Как найти площадь шара описанного пирамидой

Тема: Найти площадь поверхности сферы, описанной вокруг пирамиды, подскажите  (Прочитано 4283 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Боковое ребро правильной пирамиды равно b и наклонено к плоскости основания под углом α. Найти площадь поверхности сферы, описанной вокруг пирамиды.

С чего начинать? Центр сферы лежит на высоте пирамиды и равноудален от вершин. Заранее спасибо.

« Последнее редактирование: 21 Апреля 2010, 08:25:24 от Asix »


Рассмотрите осевое сечение пирамиды и, соответственно сферы. Выполучите равнобедренный треугольник, у которого все практически параметры известны с описанной вокруг него окружностью. Используйте теорему синусов и определите радиус описанной окружности. Ну а дальше арифметика. Удачи)

Пожалуйста не пишите голое условие! Сначало мы выслушаем Ваши мысли или хотябы вопросы, но конкретные и лишь потом дадим необходимые советы!
Но можете всего этого и не делать, если Вас не интересует результат
Если не хотите разбираться сами закажите решение на сайте.


Катет треугольника равен b×sinα  R=b/2  Опять что-то не то!


В данной публикации представлены формулы, с помощью которых можно найти радиус сферы (шара), описанной около правильной пирамиды: треугольной, четырехугольной, шестиугольной и тетраэдра.

  • Формулы расчета радиуса сферы (шара)

    • Правильная треугольная пирамида

    • Правильная четырехугольная пирамида

    • Правильная шестиугольная пирамида

Формулы расчета радиуса сферы (шара)

Приведенная ниже информация применима только к правильным пирамидам. Формула для нахождения радиуса зависит от вида фигуры, рассмотрим самые распространенные варианты.

Правильная треугольная пирамида

Описанная около правильной треугольной пирамиды сфера (шар)

На этом рисунке и чертежах далее:

  • a – ребро основания пирамиды;
  • h – высота фигуры.

Если эти величины даны, вычислить радиус (R) описанной вокруг пирамиды сферы/шара можно по формуле ниже:

Формула расчета радиуса сферы (шара) описанной около правильной треугольной пирамиды

Правильный тетраэдр является разновидностью правильной треугольной пирамиды. Формула для него:

Формула расчета радиуса сферы (шара) описанной около правильного тетраэдра

Правильная четырехугольная пирамида

Описанная около правильной четырехугольной пирамиды сфера (шар)

Радиус (R) описанной сферы/шара вычисляется следующим образом:

Формула расчета радиуса сферы (шара) описанной около правильной четырехугольной пирамиды

Правильная шестиугольная пирамида

Описанная около правильной шестиугольной пирамиды сфера (шар)

Формула для нахождения радиус (R) сферы/шара выглядит так:

Формула расчета радиуса сферы (шара) описанной около правильной шестиугольной пирамиды

Опубликовано 11.06.2017 по предмету Геометрия от Гость
>> <<

Найдите площадь поверхности шара, описанного вокруг правильной треугольной пирамиды если ее высота равна h и образует угол гамма с ее боковым ребром

Ответ оставил Гость

Rшара =(R1²+h²)/2h,R1-радиус окружности описанной около основания,h-высота пирамиды
Рассмотрим прямоугольный треугольник с катетами h и R1,угол между
катетом (высотой)и гипотенузой (боковым ребром ) равен γ
R1=htgγ
R=(h²tg²γ+h²)/2h=h²(tg²γ+1)/2h=h/2*1/cos²γ=h/2cos²γ
S=4πR²
S=4π*h²/4cos^4γ=πh²/cos^4γ

Оцени ответ

Подпишись на наш канал в телеграм. Там мы даём ещё больше полезной информации для школьников!

Чтобы легко справиться с решением задач на шар, вписанный в пирамиду, полезно разобрать небольшой теоретический материал.

Шар вписан в пирамиду (или сфера вписана в пирамиду) — значит, шар (сфера) касаются каждой грани пирамиды. Плоскости, содержащие грани пирамиды, являются касательными плоскостями шара. Отрезки, соединяющие центр шара с точками касания, перпендикуляры к касательным плоскостям. Их длины равны радиусу шара. Центр вписанного в пирамиду шара — точка пересечения бисекторных плоскостей двугранных углов при основании (то есть плоскостей, делящих эти углы пополам).

Чаще всего в задачах речь идет о шаре, вписанном в правильную пирамиду. Шар можно вписать в любую правильную пирамиду. Центр шара в этом случае лежит на высоте пирамиды. При решении задачи удобно провести сечение пирамиды и шара плоскостью, проходящей через апофему и высоту пирамиды.

шар в пирамиде

Если пирамида четырехугольная или шестиугольная, сечение представляет собой равнобедренный треугольник, боковые стороны которого — апофемы, а основание — диаметр вписанной в основание окружности.

шар, вписанный в пирамиду

Если пирамида треугольная или пятиугольная, достаточно рассмотреть лишь часть этого сечения — прямоугольный треугольник, катеты которого — высота пирамиды и радиус вписанной в основание пирамиды окружности, а гипотенуза — апофема.

В любом случае, в итоге приходим к рассмотрению соответствующего прямоугольного треугольника и других связанных с ним треугольников.

сечение комбинации "шар в пирамиде"Итак, в прямоугольном треугольнике SOF катет SO=H — высота пирамиды, катет OF=r — радиус вписанной в основание пирамиды окружности, гипотенуза SF=l — апофема пирамиды. O1- центр шара и, соответственно, окружности, вписанной в треугольник, полученный в сечении (мы рассматриваем его часть). Угол SFO — линейный угол двугранного угла между плоскостью основания и плоскостью боковой грани SBC. Точки K и O — точки касания, следовательно, O1K перпендикулярен SF. OO1=O1K=R — радиусу шара.

Прямоугольные треугольники OO1F и KO1F равны (по катетам и  гипотенузе). Отсюда KF=OF=r.

Прямоугольные треугольники SKO1 и SOF подобны (по острому углу S), откуда следует, что

    [frac{{OF}}{{K{O_1}}} = frac{{SO}}{{SK}}, Rightarrow frac{r}{R} = frac{H}{{l - r}}.]

В треугольнике SOF применим свойство биссектрисы треугольника:

    [frac{{SF}}{{S{O_1}}} = frac{{OF}}{{O{O_1}}}, Rightarrow frac{l}{{H - R}} = frac{r}{R}.]

Из прямоугольного треугольника OO1F

    [tgangle OF{O_1} = frac{{O{O_1}}}{{OF}} = frac{R}{r}.]

При решении задач на шар, вписанный в правильную пирамиду, будет полезным еще одно рассуждение.

    [frac{l}{{H - R}} = frac{r}{R}, Rightarrow Rl = (H - R)r, Rightarrow ]

    [Rl = Hr - Rr, Rightarrow Hr = R(l + r), Rightarrow ]

    [R = frac{{rH}}{{l + r}}.]

Теперь найдем отношение объема пирамиды к площади ее поверхности:

    [frac{V}{{{S_{n.n/}}}} = frac{{frac{1}{3}{S_{ocn}} cdot H}}{{{S_{ocn}} + {S_{bok}}}} = frac{1}{3} cdot frac{{prH}}{{pr + pl}} = ]

    [ = frac{1}{3} cdot frac{{rH}}{{r + l}} = frac{1}{3}R.]

Таким образом, радиус вписанного шара выражается через объем пирамиды и ее полную поверхность:

    [R = frac{{3V}}{{{S_{n.n.}}}}.]

Все эти рассуждения верны не только для правильной пирамиды, но и для пирамиды, основание высоты которой совпадает с центром вписанной в основание окружности (то есть для пирамиды, у которой все двугранные углы при основании равны).

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как составить резюме на специалиста по безопасности
  • Как найти сумму произведение делитель делимое
  • Голден фредди как его найти
  • Как найти саша таня
  • Как найти по фото название розы

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии