Площадь сечения конуса. Для вас представлена очередная статья с конусами. На момент написания этой статьи на блоге решены все примеры (прототипы) заданий с конусами, которые возможны на экзамене. Процесс решения несложен (1-2 действия), при определённой практике решаются устно. Нужно знать понятие образующей, об этом информация в этой статье. Так же необходимо понимать как образуются сечения конуса.
1. Если плоскость проходит через вершину конуса, то сечением является треугольник.
*Если плоскость проходит через ось конуса, то сечением является равнобедренный треугольник, высота которого равна высоте конуса, а основание на которое опущена эта высота равна диаметру основания конуса.
2. Если плоскость проходит перпендикулярно оси конуса, то сечением является круг.
Особенностью данных заданий является то, что применяется формула площади треугольника, здесь она первая. Формулы периодически повторяйте. Рассмотрим задачи:
324453. Площадь основания конуса равна 16Пи, высота равна 6. Найдите площадь осевого сечения конуса.
Осевым сечением конуса является треугольник с основанием равным диаметру основания конуса и высотой равной высоте конуса. Обозначим диаметр как D, высоту как Н, запишем формулу площади треугольника:
Высота известна, вычислим диаметр. Используем формулу площади круга:
Значит диаметр будет равен 8. Вычисляем площадь сечения:
Ответ: 24
324454. Площадь основания конуса равна 18. Плоскость, параллельная плоскости основания конуса, делит его высоту на отрезки длиной 3 и 6, считая от вершины. Найдите площадь сечения конуса этой плоскостью.
Сечением является круг. Необходимо найти площадь этого круга.
Построим осевое сечение:
Рассмотрим треугольники AKL и AOC – они подобны. Известно, что в подобных фигурах отношения соответствующих элементов равны. Мы рассмотрим отношения высот и катетов (радиусов):
OC это радиус основания, его можно найти:
Значит
Теперь можем вычислить площадь сечения:
*Это алгебраический способ вычисления без использования свойства подобных тел, касающегося их площади. Можно было рассудить так:
Два конуса (исходный и отсечённый) подобны, значит пощади их оснований являются подобными фигурами. Для площадей подобных фигур существует зависимость:
Коэффициент подобия в данном случае равен 1/3 (высота исходного конуса равна 9, отсечённого 3), 3/9=1/3.
Таким образом, площадь основания полученного конуса равна:
Ответ: 2
323455. Высота конуса равна 8, а длина образующей — 10. Найдите площадь осевого сечения этого конуса.
Пусть образующая это L, высота это H, радиус основания это R.
Найдём диаметр основания и используя формулу площади треугольника вычислим площадь. По теореме Пифагора:
Вычисляем площадь сечения:
Ответ: 48
Диаметр основания конуса равен 40, а длина образующей — 25. Найдите площадь осевого сечения этого конуса.
Пусть образующая это L, высота это H, радиус основания это R.
Радиус основания равен половине диаметра, то есть 20.
Вычислим высоту и далее используя формулу площади треугольника найдём искомую площадь. По теореме Пифагора:
Вычисляем площадь сечения:
Ответ: 300
На этом всё. Успеха вам!
С уважением, Александр Крутицких.
P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.
§ 18. Конус
18.1.Определение конуса и его элементов
Определение. Тело, которое образуется при вращении прямоугольного треугольника вокруг прямой, содержащей его катет, называется прямым круговым конусом (рис. 165, 166).
Отрезок оси вращения, заключённый внутри конуса, называется осью конуса.
Круг, образованный при вращении второго катета, называется основанием конуса. Длина этого катета называется радиусом основания конуса или, короче, радиусом конуса. Вершина острого угла вращающегося треугольника, лежащая на оси вращения, называется вершиной конуса. На рисунках 165, б и 166 вершиной конуса является точка Р.
Высотой конуса называется отрезок, проведённый из вершины конуса перпендикулярно его основанию. Длину этого перпендикуляра также называют высотой конуса. Высота конуса имеет своим основанием центр круга — основания конуса — и совпадает с осью конуса.
Отрезки, соединяющие вершину конуса с точками окружности его основания, называются образующими конуса. Все образующие конуса равны между собой (почему?).
Как и в случае с цилиндром, можно рассматривать конус в более широком, чем у нас, понимании, когда в основании конуса может быть, например, эллипс (эллиптический конус), парабола (параболический конус). Мы будем изучать только определённый выше прямой круговой конус (конус вращения), поэтому слова «прямой круговой» мы будем опускать.
Рис. 165
Рис. 166
Рис. 167
Поверхность, полученная при вращении гипотенузы, называется боковой поверхностью конуса, а её площадь — площадью боковой поверхности конуса и обозначается Sбок. Боковая поверхность конуса является объединением всех его образующих.
Объединение боковой поверхности конуса и его основания называется полной поверхностью конуса, а её площадь называется площадью полной поверхности конуса или, короче, площадью поверхности конуса и обозначается Sкон. Из этого определения следует, что
Sкон = Sбок + Sосн.
Если вокруг данной прямой — оси — вращать пересекающую её прямую, то при этом вращении образуется поверхность, которую называют круговой конической поверхностью или конической поверхностью вращения. Уравнение +
–
= 0 задаёт коническую поверхность вращения с осью вращения Oz (рис. 167). Из этого уравнения следует, что коническая поверхность является поверхностью второго порядка. (Подробнее о поверхностях второго порядка можно прочитать в «Дополнениях» — в конце этой книги.)
18.2. Сечения конуса
Определение. Сечение конуса плоскостью, проходящей через его ось, называется осевым сечением конуса.
Рис. 168
Рис. 169
Рис. 170
Так как все образующие конуса равны, то его осевым сечением является равнобедренный треугольник, боковыми сторонами которого являются образующие конуса, а основанием — диаметр конуса. При этом все осевые сечения конуса — равные равнобедренные треугольники. На рисунке 168 осевым сечением конуса является треугольник ABP (АР = ВР). Угол АPВ называют углом при вершине осевого сечения конуса.
Конус, в осевом сечении которого правильный треугольник, называется равносторонним конусом.
Если секущая плоскость проходит через вершину конуса, пересекает конус, но не проходит через его ось, то в сечении конуса также получается равнобедренный треугольник (см. рис. 168: △ DCP).
Так как конус — тело вращения, то любое сечение конуса плоскостью, перпендикулярной его оси (т. е. параллельной основанию конуса), есть круг, а сечение боковой поверхности конуса такой плоскостью — окружность этого круга; центром круга (окружности) является точка пересечения оси конуса и секущей плоскости (рис. 169).
Если секущая плоскость не параллельна плоскости основания конуса и не пересекает основание, то сечением боковой поверхности конуса такой плоскостью является эллипс (рис. 170). Поэтому эллипс называют коническим сечением.
Рис. 171
Если сечением цилиндрической поверхности плоскостью может быть либо окружность, либо эллипс, либо две параллельные прямые, то сечением конической поверхности плоскостью может быть либо окружность (секущая плоскость перпендикулярна оси конической поверхности вращения и не проходит через её вершину, рис. 171, a), либо эллипс (секущая плоскость не перпендикулярна оси конической поверхности и пересекает все её образующие, рис. 171, б), либо парабола (секущая плоскость параллельна только одной образующей конической поверхности, рис. 171, в), либо гипербола (секущая плоскость параллельна оси конической поверхности, рис. 171, г), либо пара пересекающихся прямых (секущая плоскость проходит через вершину конической поверхности, рис. 171, д). Поэтому невырожденные кривые второго порядка — окружность, эллипс, параболу и гиперболу называют коническими сечениями или коротко — кониками.
О конических сечениях можно прочитать в очерках «Элементарная геометрия», «Проективная геометрия» в конце этой книги.
ЗАДАЧА (3.047). Высота конуса равна радиусу R его основания. Через вершину конуса проведена плоскость, отсекающая от окружности основания дугу: а) в 60°; б) в 90°. Найти площадь сечения.
Решение. Рассмотрим случай а). Пусть плоскость α пересекает поверхность конуса с вершиной Р по образующим РА и РВ (рис. 172); △ АВР — искомое сечение. Найдём площадь этого сечения.
Хорда АВ окружности основания стягивает дугу в 60°, значит, △ AOB — правильный и АВ = R.
Рис. 172
Если точка С — середина стороны АB, то отрезок PC — высота треугольника АВР. Поэтому S△ ABP = АВ•РC. Имеем: ОР = R (по условию); в △ AOB: ОС =
; в △ ОСР: CP =
=
.
Тогда S△ ABP = АВ•РС =
.
Ответ: а) .
18.3. Касательная плоскость к конусу
Определение. Касательной плоскостью к конусу называется плоскость, проходящая через образующую конуса перпендикулярно осевому сечению, проведённому через эту образующую.
Рис. 173
Говорят, что плоскость α касается конуса по образующей РА (рис. 173): каждая точка образующей РА является точкой касания плоскости α и данного конуса.
Через любую точку боковой поверхности конуса проходит только одна его образующая. Через эту образующую можно провести только одно осевое сечение и только одну плоскость, перпендикулярную плоскости этого осевого сечения. Следовательно, через каждую точку боковой поверхности конуса можно провести лишь одну плоскость, касательную к данному конусу в этой точке.
18.4. Изображение конуса
Рис. 174
Для изображения конуса достаточно построить: 1) эллипс, изображающий окружность основания конуса (рис. 174); 2) центр О этого эллипса; 3) отрезок ОР, изображающий высоту конуса; 4) касательные прямые РА и PB из точки Р к эллипсу (их проводят с помощью линейки на глаз).
Для достижения наглядности изображения невидимые линии изображают штрихами.
Необходимо заметить, что отрезок АВ, соединяющий точки касания образующих и окружности основания конуса, ни в коем случае не является диаметром основания конуса, т. е. этот отрезок не содержит центра О эллипса. Следовательно, △ АBP — не осевое сечение конуса. Осевым сечением конуса является △ ACP, где отрезок AC проходит через точку О, но образующая PC не является касательной к окружности основания.
18.5. Развёртка и площадь поверхности конуса
Пусть l — длина образующей, R — радиус основания конуса с вершиной Р.
Рис. 175
Рис. 176
Поверхность конуса состоит из боковой поверхности конуса и его основания. Если эту поверхность разрезать по одной из образующих, например по образующей PA (рис. 175), и по окружности основания, затем боковую поверхность конуса развернуть на плоскости (рис. 176, a), то получим развёртку поверхности конуса (рис. 176, б), состоящую из: а) кругового сектора, радиус которого равен образующей l конуса, а длина дуги сектора равна длине окружности основания конуса; б) круга, радиус которого равен радиусу R основания конуса. Угол сектора развёртки боковой поверхности конуса называют углом развёртки конуса; его численная величина равна отношению длины окружности основания конуса к его образующей (радиусу сектора развёртки):
α = .
За площадь боковой поверхности конуса принимается площадь её развёртки. Выразим площадь боковой поверхности конуса через длину l его образующей и радиус R основания.
Площадь боковой поверхности — площадь кругового сектора радиуса длины l — вычисляется по формуле
Sбок = α•l2,(1)
где α — величина угла (в радианах) сектора — развёртки. Учитывая, что α = , получаем:
Sбок = πRl.(2)
Таким образом, доказана следующая теорема.
Теорема 27. Площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую. ▼
Площадь полной поверхности конуса равна сумме площадей его боковой поверхности и основания, т. е.
Sкон = πRl + πR2.(3)
Следствие. Пусть конус образован вращением прямоугольного треугольника ABC вокруг катета АС (рис. 177). Тогда Sбок = π•BC•АВ. Если D — середина отрезка АВ, то AB = 2AD, поэтому
Sбок = 2 π ВС•AD.(4)
Рис. 177
Проведём DE ⟂ АB (E ∈ l = AС). Из подобия прямоугольных треугольников ADE и ACB (у них общий угол А) имеем
=
⇒ BC•AD = DE•АС.(5)
Тогда соотношение (4) принимает вид
Sбок = (2π•DE)•AC,(6)
т. е. площадь боковой поверхности конуса равна произведению высоты конуса на длину окружности, радиус которой равен длине серединного перпендикуляра, проведённого из точки на оси конуса к его образующей.
Это следствие будет использовано в п. 19.7.
18.6. Свойства параллельных сечений конуса
Теоремa 28. Если конус пересечён плоскостью, параллельной основанию, то: 1) все образующие и высота конуса делятся этой плоскостью на пропорциональные части; 2) в сечении получается круг; 3) площади сечения и основания относятся, как квадраты их расстояний от вершины.
Рис. 178
Доказательство. 1) Пусть конус с вершиной Р и основанием F пересечён плоскостью α, параллельной плоскости β основания конуса и расположенной между Р и β (рис. 178).
Проведём высоту РО конуса, где точка О — центр круга F. Так как РО ⟂ β, α || β, то α ⟂ РО. Значит, в сечении конуса плоскостью α получается круг с центром в точке O1 = α ∩ РО. Обозначим этот круг F1.
Рассмотрим гомотетию с центром P, при которой плоскость β основания данного конуса отображается на параллельную ей плоскость α (при гомотетии плоскость, не проходящая через центр гомотетии, отображается на параллельную ей плоскость).
Так как при гомотетии её центр является неподвижной точкой, прямая, проходящая через центр гомотетии, отображается на себя, а пересечение двух фигур — на пересечение их образов, то гомотетия отображает основание F конуса на его параллельное сечение — круг F1, при этом центр О основания отображается на центр О1 круга F1 (почему?). Кроме того, если РХ — произвольная образующая конуса, где Х — точка окружности основания, то при гомотетии
точка X отображается на точку X1 = РX ∩ α. Учитывая, что отношение длин гомотетичных отрезков равно коэффициенту гомотетии, получаем:
=
= k,(*)
где k — коэффициент гомотетии , т. е. параллельное сечение конуса делит его образующие и высоту на пропорциональные части.
А поскольку гомотетия является подобием, то круг F1, являющийся параллельным сечением конуса, подобен его основанию.
Вследствие того что отношение площадей гомотетичных фигур равно квадрату коэффициента гомотетии и k = PO1 : РО, где РO1 и PO — расстояния соответственно параллельного сечения и основания пирамиды от её вершины, то
Sсечен : Sоснов = k2 = : PO2.
Теорема доказана. ▼
18.7.Вписанные в конус и описанные около конуса пирамиды
Определение. Пирамида называется вписанной в конус, если у них вершина общая, а основание пирамиды вписано в основание конуса. В этом случае конус называется описанным около пирамиды.
Для построения изображения правильной пирамиды, вписанной в конус:
—строят изображение основания пирамиды — правильного многоугольника, вписанного в основание конуса;
—соединяют отрезками прямых вершину конуса с вершинами построенного многоугольника;
—выделяют видимые и невидимые (штрихами) линии изображаемых фигур.
На рисунках 179—182 изображена вписанная в конус пирамида, в основаниях которой лежит:
—прямоугольный треугольник (см. рис. 179);
—правильный треугольник (см. рис. 180);
—квадрат (см. рис. 181);
—правильный шестиугольник (см. рис. 182).
Рис. 179
Рис. 180
Рис. 181
Рис. 182
Определение. Пирамида называется описанной около конуса, если у них вершина общая, а основание пирамиды описано около основания конуса. В этом случае конус называют вписанным в пирамиду (рис. 183).
Рис. 183
Рис. 184
ЗАДАЧА (3.080). В равносторонний конус вписана правильная пирамида. Найти отношение площадей боковых поверхностей пирамиды и конуса, если пирамида: а) треугольная; б) четырёхугольная; в) шестиугольная.
Решение. Рассмотрим случай а). Пусть R — радиус основания равностороннего конуса, РАВС — правильная пирамида, вписанная в этот конус (рис. 184); △ DPE — осевое сечение конуса, CF — медиана △ АBС. Тогда в △ АВС (правильный): АВ = R, OF =
R; в △ DPE (правильный): ОР =
= R
; в △ ОРF (∠ FOP = 90°):
PF = =
.
Так как CF — медиана △ АВС, то PF — высота равнобедренного треугольника АВР. Поэтому
S△ ABP = AB•PF =
R
•
=
.
Обозначим: S1 — площадь боковой поверхности пирамиды, S2 — площадь боковой поверхности конуса. Тогда
S1 = 3S△ ABP = ,
S
2 = πR•PA = πR•2R = 2πR2.
Следовательно,
S1 : S2 = : 2πR2 =
.
Ответ: а) .
Во многих пособиях по геометрии за площадь боковой поверхности конуса принимают предел последовательности боковых поверхностей правильных вписанных в конус (или описанных около конуса) п-угольных пирамид при n → +∞. Действительно, Sбок. пов. пирам =
•a•Poсн. пирам, где Рoсн. пирам — периметр основания пирамиды, а — апофема боковой грани. Для правильных описанных около конуса пирамид апофема a — постоянная величина, равная образующей l конуса, а предел последовательности периметров правильных многоугольников, описанных около окружности радиуса R основания конуса, равен 2πR — длине этой окружности. Таким образом, мы вновь получаем: Sбок = πRl.
18.8. Усечённый конус
Рис. 185
Пусть дан конус с вершиной Р. Проведём плоскость α, параллельную плоскости основания конуса и пересекающую этот конус (рис. 185). Эта плоскость пересекает данный конус по кругу и разбивает его на два тела: одно из них является конусом, а другое (расположенное между плоскостью основания данного конуса и секущей плоскостью) называют усечённым конусом. Таким образом, усечённый конус представляет собой часть полного конуса, заключённую между его основанием и параллельной ему плоскостью. Основание данного конуса и круг, полученный в сечении этого конуса плоскостью α, называются соответственно нижним и верхним основаниями усечённого конуса. Высотой усечённого конуса называется перпендикуляр, проведённый из какой-либо точки одного основания к плоскости другого. Длину этого перпендикуляра также называют высотой усечённого конуса. (Часто за высоту усечённого конуса принимают отрезок, соединяющий центры его оснований.)
Рис. 186
Рис. 187
Часть боковой поверхности данного конуса, ограничивающая усечённый конус, называется боковой поверхностью усечённого конуса, а отрезки образующих конуса, заключённые между основаниями усечённого конуса, называются образующими усечённого конуса. Так как все образующие данного конуса равны и равны все образующие отсечённого конуса, то равны все образующие усечённого конуса.
Построение изображения усечённого конуса следует начинать с изображения того конуса, из которого получился усечённый конус (рис. 186).
На рисунке 187 показана развёртка усечённого конуса.
Из теоремы 28 следует, что основания усечённого конуса — подобные круги.
Определения усечённой пирамиды, вписанной в усечённый конус и описанной около него, аналогичны определениям пирамиды, вписанной в конус и описанной около него.
Заметим, что построение изображений усечённой пирамиды, вписанной в усечённый конус и описанной около него, следует начинать с изображений того конуса или той пирамиды, из которых получены соответственно усечённые конус и пирамида.
Полной поверхностью усечённого конуса называется объединение боковой поверхности этого конуса и двух его оснований. Иногда полную поверхность усечённого конуса называют его поверхностью, а её площадь — площадью поверхности усечённого конуса. Эта площадь равна сумме площадей боковой поверхности и оснований усечённого конуса.
Усечённый конус может быть образован также вращением прямоугольной трапеции вокруг боковой стороны трапеции, перпендикулярной её основанию.
Рис. 188
На рисунке 188 изображён усечённый конус, образованный вращением прямоугольной трапеции ABCD вокруг стороны CD. При этом боковая поверхность усечённого конуса образована вращением боковой стороны АВ, а основания его — вращением оснований AD и ВС трапеции.
18.9. Поверхность усечённого конуса
Выразим площадь Sбок боковой поверхности усечённого конуса через длину l его образующей и радиусы R и r оснований (R > r).
Рис. 189
Пусть точка Р — вершина конуса, из которого получен усечённый конус; точки О, O1 — центры оснований усечённого конуса; AA1 = l — одна из образующих усечённого конуса (рис. 189).
Используя формулу (2) п. 18.5, получаем
Sбок = πR•PA – πr•РA1 =
= πR(РA1 + А1A) – πr•PA1 =
= πR•A1A + π(R – r)•PA1.
Учитывая, что A1A = l, имеем
Sбок = πRl + π(R – r)PA1.(7)
Выразим PA1 через l, R и r. Так как O1A1 || OA и OO1 — высота усечённого конуса, то прямоугольные треугольники POA и PO1A1 подобны. Поэтому АО : А1O1 = PA : PA1 или
R : r = (PA1 + A1A) : PA1, откуда
R•PA1 = r(PA1 + l) ⇒ (R – r)PA1 = rl ⇒ PA1 = .
Подставив это значение РА1 в (7), получаем
Sбок = π(R + r)l.(8)
Таким образом, доказана следующая теорема.
Теорема 29. Площадь боковой поверхности усечённого конуса равна произведению полусуммы длин окружностей оснований на образующую. ▼
Площадь полной поверхности усечённого конуса находится по формуле:
Sполн = π•(R + r)•l + π•R2 + π•r2.
Следствие. Пусть усечённый конус образован вращением прямоугольной трапеции ABCD вокруг её высоты AD (рис. 190). Тогда Sбок = π (АВ + DC)•ВС. Если KЕ — средняя линия трапеции, то АВ + DC = 2KE, поэтому
Sбок = 2π•KE•BC.(9)
Рис. 190
Проведём EF ⟂ ВС. Из подобия прямоугольных треугольников ВСН и EFK имеем
BC : EF = BH : KE ⇒ ⇒ KE•BC = EF•BH.(10)
Тогда равенство (9) принимает вид
Sбок = (2π•EF)•ВH,(11)
т. е. боковая поверхность усечённого конуса равна произведению его высоты на длину окружности, радиус которой равен серединному перпендикуляру, проведённому из точки оси конуса к его образующей.
18.10. Объёмы конуса и усечённого конуса
Найдём объём конуса, высота которого равна h и радиус основания — R. Для этого расположим этот конус и правильную четырёхугольную пирамиду, высота которой равна h и сторона основания — R, так, чтобы их основания находились на одной и той же плоскости α, а вершины — также в одной и той же плоскости β, параллельной плоскости α и удалённой от неё на расстояние h (рис. 191).
Рис. 191
Каждая плоскость, параллельная данным плоскостям и пересекающая конус, пересекает также пирамиду; причём площади сечений, образованных при пересечении обоих тел, относятся к площадям оснований этих тел, как квадраты их расстояний от вершин. А так как секущие плоскости для пирамиды и для конуса равноудалены от их вершин, то =
. Тогда
=
=
= π, значит, для объёмов этих тел выполняется:
Vкон : Vпир = π : 1 или Vкон : R2•h = π : 1, откуда
Vкон = πR2 •h.
Рис. 192
Самостоятельно рассмотрите усечённые конус и пирамиду, расположенные в соответствии с условиями принципа Кавальери. Тогда вы получите формулу вычисления объёма усечённого конуса:
Vус. кон = π•h•(R2 + r•R + r2).
Эту же формулу вы можете вывести, если используете идею подобия так же, как это сделано в случае с выводом формулы площади боковой поверхности усечённого конуса.
Используя принцип Кавальери, докажите, что объём каждого из тел, на которые конус разбивается его сечением плоскостью, проходящей через вершину (рис. 192), может быть вычислен по формуле V = •h•Scегм, где h — длина высоты конуса, а Sceгм — площадь соответствующего сегмента основания конуса.
На практике часто возникают задачи, которые требуют умения строить сечения геометрических фигур различной формы и находить площади сечений. В данной статье рассмотрим, как строятся важные сечения призмы, пирамиды, конуса и цилиндра, и как рассчитывать их площади.
Объемные фигуры
Из стереометрии известно, что объемная фигура совершенно любого типа ограничена рядом поверхностей. Например, для таких многогранников, как призма и пирамида, этими поверхностями являются многоугольные стороны. Для цилиндра и конуса речь идет уже о поверхностях вращения цилиндрической и конической фигур.
Вам будет интересно:Что значит слыть: толкование, синонимы
Если взять плоскость и пересечь ею произвольным образом поверхность объемной фигуры, то мы получим сечение. Площадь его равна площади части плоскости, которая будет находиться внутри объема фигуры. Минимальное значение этой площади равно нулю, что реализуется, когда плоскость касается фигуры. Например, сечение, которое образовано единственной точкой, получается, если плоскость проходит через вершину пирамиды или конуса. Максимальное значение площади сечения зависит от взаимного расположения фигуры и плоскости, а также от формы и размеров фигуры.
Ниже рассмотрим, как рассчитывать площади образованных сечений для двух фигур вращения (цилиндр и конус) и двух полиэдров (пирамида и призма).
Цилиндр
Круговой цилиндр является фигурой вращения прямоугольника вокруг любой из его сторон. Цилиндр характеризуется двумя линейными параметрами: радиусом основания r и высотой h. Ниже схематически показано, как выглядит круговой прямой цилиндр.
Для этой фигуры существует три важных типа сечения:
- круглое;
- прямоугольное;
- эллиптическое.
Эллиптическое образуется в результате пересечения плоскостью боковой поверхности фигуры под некоторым углом к ее основанию. Круглое является результатом пересечения секущей плоскости боковой поверхности параллельно основанию цилиндра. Наконец, прямоугольное получается, если секущая плоскость будет параллельна оси цилиндра.
Площадь круглого сечения рассчитывается по формуле:
S1 = pi*r2
Площадь осевого сечения, то есть прямоугольного, которое проходит через ось цилиндра, определяется так:
S2 = 2*r*h
Сечения конуса
Конусом является фигура вращения прямоугольного треугольника вокруг одного из катетов. Конус имеет одну вершину и круглое основание. Его параметрами также являются радиус r и высота h. Пример конуса, сделанного из бумаги, показан ниже.
Видов конических сечений существует несколько. Перечислим их:
- круглое;
- эллиптическое;
- параболическое;
- гиперболическое;
- треугольное.
Они сменяют друг друга, если увеличивать угол наклона секущей плоскости относительно круглого основания. Проще всего записать формулы площади сечения круглого и треугольного.
Круглое сечение образуется в результате пересечения конической поверхности плоскостью, которая параллельна основанию. Для его площади справедлива следующая формула:
S1 = pi*r2*z2/h2
Здесь z — это расстояние от вершины фигуры до образованного сечения. Видно, что если z = 0, то плоскость проходит только через вершину, поэтому площадь S1 будет равна нулю. Поскольку z < h, то площадь изучаемого сечения будет всегда меньше ее значения для основания.
Треугольное получается, когда плоскость пересекает фигуру по ее оси вращения. Формой получившегося сечения будет равнобедренный треугольник, сторонами которого являются диаметр основания и две образующие конуса. Как находить площадь сечения треугольного? Ответом на этот вопрос будет следующая формула:
S2 = r*h
Это равенство получается, если применить формулу для площади произвольного треугольника через длину его основания и высоту.
Сечения призмы
Призма — это большой класс фигур, которые характеризуются наличием двух одинаковых параллельных друг другу многоугольных оснований, соединенных параллелограммами. Любое сечение призмы — это многоугольник. В виду разнообразия рассматриваемых фигур (наклонные, прямые, n-угольные, правильные, вогнутые призмы) велико и разнообразие их сечений. Далее рассмотрим лишь некоторые частные случаи.
Если секущая плоскость параллельна основанию, то площадь сечения призмы будет равна площади этого основания.
Если плоскость проходит через геометрические центры двух оснований, то есть является параллельной боковым ребрам фигуры, тогда в сечении образуется параллелограмм. В случае прямых и правильных призм рассматриваемый вид сечения будет представлять собой прямоугольник.
Пирамида
Пирамида — это еще один многогранник, который состоит из n-угольника и n треугольников. Пример треугольной пирамиды показан ниже.
Если сечение проводится параллельной n-угольному основанию плоскостью, то его форма будет в точности равна форме основания. Площадь такого сечения вычисляется по формуле:
S1 = So*(h-z)2/h2
Где z — расстояние от основания до плоскости сечения, So — площадь основания.
Если секущая плоскость содержит вершину пирамиды и пересекает ее основание, то мы получим треугольное сечение. Для вычисления его площади необходимо обратиться к использованию соответствующей формулы для треугольника.
Одной из фигур, которая встречается при решении геометрических задач в пространстве, является конус. Он, в отличие от многогранников, относится к классу фигур вращения. Рассмотрим в статье, что понимают под ним в геометрии, и исследуем характеристики различных сечений конуса.
Конус в геометрии
Предположим, что имеется некоторая кривая на плоскости. Это может быть парабола, окружность, эллипс и так далее. Возьмем точку, которая указанной плоскости не принадлежит, и соединим с ней все точки кривой. Образованная поверхность называется конической или просто конусом.
Если исходная кривая является замкнутой, тогда коническую поверхность можно заполнить веществом. Полученная таким образом фигура является объемным телом. Она также называется конусом. Несколько конусов, изготовленных из бумаги, показаны ниже на рисунке.
Коническая поверхность встречается в обычной жизни. Например, этой формой обладает мороженое-рожок или дорожный полосатый конус, который призван привлечь внимание водителей и пешеходов.
Виды конусов
Как можно догадаться, рассматриваемые фигуры друг от друга отличаются типом кривой, на которой они образованы. Например, существует круглый конус или эллиптический. Данная кривая называется основанием фигуры. Однако форма основания — это не единственная особенность, позволяющая классифицировать конусы.
Второй важной их характеристикой является положение высоты относительно основания. Высотой конуса называется прямой отрезок, который опущен из вершины фигуры к плоскости основания и перпендикулярен этой плоскости. Если высота пересекает в геометрическом центре основание (например, в центре круга), то конус будет прямым, если перпендикулярный отрезок падает в любую другую точку основания или за его пределы, то фигура будет наклонной.
Далее в статье будем рассматривать только круглый прямой конус как яркий представитель рассматриваемого класса фигур.
Геометрические названия элементов конуса
Выше было сказано, что конус имеет основание. Оно ограничено окружностью, которая называется направляющей конуса. Отрезки, соединяющие направляющую с точкой, не лежащей в плоскости основания, называются образующими. Совокупность всех точек образующих называется конической или боковой поверхностью фигуры. Для круглого прямого конуса все образующие имеют одинаковую длину.
Точка, где образующие пересекаются, называется вершиной фигуры. В отличие от многогранников, конус имеет единственную вершину и не имеет ни одной грани.
Прямая линия, проходящая через вершину фигуры и центр круга, называется осью. Ось содержит в себе высоту прямого конуса, поэтому она с плоскостью основания образует прямой угол. Эта информация важна при вычислении площади осевого сечения конуса.
Круглый прямой конус — фигура вращения
Рассматриваемый конус является достаточно симметричной фигурой, которую можно получить в результате вращения треугольника. Предположим, что имеется треугольник с прямым углом. Чтобы получить конус, достаточно вращать этот треугольник вокруг одного из катетов так, как показано на рисунке ниже.
Видно, что ось вращения является осью конуса. Один из катетов будет равен высоте фигуры, а второй катет станет радиусом основания. Гипотенуза треугольника в результате вращения опишет коническую поверхность. Она будет образующей конуса.
Указанный способ получения круглого прямого конуса удобно использовать для изучения математической связи между линейными параметрами фигуры: высоты h, радиуса круглого основания r и направляющей g. Соответствующая формула следует из свойств прямоугольного треугольника. Она приведена ниже:
g2 = h2 + r2.
Поскольку мы имеем одно уравнение и три переменных, то это означает, что для однозначного задания параметров круглого конуса необходимо знать две любые величины.
Сечения конуса плоскостью, которая не содержит вершину фигуры
Вопрос построения сечений фигуры не является тривиальным. Дело в том, что форма сечения конуса поверхностью зависит от взаимного расположения фигуры и секущей.
Предположим, что мы пересекаем конус плоскостью. Какое сечение получится в результате этой геометрической операции? Варианты формы сечения показаны на рисунке ниже.
Розовое сечение является кругом. Оно образовано в результате пересечения фигуры плоскостью, которая параллельна основанию конуса. Это сечения перпендикулярно оси фигуры. Образованная выше секущей плоскости фигура представляет собой конус, подобный исходному, но имеющий круг меньшего размера в основании.
Зеленое сечение — это эллипс. Он получается, если секущая плоскость не параллельна основанию, однако она пересекает только боковую поверхность конуса. Отсеченная выше плоскости фигура называется эллиптическим наклонным конусом.
Синее и оранжевое сечения имеют форму параболы и гиперболы, соответственно. Как видно из рисунка, они получаются, если секущая плоскость одновременно пересекает боковую поверхность и основание фигуры.
Для определения площадей сечений конуса, которые были рассмотрены, необходимо использовать формулы для соответствующей фигуры на плоскости. Например, для круга это умноженное на квадрат радиуса число Пи, а для эллипса — это произведение Пи на длину малой и большой полуосей:
круг: S = pi*r2;
эллипс: S = pi*a*b .
Сечения, содержащие вершину конуса
Теперь рассмотрим варианты сечений, которые возникают, если секущая плоскость будет проходить через вершину конуса. Возможны три случая:
- Сечение — единственная точка. Например, проходящая через вершину и параллельная основанию плоскость дает именно такое сечение.
- Сечение — прямая. Эта ситуация возникает, когда плоскость является касательной к конической поверхности. Прямая сечения в этом случае будет образующей конуса.
- Осевое сечение. Оно образуется, когда плоскость содержит не только вершину фигуры, но и всю ее ось. При этом плоскость будет перпендикулярна круглому основанию и разделит конус на две равные части.
Очевидно, что площади первых двух видов сечений равны нулю. Что касается площади сечения конуса для 3-го вида, то этот вопрос подробнее рассматривается в следующем пункте.
Осевое сечение
Выше отмечалось, что осевым сечением конуса называется фигура, образованная при пересечении конуса плоскостью, проходящей через его ось. Несложно догадаться, что это сечение будет представлять фигуру, показанную на рисунке ниже.
Это равнобедренный треугольник. Вершина осевого сечения конуса — это вершина этого треугольника, образованная пересечением одинаковых сторон. Последние равны длине образующей конуса. Основание треугольника — это диаметр основания конуса.
Вычисление площади осевого сечения конуса сводится к нахождению площади полученного треугольника. Если изначально известны радиус основания r и высота h конуса, тогда площадь S рассматриваемого сечения будет равна:
S = h*r.
Это выражение является следствием применения стандартной формулы для площади треугольника (половина произведения высоты на основание).
Отметим, что если образующая конуса будет равна диаметру его круглого основания, то осевое сечение конуса — треугольник равносторонний.
Треугольное сечение образуется тогда, когда секущая плоскость перпендикулярна основанию конуса и проходит через его ось. Любая другая плоскость, параллельная названной, даст в сечении гиперболу. Однако если плоскость содержит вершину конуса и пересекает его основание не через диаметр, то полученное сечение тоже будет равнобедренным треугольником.
Задача на определение линейных параметров конуса
Покажем, как пользоваться записанной для площади осевого сечения формулой для решения геометрической задачи.
Известно, что площадь осевого сечения конуса равна 100 см2. Полученный в сечение треугольник является равносторонним. Чему равны высота конуса и радиус его основания?
Поскольку треугольник равносторонний, то его высота h связана с длиной стороны a следующим соотношением:
h = √3/2*a.
Учитывая, что сторона треугольника в два раза больше радиуса основания конуса, и подставляя это выражение в формулу для площади сечения, получаем:
S = h*r = √3/2*2*r*r =>
r = √(S/√3).
Тогда высота конуса равна:
h = √3/2*2*r = √3*√(S/√3) = √(√3*S).
Остается подставить значение площади из условия задачи и получить ответ:
r = √(100/√3) ≈ 7,60 см;
h = √(√3*100) ≈ 13,16 см.
В каких областях важно знать параметры рассмотренных сечений?
Изучение различных типов сечений конуса представляет не только теоретический интерес, но также имеет практическое приложение.
Во-первых, следует отметить область аэродинамики, где с помощью конических сечений удается создавать идеальные гладкие формы твердых тел.
Во-вторых, конические сечения являются траекториями, по которым движутся космические объекты в гравитационных полях. Какой конкретно вид сечения представляет траектория движения космических тел системы, определяется соотношением их масс, абсолютных скоростей и расстояний между ними.
Содержание:
Великий греческий ученый Архимед был очень взволнован, когда он обнаружил, что отношение площади поверхности шара и описанного около него цилиндра и отношение их объемов равно 2:3. Великий математик, физик, инженер, Архимед, среди всех своих работ самой значимой считал именно эту. Он завещал на своей могильной плите выгравировать доказательство данной теоремы. Из истории известно, что долгое время его родной город Сиракузы, располагающийся на Сицилии, противостоял римлянам именно благодаря оружию, которое изобрел Архимед. Поэтому при взятии города римский военачальники приказал сохранить ученому жизнь. Но римский воин, который не знал Архимеда в лицо, убил его. Великий философ и писатель Цицерон потратил много времени, чтобы отыскать могилу Архимеда (по историческим сведениям он нашел ее через 137 лет). Это дело Цицерона стало идеей для работ многих художников.
Определение фигур вращения
Гончарное ремесло позволяет создавать керамическую посуду из глины. Форму глиняной лепешке придают вращением вокруг оси. Затем полученную форму обжигают. Это ремесло живо и по сей день. В различных районах Азербайджана есть ремесленники, которые изготавливают керамическую посуду. Исследуйте принцип работы по которому кусок глины приобретает какую-либо форму.
Плоские фигуры (плоская часть ограниченная кривой), совершая один полный оборот вокруг определенной оси, образуют пространственные фигуры. Эта ось называется осью вращении.
Цилиндр, конус и сфера являются простыми пространственными фигурами, полученными при вращении.
Например, при вращении прямоугольного треугольника вокруг одного из катетов получается конус, при вращении прямоугольника вокруг стороны образуется цилиндр, а при вращении полукруга вокруг диаметра — шар.
Цилиндр
Наглядно образование фигур вращения можно увидеть на примере вращающихся стеклянных дверей, которые мы часто видим в общественных зданиях, отелях и больницах. Прямоугольный слой двери, прикрепленный к неподвижной стойке, при вращении очерчивает цилиндр.
Цилиндром называется пространственная фигура, образованная двумя параллельными и конгруэнтными плоскими фигурами, которые совпадают при параллельном переносе, и отрезками, соединяющими соответствующие точки данных фигур. Плоские фигуры называются основаниями цилиндра, отрезки, соединяющие соответствующие точки основания называются образующими цилиндра. Если образующая перпендикулярна основанию, то цилиндр называется прямым, иначе — наклонным. Расстояние между основаниями называется высотой цилиндра.
На рисунках ниже изображены прямые и наклонные цилиндрические фигуры.
Сравнивая рисунки, изображенные ниже, можно сделать вывод, что призму можно рассматривать как частный случай цилиндра.
Прямой цилиндр, в основании которого лежит круг, называют прямым круговым цилиндром.
Далее, говоря о цилиндре, мы будем иметь в виду прямой круговой цилиндр. В любом другом случае будут отмечены его особенности.
Прямой круговой цилиндр также можно рассматривать как фигуру, полученную вращением прямоугольника вокруг одной из его сторон. Высота прямого кругового цилиндра равна его образующей. Радиусом цилиндра называется радиус круга в основании.
Вращая прямоугольник вокруг любой стороны, можно получить цилиндр, высота которого равна стороне прямоугольника.
Прямая, проходящая через центры оснований прямого кругового цилиндра называется осью цилиндра.
Площадь поверхности цилиндра
Площадь боковой и полной поверхностей цилиндра.
Изобразите на листе бумаги рисунки разверток цилиндров различных размеров, вырежьте и склейте цилиндры.
Мустафа красит стену цилиндрической кистью. Чтобы подсчитать время, потраченное на покраску, он захотел узнать, какую площадь покрывает кисть при одном полном обороте? Какие советы вы могли бы дать мальчику?
Так как кисть имеет цилиндрическую форму, то за один полный оборот кисть покрывает площадь в форме прямоугольника, равную боковой поверхности цилиндра.
Полная поверхность цилиндра находится но формуле схожей с формулой полной поверхности призмы. Полная поверхность цилиндра состоит из боковой поверхности и двух конгруэнтных кругов.
Боковую поверхность цилиндра с высотой и радиусом
можно рассматривать как свернутый вокруг окружности прямоугольник со сторонами
и
Боковая поверхность цилиндра равна произведению длины окружности основания и высоты.
Площадь полной поверхности цилиндра равна сумме площади боковой поверхности и площадей оснований
Пример №1
Найдите площадь полной поверхности цилиндра выстой 12 см и радиусом 5 см.
Решение:
Пример №2
По данным рисунка, найдите площадь боковой поверхности прямого цилиндра, основанием которой являются полукруг.
Решение:
Пример №3
По данным на рисунке найдите площадь полной поверхности прямого цилиндра, основанием которой является круговой сектор с углом 40°.
Решение: известно, что
По формуле площади сектора:
Боковая поверхность фигуры равна части боковой поверхности цилиндра с радиусом 9 см и высотой 20 см плюс площадь двух конгруэнтных прямоугольников размерами
Таким образом,
Конус
Конусом называется пространственная фигура, образованная всеми отрезками, соединяющими какую-либо плоскую фигуру с точкой, не принадлежащей данной плоскости. Плоскую фигуру называют основанием конуса, а точку —вершиной конуса.
Перпендикуляр, проведенный из вершины конуса на плоскость его основания, называется высотой конуса. Конус, в основании которого лежит круг, называется круговым конусом. Если ортогональная проекция вершины конуса лежит в центре основания, то конус называется прямым круговым конусом. Отрезок, соединяющий вершину конуса с любой точкой окружности основания кругового конуса, называется образующей конуса. В дальнейшем, говоря о конусе, будем иметь ввиду прямой круговой конус.
Конус можно рассматривать как фигуру, образованную вращением прямоугольного треугольника вокруг одного из катетов.
Прямая, выходящая из вершины конуса и проходящая через центр основания, называется осью конуса, радиус основания называется радиусом конуса. Для образующей, высоты и радиуса конуса справедливо отношение (по теореме Пифагора)
Сооружение конуса
Известно, что при сворачивании прямоугольника можно получить цилиндр. Скручивая круговой сектор можно соорудить конус.
Радиус сектора равен образующей конуса, а длина дуги сектора равна длине окружности основания.
Боковая поверхность конуса, полная поверхность конуса
Поверхность конуса состоит из боковой поверхности и круга в основании. На рисунке показаны радиус основания и образующая
Боковая поверхность конуса — круговой сектор с радиусом и соответствующим центральным углом
Значит, площадь сектора и есть площадь боковой поверхности.
Значит, сектор составляет часть окружности.
* Зная, что площадь круга тогда
часть площади круга будет
Значит,
Боковая поверхность конуса равна произведению половины длины окружности основания и образующей.
* Площадь полной поверхности конуса
Пример №4
По рисунку найдите площадь боковой и полной поверхностей конуса.
Решение: Дано:
Найти: и
и
Чтобы найти образующую применим теорему Пифагора
Сечения цилиндра и конуса плоскостью
Сечения поверхности конуса плоскостью (теория конических сечений) считались одной из вершин античной геометрии. Исследования Аполлония (3-й в.до н.э.) показали, что сечением плоскостью конуса, с бесконечной образующей (лучом) является: эллине (плоскость пересекает все образующие), парабола (плоскость сечения параллельна одной из образующих) или ветвь гиперболы (плоскость сечения параллельна двум образующим).
Сечения цилиндра плоскостью
Сечением цилиндра плоскостью, параллельной основанию, является круг. Сечение цилиндра плоскостью, проходящей через ось симметрии, называется осевым сечением. Осевое сечение цилиндра является прямоугольником со сторонами и
Значит,
Цилиндр, осевое сечение которого является квадратом
называется равносторонним цилиндром.
Сечения конуса плоскостью
Сечением конуса плоскостью, параллельной основанию, является круг. Сечение конуса, проходящее через ось конуса называется осевым сечением конуса. Это сечение является равнобедренным треугольником, боковые стороны которого являются образующими, а основание равно диаметру конуса: Если осевое сечение конуса является правильным треугольником
то конус называется равносторонним конусом.
Пример №5
Сечением цилиндра плоскостью, проведенного параллельно оси цилиндра на расстоянии 3 см от оси, является квадрат, площадь которого равна 64 Найдите площадь полной поверхности цилиндра.
Решение: сначала найдем радиус и высоту цилиндра. По условию и
Отсюда
значит
Из
отсюда
Таким образом,
Усеченный конус и площадь поверхности
Усеченный конус
Если параллельно основанию прямого кругового конуса провести плоскость, то получим маленький конус и усеченный конус.
Усеченным конусом называется часть конуса, заключенная между основанием и секущей плоскостью, параллельной основанию.
Боковая поверхность усеченного конуса равна разности боковых поверхностей большого конуса и маленького конуса, отсеченного плоскостью, параллельной основанию, от большого конуса. Используя обозначения на рисунке, можно записать:
Из подобия треугольников запишем следующее отношение
Тогда, подставив или
в формулу для нахождения боковой поверхности, получим:
В данной формуле введем обозначение среднего радиуса
усеченного конуса. Тогда
Полная поверхность усеченного конуса равна сумме боковой поверхности и площадей нижнего и верхнего оснований.
Пример №6
Конус высотой 8 см и радиусом 6 см рассечен плоскостью, параллельной основанию. Высота полученного усеченного конуса равна 4 см. Найдите площади боковой и полной поверхностей усеченного конуса
Решение: дано:
Найти:
Площадь поверхности шара и его частей
Шаром называется множество всех точек пространства находящихся от данной точки на расстоянии, не больше данного. Данная точка называется центром шара, данное расстояние радиусом шара.
Множество всех точек, расположенных на расстоянии от центра шара, образует поверхность шара. Поверхность шара называется сферой. Прямая, соединяющая любые две точки на поверхности шара, называется хордой
Хорда, проходящая через центр шара называется диаметром шара
Шар получается, при вращении полукруга вокруг диаметра.
Любое сечение шара плоскостью является кругом. Центр этого круга является основанием перпендикуляра, проведенного к плоскости и проходящего через центр шара. Если
— радиус шара,
— расстояние между плоскостью и центром, а
— радиус сечения, то получим:
Пример №7
Шар радиуса 10 см пересечена плоскостью на расстояние
8 см от центра. Вычислите площадь сечения.
Решение: По условию
Тогда
Сечение шара плоскостью, проходящей через центр шара, называется
большим кругом. Центр, радиус и диаметр большого круга равны
центру, радиусу и диаметру шара.
Также для шара известны следующие части:
Площадь поверхности шара
Площадь поверхности шара находится по формуле Здесь
радиус шара.
В окружность радиусом впишем правильный многоугольник. Поверхность шара, полученного при вращении относительно диаметра соответствующих кругов, можно рассматривать как сумму пределов боковых поверхностей фигур — конуса,усеченного конуса и цилиндра, образующие которых являются сторонами данного многоугольника.
Покажем, что при вращении сторон многоугольника вокруг оси получается тело (конус, усеченный конус, цилиндр), площадь боковой поверхности которого равна площади боковой поверхности цилиндра, высота которого равна высоте данного тела, радиус основания равен апофеме многоугольника. Обозначим апофему многоугольника через
— площадь боковой поверхности конуса с образующей
Так как
то
Умножим на 2 обе части равенства
Учитывая, что
получим
Значит,
— площадь боковой поверхности усеченного конуса.
Зная, что получим, что
Так как то
Умножим на 2 обе части равенства Учитывая,что
и
получим
Значит,
Понятно, что площадь боковой поверхности цилиндра с образующей равна
Аналогично получаем, что площадь боковых поверхностей усеченного конуса с образующей
и конуса с образующей
можно найти но формулам
Таким образом, поверхность тела, полученного вращением многоугольника вокруг диаметра, равна :
При бесконечном увеличении количества сторон многоугольника значение
стремится к радиусу, а площадь поверхности полученного тела к площади
поверхности шара, т. е.
Площадь поверхности шара
Доказательство Архимеда:
Пусть, в правильный многоугольник вписан круг, как показано на рисунке.
При вращении получается шар и покрывающее шар тело
Это тело состоит из двух усеченных конусов и цилиндра.
При увеличении количества сторон до бесконечности, тело будет стремится принять форму шара.
Найдя сумму поверхностей усеченных конусов и цилиндра, можно найти площадь поверхности шара. Рассмотрим осевое сечение одного из усеченных конусов. Пусть радиус средней окружности равен а высота
радиус шара
сторона многоугольника, описанного вокруг большего круга равна
Площадь боковой поверхности усеченного конуса будет
а также
т. е. боковая поверхность усеченного конуса равна боковой поверхности цилиндра, радиус основания которого равен
и высота
Значит, фигуру, описанную вокруг шара, можно принять за цилиндр. Отсюда получается, что площадь поверхности шара равна площади боковой поверхности цилиндра с радиусом основания и высотой
Т. е.,
Площадь сегмента шара
Часть шара, отсекаемая плоскостью сечения называется сегментом. Круг, полученный при сечении плоскостью, называется основанием сегмента. Часть диаметра шара, перпендикулярного основанию сегмента, расположенная внутри него, называется высотой сегмента.
Из доказательства формулы поверхности шара, аналогично, можно показать, что для шара радиуса площадь сферической поверхности сегмента высотой
вычисляется по формуле
Площадь шарового пояса
Часть поверхности шара, расположенная между двумя параллельными плоскостями, называется шаровым поясом. Расстояние между параллельными плоскостями называется высотой шарового пояса.
Площадь поверхности шарового пояса можно найти, как разность площадей сегментов, отсекаемых параллельными плоскостями.
Площадь поверхности шарового пояса высотой отсекаемого от шара радиуса
вычисляется по формуле
Пример №8
Радиус шара разбит на три равные части и через эти точки проведены перпендикулярные к радиусу плоскости. Зная, что радиус шара найдите площадь поверхности шарового пояса.
Решение: если и
то площадь поверхности шарового пояса будет
Площади поверхностей подобных фигур
Отношение соответствующих линейных размеров подобных пространственных фигур постоянно и равно коэффициенту подобия.
Например, чтобы проверить подобны ли конусы на рисунке, найдем отношение соответствующих размеров. Если эти конусы подобны, то отношение радиусов должно быть равно отношению высот.
Значит эти конусы подобны и коэффициент подобия равен 2. Это говорит о том, что если все линейные размеры маленького конуса пропорционально увеличить в два раза, то получим конус, конгруэнтный большому конусу. Или наоборот, пропорционально уменьшив размеры большого конуса в два раза, получим конус, конгруэнтный маленькому. Если пропорционально увеличить или уменьшить размеры какой-либо фигуры, то можно получить подобные фигуры.
Отношение площадей подобных фигур равно квадрату отношения соответствующих линейных размеров или квадрату коэффициента подобия
- Объем фигур вращения
- Длина дуги кривой
- Геометрические фигуры и их свойства
- Основные фигуры геометрии и их расположение в пространстве
- Вписанные и описанные многоугольники
- Площадь прямоугольника
- Объем пространственных фигур
- Объёмы поверхностей геометрических тел