
зная синус прилежащего угла и др.
Площадь равнобедренного треугольника через высоту
Вычисление площади треугольника с использованием его высоты и параметров основания – самый актуальный вариант, на базе которого строятся многие другие методы решения.
У планиметрической фигуры с двумя тождественными углами и боковыми отрезками высота может рассматриваться, как медиана и биссектриса. То есть линия, проведенная из вершины, делит планиметрический объект на два эквивалентных прямоугольных треугольника.
И общая их площадь сводится к:
b — размер основания;
Требуется рассчитать S тупоугольного равнобедренного многоугольника. Его h=3 см, а длина b = 8 см.
Вычисления выглядят следующим образом:
Площадь равнобедренного треугольника через стороны
Найти S планиметрического тела с двумя одинаковыми чертами, зная их параметры, возможно.
Для этого необходима теорема Пифагора, формулы которой видны на картинке,
и формула для отыскания S через биссектрису S = ½ * b * h.
После проведения медианы к середине 3-его отрезка, в равнобедренном треугольнике образуются 2 единообразных плоских тела с h между 2-мя катетами.
Таким образом, используя свойство сторон прямоугольного треугольника, выводим формулу, которая показана на картинке:
При высчитывание S равностороннего треугольника это выражение примет другой вид. Сравнить формулы нахождения площади равностороннего и равнобедренного треугольников можно, взглянув на картинку:
У остроугольного равнобедренного треугольника даны габариты боковины b = 3 см и базиса a = 2 см. Надлежит найти его S:
Площадь равнобедренного треугольника через синус угла
В геометрии встречаются задания по отысканию площади многоугольника с тремя схожими краями через данный угол и длину прилегающей стороны.
В этой ситуации определение размера h будет осуществляться с использованием угла, прилегающего к измеренной грани. Таким образом выводится выражение, которое хорошо иллюстрирует следующая картинка:
Посмотрим на рисунок, приведенный выше. Известно, что ∠ACB фигуры 30 градусов, а величина его боковой стороны AC = AB равняется 4 см. Требуется вычислить её S.
Формула площади равнобедренного треугольника через тангенс угла
Как правило, в планиметрии нередко встречаются задания по нахождению S треугольника, в котором определено значение стороны и угол.
Разнообразные равенства для решения задач, в том числе и нахождения S через тангенс угла, можно увидеть ниже:
Дан равнобедренный треугольник OPQ (см. рис. 1). Известны величины: основание OQ = 5 см и угол QOP = 45 0 . Требуется найти площадь треугольника OPQ.
Прежде всего посмотрим, как найти нам требуемую величину и какую применить формулу. Остановим свой выбор на формуле нахождения площади S по тангенсу угла.
Зная, что у нас равнобедренный треугольник, у которого углы у основания равны, найдем третий угол:
180 — 45 — 45 = 90 0 — угол OPQ.
SOPQ = 5 2 /4 * tg 45° = 25/4 * 1 = 6, 25 см 2
Вот так, используя прежде всего знания о свойствах фигур, можно получать самые разнообразные способы вычисления той величины, какая требуется в задаче.
http://vsvoemdome.ru/obrazovanie/kak-nayti-ploschad-treugolnika
http://sprint-olympic.ru/uroki/geometrija/85090-ploshad-ravnobedrennogo-treygolnika-formyly-vychisleniia.html
Here is the simple online DMV (i.e) Density Mass Volume Magic Triangle Calculator to calculate the volume of an object using magic triangle method. The DMV triangle tells the relationship between density, mass and volume of the triangle. Mass (Kg) is a measure of the amount of matter in an object, while density (Kg/m3) is the amount of mass per unit volume of the object. This Density Mass Volume Calculator works based on the DMV Triangle formula, Volume = Mass / Density.
Density Mass Volume Magic Triangle | DMV Triangle
Here is the simple online DMV (i.e) Density Mass Volume Magic Triangle Calculator to calculate the volume of an object using magic triangle method. The DMV triangle tells the relationship between density, mass and volume of the triangle. Mass (Kg) is a measure of the amount of matter in an object, while density (Kg/m3) is the amount of mass per unit volume of the object. This Density Mass Volume Calculator works based on the DMV Triangle formula, Volume = Mass / Density.
Code to add this calci to your website
Formula:
Volume = Mass / Density
Example:
A solid object has mass of 12 kg and density of 18 g/cm3. Calculate its volume using DMV triangle method.
Density Mass Volume Magic Triangle Calculation:
Volume = Mass / Density
Volume using Magic Triangle = 12 / 18
= 666.6667 cm3
Узнайте, как рассчитать плотность, массу или объем твердого объекта с помощью этого удобного визуального инструмента.
Canva
Что такое плотность?
Плотность — это мера того, насколько компактный (плотный) объект. Если объект имеет большую плотность, чем вода, объект утонет в воде. Если он имеет меньшую плотность, чем вода, он будет плавать.
Как определить плотность твердого объекта
Чтобы рассчитать плотность объекта, нам нужно знать массу и объем объекта. Затем мы можем подставить эти значения в следующее уравнение для расчета плотности объекта:
Эта формула часто записывается с использованием следующих символов:
- ρ : плотность
- m: масса
- V: объем
Используя эти символы в качестве переменных, наша формула теперь выглядит так:
Треугольник масса-плотность-объем помогает нам визуализировать отношения между этими тремя переменными.
Canva
Что такое треугольник плотность-масса-объем?
Треугольник плотность-масса-объем (изображенный выше) — это визуальный инструмент, который мы можем использовать, чтобы выяснить, как вычислить плотность, массу или объем твердого объекта, если нам известны два оставшихся значения. Треугольник разделен на три части: плотность занимает верхнюю часть, а масса и объем — две нижние части.
Положение каждого элемента треугольника показывает нам, как они соотносятся друг с другом через формулу выше ( плотность = масса / объем или ρ = м / об ).
Как рассчитать плотность
Если мы хотим вычислить плотность, мы просто скрываем плотность в треугольнике и смотрим, что остается. Поскольку масса выше объема, мы делим массу на объем, чтобы получить плотность.
Как рассчитать массу
Если мы хотим вычислить массу, мы просто скрываем массу в треугольнике и смотрим, что остается. Поскольку плотность и объем находятся рядом, мы умножаем плотность на объем, чтобы получить массу.
Как рассчитать объем
Если мы хотим рассчитать объем, мы просто закрываем объем в треугольнике и смотрим, что остается. Поскольку масса выше плотности, мы делим массу на плотность, чтобы получить объем.
Примеры проблем с процессами и решениями
Давайте рассмотрим несколько примеров проблем и решим их, используя треугольник плотность-масса-объем, описанный выше.
В этом первом примере нам нужно вычислить плотность этой прямоугольной призмы или кубоида.
Пример 1
Сплошная прямоугольная коробка имеет длину 6 см , ширину 4 см и высоту 5 см . Позанимайтесь плотность коробки, если масса коробки 200 г .
Этот вопрос просит нас определить плотность. Следовательно, нам понадобится формула для плотности (Density = Mass / Volume) .
Однако в вопросе указывается масса коробки, но не указывается объем, поэтому нам нужно определить объем коробки, прежде чем мы сможем вычислить плотность.
Поскольку коробка имеет форму куба, объем можно определить, умножив длины трех сторон вместе:
Теперь, когда у нас есть объем, можно рассчитать плотность:
Во втором примере нам нужно вычислить массу треугольной призмы.
Пример 2
Определите массу этой треугольной призмы, если плотность равна 3 г / см³ .
На этот раз нас просят вычислить массу, поэтому нам понадобится формула для массы (Масса = Плотность * Объем) .
В этом вопросе нам дается плотность, но не объем, поэтому давайте начнем с вычисления объема треугольной призмы. Площадь поперечного сечения призмы можно найти по формуле Площадь = ½ * (Основание * Высота) .
Теперь объем призмы можно найти, умножив эту площадь на длину:
Теперь, когда у нас есть объем, мы можем вычислить массу треугольной призмы:
Вопросы и Ответы
Вопрос: Емкость — это прямоугольная призма. Его размеры 50 см X 40 см X 10 см. Если он наполнен водой, какова масса воды?
Ответ: Сначала определите объем прямоугольной призмы, умножив три измерения вместе: 50, умноженное на 40, умноженное на 10, получится 20 000 см ^ 3. Теперь, поскольку 1 см ^ 3 — это то же самое, что 1 г воды, ответ — 20 000 г (или 20 кг).
Вопрос: Сколько массы в прямоугольной призме высотой 100, длиной 25 и шириной 3?
Ответ: Сначала найдите объем, умножив числа, чтобы получить 7500. Теперь умножьте этот ответ на плотность прямоугольной призмы, чтобы получить массу.
Вопрос: Как рассчитать плотность куба?
Ответ: Сначала определите объем куба, отсчитав длину стороны куба.
Затем разделите массу (указанную в вопросе) на объем.
Вопрос: Что такое плотность?
Ответ: Плотность можно вычислить, разделив массу на объем.
Вопрос: Деревянный блок — это прямоугольная призма. Его длина — 8 см, длина одной из двух сторон идеального квадрата — 2 см, масса деревянного блока на электронных весах составляет 150 граммов, какова плотность деревянного блока?
Ответ: Сначала определите объем блока 32 см ^ 3 (8 раз по 2 раза по 2).
Затем разделите 150 на 32, чтобы получить 4,6875 г / см ^ 3.
Как найти площадь треугольника – все способы от самых простых до самых сложных
Зависит от того, какой треугольник.
33 294
Чтобы найти площадь треугольника, надо сначала определить тип треугольника: прямоугольный, равнобедренный, равносторонний. Если он у вас не такой – отталкивайтесь от других данных: высоты, вписанной или описанной окружности, длин сторон. Привожу все формулы ниже.
Если треугольник прямоугольный
То есть один из его углов равен 90 градусам.
Надо перемножить катеты и поделить на два. Катеты – это две меньшие стороны, в сравнении с гипотенузой. Гипотенуза – это самая длинная сторона, она всегда находится напротив угла в 90 градусов.
Если он равнобедренный
То есть у него равны боковые стороны. В таком случае надо провести высоту к основанию (той стороне, которая не равна «бедрам»), перемножить высоту с основанием и поделить результат на два.
Если он равносторонний
То есть все три стороны равны. Ваши действия такие:
- Найдите квадрат стороны – умножьте эту сторону на нее же. Если у вас сторона равна 4, умножьте 4 на 4, будет 16.
- Умножьте полученное значение на корень из 3. Это примерно 1,732050807568877293527.
- Поделите все на 4.
Если известна сторона и высота
Площадь любого треугольника равна половине произведения стороны на высоту, которая к этой стороне проведена. Именно к этой, а не к какой-то другой.
Чтобы провести высоту к стороне, надо найти вершину (угол), которая противоположна этой стороне, а потом опустить из нее на сторону прямую линию под углом в 90 градусов. На картинке высота обозначена синим цветом и буквой h, а линия, на которую она опускается, красным цветом и буквой a.
Если известны две стороны и градус угла между ними
Если вы знаете, чему равны две стороны и угол между ними, то надо найти синус этого угла, умножить его на первую сторону, умножить на вторую и еще умножить на ½:
Если известны длины трех сторон
Делайте так:
- Найдите периметр. Для этого сложите все три стороны.
- Найдите полупериметр – разделите периметр на два. Запомните значение.
- Отнимите от полупериметра длину первой стороны. Запомните.
- Отнимите от полупериметра длину второй стороны. Тоже запомните.
- Отнимите от полупериметра длину третьей стороны. И ее запомните.
- Умножьте полупериметр на каждое из этих чисел (разницу с первой, второй и третьей стороной).
- Найдите квадратный корень.
Эта формула еще называется формулой Герона. Возьмите на заметку, если вдруг учитель спросит.
Если известны три стороны и радиус описанной окружности
Окружность вы можете описать вокруг любого треугольника. Чтобы найти площадь «вписанного» треугольника – того, который «вписался» в окружность, надо перемножить три его стороны и поделить их на четыре радиуса. Смотрите картинку.
Если известны три стороны и радиус вписанной окружности
Если вам удалось вписать в треугольник окружность, значит она обязательно касается каждой из его сторон. Следовательно, расстояние от центра окружности до каждой из сторон треугольника – ее радиус.
Чтобы найти площадь, посчитайте сначала полупериметр – сложите все стороны и поделите на два. А потом умножьте его на радиус.
Это были все способы найти площадь треугольника. Спасибо, что дочитали статью до конца. Лайкните, если не трудно.
( 32 оценки, среднее 4.44 из 5 )
Оцените статью
ЕЖЕНЕДЕЛЬНАЯ РАССЫЛКА
Получайте самые интересные статьи по почте и подписывайтесь на наши социальные сети
ПОДПИСАТЬСЯ
Основные понятия
Треугольник — это геометрическая фигура, которая получилась из трех отрезков. Их соединили тремя точками, не лежащими на одной прямой. Отрезки принято называть сторонами, а точки — вершинами.
Площадь — это численная характеристика, которая дает нам информацию о размере части плоскости, ограниченной замкнутой геометрической фигурой.
Популярные единицы измерения площади:
-
квадратный миллиметр (мм2);
-
квадратный сантиметр (см2);
-
квадратный дециметр (дм2);
-
квадратный метр (м2);
-
квадратный километр (км2);
-
гектар (га).
Получай лайфхаки, статьи, видео и чек-листы по обучению на почту
Реши домашку по математике на 5.
Подробные решения помогут разобраться в самой сложной теме.
Формула площади треугольника
Для решения задач применяются различные формулы, в зависимости от известных исходных данных. Далее мы рассмотрим способы решения для всех типов треугольников, в том числе частные случаи для равносторонних, равнобедренных и прямоугольных фигур.
Быстро вычислить площадь треугольника поможет наш онлайн-калькулятор. Просто введите известные вам значения и получите ответ в метрах, сантиметрах или миллиметрах.
Пройдите тест и узнайте, какие темы отделяют от пятёрки по математике
Добро пожаловать в школу магии.
О нет! Мальчик-молния случайно попал в школьные часы. Теперь они отстают. Мы все можем задержаться в школе
Жми на стрелки сверху, чтобы путешествовать в истории→
Одна ученица когда-то была в школьной кладовке и видела там схему часов
Но в кладовку просто так не попадёшь→
Реши два примера от волшебной статуи на входе в кладовку
frac{1}{7} + frac{3}{7} =
frac{4}{7}
frac{5}{7}
frac{4}{14}
frac{2}{7}
frac{4}{15} — frac{1}{15} =
frac{1}{3}
frac{1}{5}
frac{3}{30}
frac{1}{10}
Схема у нас!
Деталь можно сделать из проволоки и формы для заливки металла. Найди их на картинке
Теперь осталось взять инструменты у садовника! Он обменяет их на волшебные бобы для его сада
Для починки часов нужны: молоток, отвертка и плоскогубцы.
Ты можешь либо одолжить у садовника набор, либо отдельные инструменты, либо и то, и другое. Какое минимальное количество волшебных бобов ты можешь отдать садовнику?
Ответ:
562 боба
400 бобов
553 боба
Деталь имеет форму прямоугольника со сторонами 5 см и 12 см. Найди периметр и площадь детали, чтобы посчитать, сколько проволоки для неё понадобится
Периметр прямоугольника равен
40 см
26 см
22 см
34 см
Площадь прямоугольника равна
50 см^2
46 см^2
60 см^2
62 см^2
Мальчик-молния выплавил деталь, часы должны работать! Но они почему-то не идут… Кажется, одной шестерёнки не хватает — она куда-то упала
В коробке, шкатулке, ящике и банке находятся пыльца, волчий корень, золото и шестерёнка. Шестерёнка и пыльца не в коробке, ёмкость с волчьим корнем стоит между ящиком и ёмкостью с золотом, в банке не волчий корень и не шестерёнка. Шкатулка стоит около банки и ёмкостью с пыльцой. В какой ёмкости что находится?
Соедини ёмкости с содержимым на картинках ниже
Шестерёнка
Золото
Волчий корень
Пыльца
Ура, мы вставили последнюю шестеренку, и часы пошли! Сегодня уроки закончатся вовремя. Спасибо тебе за помощь!
Дальше узнаешь свои результаты →
Формулы площади для любого треугольника
1. Площадь треугольника через основание и высоту
, где
— основание,
— высота.
2. Площадь треугольника через две стороны и угол между ними.
, где
,
— стороны,
— угол между ними.
3. Площадь треугольника через описанную окружность и стороны
, где
,
,
— стороны,
— радиус описанной окружности.
4. Площадь треугольника через вписанную окружность и стороны.
, где
,
,
— стороны,
— радиус вписанной окружности.
, где
— полупериметр.
5. Площадь треугольника по стороне и двум прилежащим углам
, где
— сторона,
и
— прилежащие углы.
6. Формула Герона для вычисления площади треугольника
Сначала необходимо подсчитать разность полупериметра и каждой его стороны. Потом найти произведение полученных чисел, умножить результат на полупериметр и найти корень из полученного числа.
, где
,
,
— стороны,
— полупериметр, который можно найти по формуле:
Для прямоугольного треугольника
Для прямоугольного треугольника чаще всего используют одну формулу — половину произведения катетов. Потому что их всегда можно найти с помощью правил тригонометрии или теоремы Пифагора.
, где
,
— стороны.
Площадь треугольника по гипотенузе и острому углу
, где
— гипотенуза,
— любой из прилегающих острых углов.
Гипотенузой принято называть сторону, которая лежит напротив прямого угла.
Площадь прямоугольного треугольника по катету и прилежащему углу
, где
— катет,
— прилежащий угол.
Катетом принято называть одну из двух сторон, образующих прямой угол.
Площадь треугольника через гипотенузу и радиус вписанной окружности
, где
— гипотенуза,
— радиус вписанной окружности.
Площадь треугольника по отрезкам, на которые делит вписанная окружность его гипотенузу
, где
,
— части гипотенузы.
Площадь прямоугольного треугольника по формуле Герона
, где
,
— катеты,
— полупериметр, который можно найти по формуле:
Для равнобедренного треугольника
Ниже мы покажем разные формулы для площади равнобедренного и равностороннего треугольника, их редко используют, но их легко вывести самому. Попробуйте сделать это самостоятельно.
Вычисление площади через основание и высоту
, где
— основание,
— высота, проведенная к основанию.
Поиск площади через боковые стороны и угол между ними.
, где
— боковая сторона,
— угол между боковыми сторонами.
Площадь равностороннего треугольника через радиус описанной окружности
, где
— радиус описанной окружности.
Площадь равностороннего треугольника через радиус вписанной окружности
, где
— радиус вписанной окружности.
Площадь равностороннего треугольника через сторону
, где
— сторона.
Площадь равностороннего треугольника через высоту
, где
— высота.
Таблица формул нахождения площади треугольника
В задачах встречаются разные фигуры, и кажется, что нужны разные формулы. Но на самом деле, зная всего несколько формул для треугольника и пользуясь теоремами и свойствами геометрии, можно найти площадь любой фигуры.
Скачать таблицу
Но что делать, если нужно решить контрольную по математике или геометрии быстро, а вы плохо знаете конкретную тему? Закажите контрольную по математике онлайн у специалистов, которые помогут быстро выполнить задание и пояснят решение.