Если
плоская фигура ограничена прямыми
и
кривыми,
причем,,
то её площадь вычисляется по формуле
.
В
отдельных случаях левая граница
(или
правая граница)
может выродиться в точку пересечения
кривыхи
.
В этих случаях величиныи
отыскиваются
как абсциссы точек пересечения указанных
кривых (см.рис.4.1.)
Если
граница фигуры задана параметрическими
уравнениями,
то площадь фигуры вычисляется по одной
из трёх формул:
,
где
и
—
значения параметра,соответствующие
началу и концу обхода контура в
положительном направлении (при котором
фигура остается слева).
В
полярных координатах площадь сектора,
ограниченного дугой кривой
и
лучамии
,
выражается
формулой
.
Пример.
Вычислить
площадь фигуры, ограниченной прямыми
,
и кривыми
,
.
Решение.
Так
как максимум функции
достигается
в точке
и равен 1, а функция
на отрезке
,
то (см. рис. 4.2.)
.
Пример.
Вычислить
площадь фигуры, ограниченной параболами
,
.
Решение.
Решая систему
уравнений
найдем
ординаты точек пересечения кривых,
.
Так
как
при
,то
.
Пример.
Вычислить
площадь фигуры, ограниченной эллипсом
Решение.
Здесь удобно
вычислить сначала
.
Отсюда
.
Пример.
Найти
площадь фигуры,
ограниченной
одним лепестком кривой
(лемниската).
Решение.
Правая
часть уравнения кривой неотрицательна
при значениях
,
для которых.
Поэтому первый
лепесток лежит в угловом секторе, в
котором
,т.е.
.
Следовательно,
.
2. Вычисление длин дуг плоских кривых
Если
плоская кривая задана уравнением в
декартовых координатах
и производная
непрерывна,
то длина дуги этой кривой вычисляется
по формуле
,
где
и
-абсциссы
концов данной дуги.
Если
кривая задана уравнениями в параметрической
форме,
и производные
и
непрерывны
на отрезке,
то длина
дуги кривой выражается формулой
,
где
и
— значения параметра
,
соответствующие
концам дуги
.
Если
кривая задана уравнением
в
полярных координатах, то длина дугикривой выражается интегралом
,
где
и
— значения полярного угла
в
концах дуги.
Пример.
Вычислить
длину дуги полукубической параболы
,
заключенной
между точками
и
.
Решение.
Функция
определена
при.
Поскольку данные точки
и
лежат в первой четверти, то
.
Отсюда
,
.
Следовательно,
.
Пример.
Вычислить длину
дуги развертки круга
от
до
.
Решение.
Дифференцируя
по,
получим
,
откуда
.
Следовательно,
.
Пример.
Найти
длину первого витка архимедовой спирали.
Решение.
Первый
виток архимедовой спирали образуется
при изменении полярного угла от
до
.
Поэтому
.
Вычислим
первообразную для функции
методом интегрирования по частям:
.
Откуда
,
,
и, следовательно,
.
3. Вычисление объемов тел
Объем тела выражается
интегралом
,
где
—
площадь сечения тела плоскостью,
перпендикулярной к осив точке с абсциссой
.
и
— левая и правая границы изменения
,
непрерывна
при.
Объем
тела, образованного вращением вокруг
оси
криволинейной трапеции, ограниченной
кривой,
осью абсцисс и прямыми,
,
выражается
интегралом
.
Объем
тела, образованного вращением вокруг
оси
фигуры,
ограниченной кривымии
и прямыми
и
,
выражается формулой
.
Если
кривая задана параметрически или в
полярных координатах, то следует сделать
соответствующую замену переменной в
указанных формулах.
Пример.
Найти объем
эллипсоида
.
Решение.
Сечение
эллипсоида плоскостью
есть
эллипс
с
полуосями
и
.
Следовательно
площадь сечения
Поэтому объем
эллипсоида
.
Положив,
в частности,,получим
объем шара
.
Пример.
Вычислить
вокруг оси абсцисс объем тела, которое
образуется при вращении одной арки
циклоиды
вокруг
оси абсцисс.
делаем замену
переменной, полагая
.
|
|
0 |
0 |
|
|
.
Контрольная
работа №4 по теме
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Почему бы просто не считать клеточки?
Возможно, вы читаете всё это и думаете: зачем все эти сложности? Формулы запоминать. Дорисовывать. Тут ведь сразу видно, сколько клеточек в фигуре.
Вот, например, трапеция:
Посчитаем клеточки: их всего 46, верно?
Но стоп, там же некоторые из них только наполовину внутри фигуры. Отметим их – всего таких 10. Итого, 36 полных (красные точки) и 10 половинчатых, вместе ( 36+frac{10}{2} = 41)
Вроде бы всё верно. Но, если присмотреться, можно заметить ещё маленькие треугольнички, которые попали внутрь. А также, что «синие» клеточки слева на самом деле разрезаны не ровно пополам – какие-то чуть больше, какие-то меньше…
Как всё это учитывать?
Попробуем рассуждать так: заметно, что тот маленький розовый треугольник дополняет серый кусок клетки.
А жёлтые сколько занимают? Постарайтесь ответить сами.
Если всё сделать правильно, то увидите, что жёлтые кусочки можно сложить вместе в одну целую клетку.
Итак, 2 жёлтых куска = 1 клетка.
Розовый треугольник + серый кусок = 1 клетка. Всего у нас две таких пары (розовый+серый) – это 2 полных клетки.
Всё остальное как было: 36 полных клеток и 6 половинок у правой стороны – это ( 36+frac{6}{2}=39) клетки.
Итого клеток: ( 1 + 2 + 39 = 42).
Проверим результат по формуле площади трапеции: нижнее основание 11, верхнее основание 3, высота 6. Полусумма оснований равна 7, умножаем на высоту – получилось 42. Всё совпало.
Но! Настолько ли проще был наш способ подсчёта клеточек? Не сказал бы. А если там будет несколько косых линий, то вообще можно замучиться собирать этот паззл (искать, какие кусочки друг друга дополняют).
Вычислите площадь простых фигур тремя способами
Стороны клеток равны 1. Вычислите самостоятельно площадь фигуры всеми тремя способами. Сравните результаты.
Вычислите площадь произвольных фигур по формуле Пика
Вычислите самостоятельно площади фигур с помощью формулы Пика:
Посчитайте площадь корабля и котика по формуле Пика
Посчитайте самостоятельно для тренировки и чтобы запомнить формулу Пика!
Фигуры с отверстиями — посчитайте площади двумя способами
Ну и напоследок фигуры с «дырками». Как думаешь, здесь придётся вычислять сначала площадь целой фигуры, а потом площадь дырки?
Или достаточно просто посчитать точки внутри закрашенной области и на её границах (в том числе, на границе с дыркой)?
Проверим на простом примере: это квадрат ( 4times 4), и в нём вырезан прямоугольник ( 1times 2), значит, его площадь ( 16-2=14).
А теперь по точкам. На границах (включая внутренние) ( Г = 22). Внутри ( В = 3). Тогда площадь по формуле Пика
( S = frac{22}{2} + 3 -1 = 13.)
Хм, близко, но не совпало. Может, я где-то ошибся? Давай ещё одну фигуру, для верности.
Сосчитай сам и проверь.
Что получилось?
У меня снова на 1 меньше.
Так может быть просто формулу немного «подкрутить»? Нет!
Очень и очень не рекомендую вам запоминать несколько похожих формул для похожих случаев, потому что придёт время, и вы обязательно перепутаете формулу.
Даже если вы уверены, что не перепутаете, оно всё равно того не стоит. В общем, наилучший вариант – это запомнить одну формулу. А если попалась фигура с дыркой, вычислить всю фигуру, а потом дырку. И вычесть.
Площадь поверхности пирамиды
Для пирамиды тоже действует общее правило:
Площадь полной поверхности пирамиды – это сумма площадей всех граней.( displaystyle {{S}_{полн. пов. }}={{S}_{боков.пов. }}+{{S}_{основания }})
Теперь давай посчитаем площадь поверхности самых популярных пирамид.
Площадь поверхности правильной треугольной пирамиды
Пусть сторона основания равна ( displaystyle a), а боковое ребро равно ( displaystyle b). Нужно найти ( displaystyle {{S}_{осн}}) и ( displaystyle {{S}_{ASB}}).
И тогда
( displaystyle {{S}_{полн. пов. }}=3{{text{S}}_{ASB}}+{{text{S}}_{text{осн}.}})
Вспомним теперь, что
( displaystyle {{S}_{осн}}) — это площадь правильного треугольника ( displaystyle ABC).
И еще вспомним, как искать эту площадь.
Используем формулу площади:
( displaystyle S=frac{1}{2}abcdot sin gamma ).
У нас «( displaystyle a)» — это ( displaystyle a), а «( displaystyle b)» — это тоже ( displaystyle a), а ( displaystyle sin gamma =sin 60{}^circ =frac{sqrt{3}}{2}).
Значит, ( displaystyle {{S}_{ABC}}=frac{1}{2}{{a}^{2}}frac{sqrt{3}}{2}=frac{{{a}^{2}}sqrt{3}}{4}).
Теперь найдем ( displaystyle {{S}_{Delta ASB}}).
Пользуясь основной формулой площади и теоремой Пифагора, находим
( displaystyle {{S}_{Delta ASB}} = frac{1}{2}asqrt{b^2-frac{a^2}{4}})
Внимание: если у тебя правильный тетраэдр (т.е. ( displaystyle b=a)), то формула получается такой:
( displaystyle S={{a}^{2}}sqrt{3}).
Содержание:
1. Модуль
1: Основные формулы площадей.
2. Модуль
2: Методы нахождения площадей.
3. Модуль
3: Задачи с решением.
4. Модуль
4: Задачи для закрепления.
5. Модуль
5: Задачи для самостоятельной работы и зачета.
Модуль
1. Теоретическая часть
1.1.Основные
определения и формулы для площадей фигур.
Прямоугольник.
Прямоугольником
называется четырехугольник, у которого все углы равны. Все углы в
прямоугольнике прямые, т.е. составляют 90°.Площадь прямоугольника равна
произведению его сторон .
Квадрат.
Квадратом
называется параллелограмм с
прямыми углами и равными сторонами. Квадрат есть частный вид прямоугольника, а
также частный вид ромба. См. также площадь ромба.
Площадь квадрата равна квадрату длины его стороны. Или половине квадрата
диагонали.
;
Трапеция.
Трапецией называется
четырехугольник, у которого две стороны параллельны, а две другие не
параллельны. Площадь трапеции равна произведению полусуммы ее
оснований на высоту.
Площадь трапеции равна произведению её средней
линии на высоту.
Параллелограмм.
Параллелограммом называется
четырехугольник, у которого противоположные стороны попарно
параллельны. Площадь параллелограмма равна произведению его
основания на высоту.
Площадь параллелограмма равна произведению двух соседних его
сторон на синус угла между ними.
Правильный многоугольник.
Для
того чтобы вычислить площадь правильного многоугольника его разбивают
на равные треугольники с общей вершиной в центре вписанной окружности. А
площадь правильного многоугольника равна произведению его полупериметра
на радиус вписанной окружности правильного
многоугольника.
Выпуклый четырёхугольник.
Площадь выпуклого четырёхугольника равна половине произведения
его диагоналей на синус угла между ними.
Площадь четырёхугольника, вписанного в окружность, равна корню
квадратному из произведения разностей полупериметра этого четырёхугольника и
всех его сторон
Ромб.
Ромбом называется параллелограмм с
равными сторонами. Квадрат есть частный вид ромба. У квадрата диагонали равны.
См. также площадь квадрата. Площадь
ромба равна половине произведения его диагоналей.
Площадь ромба равна произведению
квадрата его стороны на синус одного из его углов.
Сектор.
Сектор
круга, окружности — это часть круга, окружности ограниченная
дугой и двумя радиусами, проведенными к концам дуги. Площадь сектора
круга равна произведению половины длины дуги
сектора на радиус круга.
Площадь кругового сектора равна произведению площади единичного
сектора (сектор, соответствующий центральному углу с мерой равной единице) на
меру центрального угла, соответствующего данному сектору ( формулы для случаев градусной и радианной мер центральных
углов).
Окружность.
Окружность есть
геометрическое место точек плоскости, равноудаленных от одной ее точки. Равные
отрезки, соединяющие центр с точками окружности, называются радиусами. Круг
есть часть плоскости, лежащая внутри окружности. Площадь круга равна
произведению полуокружности на радиус.
Площадь
сегмента круга, окружности.
Сегмент круга, окружности — это
часть круга, окружности,
ограниченная дугой и стягивающей ее хордой.
Площадь сегмента круга, окружности
находится, как разность площади сектора и площади равнобедренного треугольника выраженную через угол.
Площадь кольца.
Площадь
кольца через радиусы находится как произведение числаπ на разность
квадратов внешнего и внутреннего радиусов кольца.
Площадь кольца через
диаметры находится как произведение одной четвертой числа π на
разность квадратов внешнего и внутреннего диаметров кольца.
Площадь кругового кольца равна удвоенному произведению числа
«пи», среднего радиуса кольца и его ширины.
Площадь сектора кольца.
Сектор
кольца — это часть круга, окружности ограниченная дугами разных радиусов и
двумя линиями радиусами, проведенными к концам дуги большего радиуса.
Площадь сектора кольца вычисляется
как разность площадей большего и меньшего секторов круга.
Площадь сектора кольца если угол в
градусах, вычисляется как произведение числа π на отношение угла
сектора к углу полной окружности 360° и на разность квадратов большего и
меньшего радиусов.
Площадь треугольника.
Треугольник образуется
соединением отрезками трех точек, не лежащих на одной прямой. При этом точки
называются вершинами треугольника, а отрезки — его сторонами. Площадь
треугольника равна произведению половины основания треугольника на его
высоту.
Площадь треугольника по формуле
Герона равна корню из произведения разностей полупериметра треугольника
(p) и каждой из его сторон.
Если
известно две стороны треугольника и угол
между ними, то площадь данного треугольника вычисляется, как половина
произведения этих сторон умноженная на синус угла между ними.
Если
один из углов прямой, то треугольник — прямоугольный. Площадь прямоугольного
треугольника равна половине произведения катетов треугольника.
Площадь равнобедренного треугольника
вычисляется по классической формуле площади
треугольника — произведение половины
основания треугольника на его высоту. Высоту мы подставим в эту формулу
из формулы высоты равнобедренного
треугольника.
Площадь
равностороннего треугольника вычисляется по классической формуле площади
треугольника — произведение половины
основания треугольника на его высоту. Высоту мы подставим в эту формулу
из формулы высоты равностороннего
треугольника
Площадь треугольника равна отношению произведения
квадрата его стороны на синусы прилежащих углов к удвоенному синусу
противолежащего угла.
Площадь треугольника равна отношению произведения
квадрата его высоты на синус угла, из вершины которого проведена эта высота, к
удвоенному произведению синусов двух других углов.
Площадь треугольника равна произведению квадрата
его полупериметра на тангенсы половин всех углов треугольника.
Площадь
треугольника равна отношению произведения всех его сторон к четырём радиусам,
описанной около него окружности.
Площадь треугольника равна удвоенному
произведению квадрата радиуса, описанной около него окружности, и синусов всех
его углов.
Площадь треугольника (многоугольника) равна
произведению его полупериметра и радиуса окружности, вписанной в этот
треугольник (многоугольник).
Площадь треугольника равна произведению квадрата
радиуса вписанной окружности на котангенсы половин всех углов треугольника.
Шар и сфера.
Шаровой,
или сферической поверхностью (иногда просто сферой) называется геометрическое
место точек пространства, равноудаленных от одной точки — центра шара. Площадь
поверхности сферы равна учетверенной площади большого круга:
Куб.
Прямоугольный параллелепипед,
все грани которого — квадраты, называется кубом. Все ребра куба равны,
а площадь поверхности куба равна сумме площадей шести его граней, т.е.площади квадрата со
стороной H умноженной на шесть. Площадь поверхности куба равна.
Конус.
Круглый конус может
быть получен вращением прямоугольного треугольника вокруг
одного из его катетов, поэтому круглый конус называют также конусом вращения.
Боковая площадь поверхности круглого
конуса равна произведению половины окружности основания на образующую.
Цилиндр.
Цилиндрической
поверхностью называется поверхность, образуемая прямой, сохраняющей одно и тоже
направление и пересекающей направляющую линию. Цилиндр —
круговой если в основании его лежит круг. Площадь боковой поверхности круглого
цилиндра равна произведению длины окружности основания
на высоту.
Прямоугольный параллелепипед.
Параллелепипедом
называется призма, основание которой параллелограмм. Параллелепипед
имеет шесть граней, и все они — параллелограммы. Параллелепипед, четыре боковые
грани которого — прямоугольники, называется прямым. Прямой параллелепипед у
которого все шесть граней прямоугольники, называется
прямоугольным. Площадь поверхности прямоугольного
параллелепипеда равна удвоенной сумме площадей трех граней этого
параллелепипеда.
Усеченный конус.
Усеченный
конус получится, если в конусе провести сечение, параллельное основанию.
Тело ограниченное этим сечением, основанием и боковой поверхностью конуса
называется усеченным конусом. Боковая площадь поверхности усеченного
конуса вычисляется по формуле.
Шаровой сегмент.
Часть
шара, осекаемая от него какой-нибудь плоскостью, называется шаровым или
сферическим сегментом. Основанием шарового сегмента называется круг ABCD.
Высотой шарового сегмента называется отрезок NM, т.е. длина перпендикуляра,
восстановленного из центра N основания до пересечения с поверхностью
шара. Точка M называется вершиной шарового сегмента. Площадь
поверхности шарового сегмента равняется произведению его высоты на
окружность большого круга шара.
Шаровой
слой.
Шаровой слой — это часть шара,
заключенная между двумя секущими параллельными плоскостями. Шаровой пояс или Шаровая
зона — это кривая поверхность шарового слоя. Круги ABC и DEF это основания
шарового пояса. Расстояние между основаниями это высота шарового слоя. Кривая
поверхность шарового слоя равна произведению его высоты на окружность
большого круга шара.
Шаровой сектор.
Шаровой
сектор — это часть шара, ограниченная кривой поверхностью шарового
сегмента и конической поверхностью основанием которой служит основание
сегмента, а вершиной — центр шара. Поверхность шарового сектора складывается из
кривых поверхностей шарового сегмента и конуса. Зная радиус основания сегмента
и конуса r при помощи теоремы Пифагора и прямоугольного треугольника
получим высоты сегмента и конуса:
1.2.Справочные
таблицы «Площади плоских фигур, площади поверхности и объема тел вращения»
Модуль
2. Методы нахождения площади плоских фигур.
Рассмотрим несколько способов нахождения
площади плоских фигур:
·
формула Пика,
·
метод обводки.
1.1
Формула Пика.
Формула, при помощи которой можно находить площадь фигуры
построенной на листе в клетку (треугольник, квадрат, трапеция, прямоугольник,
многоугольник). Об этой формуле обычно рассказывается применительно к
нахождению площади треугольника. На примере треугольника мы её и рассмотрим.
Площадь искомой фигуры можно найти по формуле:
М – количество узлов на границе треугольника (на сторонах и
вершинах)
N – количество узлов внутри треугольника
*Под «узлами» имеется ввиду пересечение линий.
Найдём
площадь треугольника: Отметим узлы:
1 клетка = 1 см
M = 15 (обозначены красным)
N = 34 (обозначены синим)
Пример 1. Найдём площадь параллелограмма:
Отметим узлы:
M = 18 (обозначены красным)
N = 20 (обозначены синим)
Пример 2. Найдём площадь трапеции: Отметим
узлы:
M = 24 (обозначены красным)
N = 25 (обозначены синим)
Пример 3. Найдём площадь многоугольника:
Отметим узлы:
M = 14 (обозначены красным)
N = 43 (обозначены синим)
Понятно, что находить площадь трапеции, параллелограмма,
треугольника проще и быстрее по соответствующим формулам площадей этих фигур.
Но знайте, что можно это делать и таким образом. А вот когда дан многоугольник, у которого пять и более углов эта
формула работает хорошо.
Теперь взгляните на следующие фигуры:
Это типовые фигуры, в заданиях стоит вопрос о нахождении их
площади. При помощи формулы Пика такие задачи решаются за минуту. Например,
найдём площадь фигуры:
M = 11 (обозначены красным)
N = 5 (обозначены синим)
Ответ: 9,5
1.2 Метод обводки.
- Достроить
искомую фигуру до прямоугольника. - Найти
площадь всех получившихся дополнительных фигур и площадь самого
прямоугольника. - Из
площади прямоугольника вычесть сумму площадей всех лишних фигур.
Бывает,
что не так-то просто рассчитать, сколько клеток в нужном отрезке. Вот смотри, треугольник:
Вроде бы даже прямоугольный и S=12⋅abS=21⋅ab, но чему
тут равно aa, и чему
равно bb? Как узнать?
Применим для полной ясности оба способа
I способ.
Найдем по
теореме Пифагора из ΔADC а по
теореме Пифагора из ΔBCE.
На листе в клетку легко посчитать длину катетов.
Итак:
Значит,
Теперь
Значит,
Подставляем в формулу:
Значит,
II способ
Нужно окружить нашу фигуру прямоугольником. Вот
так:
Получился
один (нужный) треугольник внутри и три ненужных треугольника снаружи. Но
площади этих ненужных треугольников легко считаются на листе в клетку. Посчитаем
их, а потом просто вычтем из целого прямоугольника.
Итак,
Почему же этот способ лучше? Потому что он работает
и для любых фигур. К примеру, нужно посчитать площадь такой фигуры:
Окружаем
ее прямоугольником и снова получаем одну нужную, но сложную площадь и много
ненужных, но простых.
А теперь чтобы найти
площадь просто находим площадь прямоугольника и вычитаем из него оставшуюся
площадь фигур на клетчатой бумаге.
Значит,
Вот и ответ:
Модуль
3: Задачи с решением.
1. Найдите площадь четырёхугольника, изображённого
на клетчатой бумаге
с размером клетки 1 см * 1 см. Ответ
дайте в квадратных сантиметрах.
Решение:
Разобьём четырёхугольник
диагональю РС на два треугольника. Диагональ эта хороша тем, что идёт под
углом 45° к горизонту. Проведём через точки А и В прямые, параллельные диагонали.
Если на верхней прямой взять любую точку Т, то площадь треугольника РТС окажется равной площади треугольника РАС, т.к. основание РС у них общее,
а высоты, проведённые к РС, равны. Такие же рассуждения
о точке К.
Таким образом, если удачно разместить точки Т и К, как на рисунке
выше, то
SACBP = SPAC + SPBC = SPTC + SPKC = STKP = 0,5·6·3 = 9
Ответ: 9
Возможны и другие варианты
расположения точек Т и
К:
2. Найдите
площадь фигуры, изображенной на рисунке, считая стороны квадратных клеток
равными единице.
Решение:
Отрежем у данной фигуры все полукруглые части (выпуклости),
которые выходят за рамки квадрата 4·4, и аккуратно упакуем их
на свободные в квадрате места.
Площадь данной причудливой фигуры просто равна площади квадрата 4·4 =
16.
Ответ: 16
3.
Найдите площадь четырехугольника, изображенного на клетчатой
бумаге с размером клетки 1 см * 1 см. Ответ дайте в квадратных сантиметрах.
Решение:
Опишем около неё прямоугольник.
Из площади прямоугольника (в данном случае это квадрат) вычтем
площади полученных простых фигур:
Ответ: 4,5
4. Найдите
площадь треугольника, изображенного на клетчатой бумаге с размером клетки
1см×1см. Ответ дайте в квадратных сантиметрах.
5. Найдите
площадь треугольника, изображенного на клетчатой бумаге с размером клетки
1см×1см. Ответ дайте в квадратных сантиметрах.
6. На
клетчатой бумаге нарисован круг площадью 93. Найдите площадь заштрихованного
сектора.
7. На
клетчатой бумаге нарисованы два круга. Площадь внутреннего круга равна 9.
Найдите площадь заштрихованной фигуры.
8. Найдите
(в см2) площадь S
фигуры, изображенной на клетчатой бумаге с размером
клетки 1см×1см. В ответе запишите S/π.
9. Найдите
площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки
1см×1см. Ответ дайте в квадратных сантиметрах.
Модуль
4. Задачи для закрепления.
1.
Найдите площадь треугольника ABC,
считая стороны квадратных клеток равными 1.
2.
Найдите площадь треугольника ABC,
считая стороны квадратных клеток равными 1.
3.
Найдите площадь прямоугольника ABCD,
считая стороны квадратных клеток равными 1.
4.
Найдите площадь ромба ABCD,
считая стороны квадратных клеток равными 1.
5.
Найдите площадь трапеции ABCD,
считая стороны квадратных клеток равными 1.
6.
Найдите площадь трапеции ABCD,
считая стороны квадратных клеток равными 1.
7.
Найдите площадь четырехугольника ABCD,
считая стороны квадратных клеток равными 1.
8.
Найдите площадь четырехугольника ABCD,
считая стороны квадратных клеток равными 1.
9.
Найдите площадь S сектора,
считая стороны квадратных клеток равными 1. В ответе укажите .
10.
Найдите площадь S кольца,
считая стороны квадратных клеток равными 1. В ответе укажите .
11. Найдите площадь треугольника, вершины которого имеют
координаты (1, 1), (4,4), (5, 1).
12.
Найдите площадь четырехугольника, вершины которого имеют координаты (1, 0), (0,
2), (4, 4), (5, 2).
13. Найдите площадь S круга,
изображенного на рисунке. В ответе укажите . Размер каждой клетки 1
см ×1 см. Ответ дайте в квадратных сантиметрах.
14. Найдите площадь S круга,
описанного около прямоугольника ABCD. Размер каждой клетки на чертеже
равен 1см *1см. В ответе укажите (в кв. см).
15. В ромб ABCD, площадь которого
равна , вписан круг. Найдите
площадь круга, если размер каждой клетки на чертеже равен 1см *1см.
16.Найдите площадь S круга,
описанного около прямоугольника ABCD. Размер каждой клетки на чертеже
равен 1см *1см. В ответе укажите (в кв. см).
17. Найдите площадь круга, описанного
около прямоугольного треугольника АВС. Размер каждой клетки на чертеже
равен 1см *1см. В ответе укажите ( в кв. см).
18. Найдите площадь круга, описанного
около прямоугольного треугольника АВС. Размер каждой клетки на чертеже
равен 1см*1см. В ответе укажите (в кв. см).
19. Найдите площадь S круга,
описанного около четырехугольника, изображенного на рисунке. В ответе укажите . Размер каждой клетки 1
см × 1 см. Ответ дайте в сантиметрах.
20. Найдите площадь S круга,
описанного около четырехугольника, изображенного на рисунке. В ответе укажите . Размер каждой клетки 1
см × 1 см. Ответ дайте в сантиметрах.
21. Найдите площадь S круга,
изображенного на рисунке. В ответе укажите . Размер каждой клетки 1
см ×1 см. Ответ дайте в квадратных сантиметрах.
22. Найдите площадь S сектора. В
ответе укажите . Размер каждой клетки 1
см ×1 см. Ответ дайте в квадратных сантиметрах.
23. Найдите площадь S заштрихованной
части кругового сектора АОВ. Размер каждой клетки на чертеже равен 1см *1см.
В ответе укажите (в кв. см).
24.Найдите площадь круга, описанного около
прямоугольника АВСD. Размер каждой клетки на чертеже равен 1см 1см.
В ответе укажите (в кв. см).
25. Два одинаковых круга касаются друг
друга и сторон прямоугольника ABCD. Найдите площадь одного круга, если площадь
прямоугольника равна .
26. Две одинаковых окружности касаются
друг друга и сторон прямоугольника ABCD. Найдите периметр прямоугольника, если
длина каждой окружности равна 3,6
27. Диаметр полукруга совпадает со
стороной прямоугольника ABCD, а 3 другие стороны прямоугольника касаются
полукруга. Найдите длину полуокружности, если периметр прямоугольника равен .
Модуль
5. Задачи для самостоятельных и зачетных работ.
1. На клетчатой
бумаге с клетками размером 1 см 1 см
изображена фигура (см. рисунок). Найдите ее площадь в квадратных
сантиметрах.
2. Найдите площадь квадрата ABCD, считая стороны квадратных
клеток равными 1.
3. Найдите площадь квадрата, вершины которого
имеют координаты (4;3), (10;3), (10;9), (4;9).
4. Во сколько раз площадь квадрата, описанного
около окружности, больше площади квадрата, вписанного в эту окружность?
5. В прямоугольнике расстояние от точки пересечения
диагоналей до меньшей стороны на 1 больше, чем расстояние от нее до
большей стороны. Периметр прямоугольника равен 28. Найдите меньшую
сторону прямоугольника.
6. На клетчатой бумаге с клетками размером 1
см 1 см изображен параллелограмм (см. рисунок).
Найдите его площадь в квадратных сантиметрах.
7. Найдите площадь параллелограмма, изображенного
на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных
сантиметрах.
8. Найдите площадь четырехугольника, изображенного
на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных
сантиметрах.
9. Найдите периметр четырехугольника , если стороны квадратных клеток равны
.
10. На клетчатой бумаге с клетками размером 1
см 1 см изображена трапеция (см. рисунок).
Найдите ее площадь в квадратных сантиметрах.
11. На клетчатой бумаге с клетками размером 1
см 1 см изображена трапеция (см. рисунок).
Найдите ее площадь в квадратных сантиметрах.
12. Найдите площадь трапеции, вершины которой
имеют координаты (1;1), (10;1), (8;6), (5;6).
13. Найдите высоту трапеции , опущенную из вершины
, если стороны квадратных клеток равны
.
14. На клетчатой бумаге с клетками размером
1 см 1 см изображена фигура (см. рисунок).
Найдите ее площадь в квадратных сантиметрах.
15.
Найдите площадь четырехугольника,
вершины которого имеют координаты (8;0), (10;8), (2;10), (0;2).
16. Найдите площадь четырехугольника, изображенного
на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных
сантиметрах.
17. Найдите
площадь четырехугольника, изображенного на клетчатой бумаге с размером
клетки 1 см 1
см (см. рис.). Ответ дайте в квадратных сантиметрах.
18. Найдите площадь четырехугольника, изображенного
на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
19.
Найдите площадь четырехугольника, изображенного на
клетчатой бумаге с размером клетки 1 см 1
см (см. рис.). Ответ дайте в квадратных сантиметрах.
20. Найдите площадь четырехугольника, изображенного
на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах
21. На клетчатой бумаге с размером клетки 1×1 изображён
треугольник. Найдите радиус описаной около него окружности.
22. На клетчатой бумаге нарисованы два круга. Площадь
внутреннего круга равна 11. Найдите площадь заштрихованной фигуры.
23.
Найдите площадь четырехугольника, вершины
которого имеют координаты (1;7), (8;2), (8;4), (1;9).
24. Найдите площадь закрашенной фигуры на координатной
плоскости.
25. Точки O(0;
0), A(10; 0), B(8; 6), C(2; 6) являются вершинами
трапеции. Найдите длину ее средней линии DE.
26. Найдите (в см2) площадь S закрашенной фигуры,
изображенной на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). В ответе запишите
.
27. Найдите площадь сектора круга радиуса , центральный угол которого равен 90°
28. . Найдите
центральный угол сектора круга радиуса , площадь которого равна
. Ответ дайте в градусах.
29. На клетчатой бумаге нарисовано два круга. Площадь
внутреннего круга равна 1. Найдите площадь заштрихованной фигуры.
30. На клетчатой бумаге нарисовано два круга. Площадь
внутреннего круга равна 9. Найдите площадь заштрихованной фигуры.
Зачет
№1
Найдите площадь окрашенной фигуры,
изображенной на чертеже. Размер каждой клетки равен 1см *1см.
Ответ дайте в квадратных сантиметрах.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
№2
Найдите площадь окрашенной фигуры,
изображенной на чертеже. Размер каждой клетки равен 1см *1см.
Ответ дайте в квадратных сантиметрах.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
№3
В детском саду дети делали аппликации
родителям в подарок. Найдите площадь аппликации (окрашенной фигуры),
изображенной на чертеже. Размер каждой клетки равен 1см*1см.
Ответ дайте в квадратных сантиметрах.
1.
2.
3.
4.
5.
№4 В детском саду дети делали фото- рамки
родителям в подарок. Найдите площадь фото-рамки (окрашенной фигуры),
изображенной на чертеже. Размер каждой клетки равен 1см *1см.
Ответ дайте в квадратных сантиметрах.
6.
7.
8.
9.
10
ПЛОЩАДИ ПЛОСКИХ ФИГУР
Способы нахождения площади фигур на клетчатой бумаге:
Способ 1. Считай клетки и применяй формулы
Удобен для стандартных фигур: треугольника, трапеции и т.д.
- Подсчитывая клеточки и применяя простые теоремы, найти те стороны, высоту, диагонали, которые требуются для применения формулы площади;
- Подставить найденные значения в уравнение площади.
Способ 2. Дострой до прямоугольника и вычти лишнее
Очень удобен для сложных фигур, но и для простых неплох
- Достроить искомую фигуру до прямоугольника;
- Найти площадь всех получившихся дополнительных фигур и площадь самого прямоугольника;
- Из площади прямоугольника вычесть сумму площадей всех лишних фигур.
Способ 3. Формула Пика
Работает только для многоугольников без дырок, все вершины которых попадают в узлы сетки.
- Назовём «узлами» точки пересечения линий сетки нашей клетчатой бумаги.
Подсчитаем, сколько узлов попадает в нашу фигуру. Причём, отдельно посчитаем те узлы, которые попадают внутрь нашей фигуры, и отдельно – те, которые лежат на границе.
В примере на рисунке получилось ( Г = 22) на границе и ( В = 32) внутри.
Формула Пика. Делим границу пополам, прибавляем внутренности и вычитаем 1:( S = Г/2 + В – 1 )
В примере на рисунке:
Тающий лёд
Формула Пика известна с XIX века, и с тех пор у неё появилось много доказательств, но большинство из них не такие уж простые. Мы обсудим предложенный в 1997 году швейцарским математиком Кристианом Блаттером мысленный эксперимент с тающим льдом, который сразу объясняет формулу Пика.
Поставим на каждый узел сетки по одинаковому цилиндрическому столбику изо льда. Каждый столбик очень тонкий (пересекается только с теми сторонами многоугольника, которые проходят через центр столбика) и весит 1 грамм.
Построим вокруг каждого столбика забор в виде единичного квадратика, после чего растопим весь лёд (во всех квадратиках вода растекается одинаково и симметрично относительно центра своего квадратика). Вся клетчатая плоскость будет равномерно залита водой, и в каждой ячейке площади 1 будет по 1 грамму воды. То есть количество воды в нашем многоугольнике (в граммах) будет равно его площади (в клетках).
С другой стороны, задумаемся, откуда эта вода попала в наш многоугольник. Посмотрим на какую-нибудь конкретную сторону многоугольника. Если через неё внутрь многоугольника втекла вода из какого-то столбика, то точно столько же воды из симметричного столбика (симметричного относительно середины этой стороны) через неё из многоугольника вытекло.
То есть внутри многоугольника ровно столько воды, сколько в нём было льда! А сколько в нём было льда? Каждый из узлов сетки внутри многоугольника даёт вклад 1 грамм, общий вес получается i граммов. Узлы на сторонах обычно дают по 1 2 грамма, но только если это не вершина, для вершины этот вес меньше — так что и общий вес узлов на границе получается не b 2 граммов, а меньше.
Насколько меньше? Продлим немного каждую сторону, обходя многоугольник вдоль сторон по часовой стрелке. На рисунке ниже красная часть дополняет каждую из синих частей до половины круга. Но красные части в сумме дают ровно один круг! Ведь, обходя многоугольник по контуру, мы в каждой вершине поворачиваемся на угол, соответствующий красной части, пока не вернёмся в исходную точку, сделав как раз полный оборот.
То есть суммарный вес льда внутри многоугольника равен i + b 2 − 1 , и мы получили формулу Пика!
Упражнение
В рассуждении выше мы рисовали выпуклый многоугольник. А изменится ли что-то, если многоугольник станет невыпуклым? А если рассматривать «многоугольники с дырками»?
Художник Мария Усеинова
Видео
Площадь сложных фигур Памятки по математике Памятки ученикам
Площадь всей фигуры равна сумме площадей её частей.
Задача: найти площадь огородного участка.
Так как фигура на рисунке не является ни квадратом, ни прямоугольником, рассчитать её площадь можно используя правило выше.
Разделим фигуру на два прямоугольника, чьи площади мы можем легко рассчитать по известной формуле.
ABCEEFKL2CDEFCDEF2
Чтобы найти площадь всей фигуры, сложим площади найденных прямоугольников.
ABCEEFKL2
Ответ: S = 65 м2 — площадь огородного участка.
Свойство ниже может вам пригодиться при решении задач на площадь.
Диагональ прямоугольника делит прямоугольник на два равных треугольника.
Площадь любого из этих треугольников равна половине площади прямоугольника.
Рассмотрим прямоугольник:
АС — диагональ прямоугольника ABCD. Найдём площадь треугольников ABC и ACD.
Вначале найдём площадь прямоугольника по формуле.
ABCDABCD2
S ABC = SABCD : 2
S ABC = 20 : 2 = 10 см2
S ABC = S ACD = 10 см2.
No related posts.
Бонус: Вебинар из нашего курса по подготовке к ЕГЭ по математике
Этот вебинар посвящен заданию №3 из ЕГЭ на нахождение площади фигур, длин отрезков и т.д на клетчатой бумаге.
И хотя эту задачу убрали из ЕГЭ в 2021 году, сам навык очень полезен для того, чтобы начать учить геометрию, для понимания планиметрии!
Ну и просто этот вебинар легкий и классный! Послушайте его и получите удовольствие!
Теги
Задачка это школьная, но, несмотря на то, почти 100% встретится в вашем курсе высшей математики. Поэтому со всей серьёзностью отнесёмся ко ВСЕМ примерам, и первое, что нужно сделать – это ознакомиться с Приложением Графики функций, чтобы освежить в памяти технику построения элементарных графиков. …Есть? Отлично! Типовая формулировка задания звучит так:
Пример 10
Вычислить площадь фигуры, ограниченной линиями .
И первый важнейший этап решения состоит как раз в построении чертежа. При этом я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потом – параболы, гиперболы, графики других функций.
В нашей задаче: прямая определяет ось
, прямые
параллельны оси
и парабола
симметрична относительно оси
, для неё находим несколько опорных точек:
Искомую фигуру желательно штриховать:
Второй этап состоит в том, чтобы правильно составить и правильно вычислить определённый интеграл. На отрезке график функции
расположен над осью
, поэтому искомая площадь:
Ответ:
После того, как задание выполнено, полезно взглянуть на чертёж
и прикинуть, реалистичный ли получился ответ.
И мы «на глазок» подсчитываем количество заштрихованных клеточек – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получилось, скажем, 20 квадратных единиц, то, очевидно, где-то допущена ошибка – в построенную фигуру 20 клеток явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.
Пример 11
Вычислить площадь фигуры, ограниченной линиями и осью
Быстренько разминаемся (обязательно!) и рассматриваем «зеркальную» ситуацию – когда криволинейная трапеция расположена под осью :
Пример 12
Вычислить площадь фигуры, ограниченной линиями ,
и координатными осями.
Решение: найдём несколько опорных точек для построения экспоненты:
и выполним чертёж, получая фигуру площадью около двух клеток:
Если криволинейная трапеция расположена не выше оси , то её площадь можно найти по формуле:
.
В данном случае:
Ответ: – ну что же, очень и очень похоже на правду.
На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому от простейших школьных задачек мы переходим к более содержательным примерам:
Пример 13
Найти площадь плоской фигуры, ограниченной линиями ,
.
Решение: сначала нужно выполнить чертеж, при этом нас особо интересуют точки пересечения параболы и прямой
, поскольку здесь будут находиться пределы интегрирования. Найти их можно двумя способами. Первый способ – аналитический. Составим и решим уравнение:
таким образом:
Достоинство аналитического способа состоит в его точности, а недостаток – в длительности (и в этом примере нам ещё повезло). Поэтому во многих задачах бывает выгоднее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой».
С прямой всё понятно, а вот для построения параболы удобно найти её вершину, для этого возьмём производную и приравняем её к нулю:
– именно в этой точке и будет находиться вершина. И, в силу симметрии параболы, остальные опорные точки найдём по принципу «влево-вправо»:
Выполним чертеж:
А теперь рабочая формула: если на отрезке некоторая непрерывная функция
больше либо равна непрерывной функции
, то площадь фигуры, ограниченной графиками этих функций и отрезками прямых
, можно найти по формуле:
Здесь уже не надо думать, где расположена фигура – над осью или под осью, а, грубо говоря, важно, какой из двух графиков ВЫШЕ.
В нашем примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из
нужно вычесть
Завершение решения может выглядеть так:
На отрезке :
, по соответствующей формуле:
Ответ:
Следует отметить, что простые формулы, рассмотренные в начале параграфа – это частные случаи формулы . Поскольку ось
задаётся уравнением
, то одна из функций будет нулевой, и в зависимости от того, выше или ниже лежит криволинейная трапеция, мы получим формулу
либо
А сейчас пара типовых задач для самостоятельного решения
Пример 14
Найти площадь фигур, ограниченных линиями:
а) ,
.
б) ,
,
Решение с чертежами и краткими комментариями в конце книги
В ходе решения рассматриваемой задачи иногда случается забавный казус. Чертеж выполнен правильно, интеграл решён правильно, но по невнимательности… найдена площадь не той фигуры, именно так несколько раз ошибался ваш покорный слуга. Вот реальный случай из жизни:
Пример 15
Вычислить площадь фигуры, ограниченной линиями
Решение: выполним бесхитростный чертёж,
хитрость которого состоит в том, что искомая площадь заштрихована зелёным цветом (внимательно смотрИте на условие – чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована серым цветом! Особое коварство состоит в том, что прямую можно недочертить до оси
, и тогда мы вовсе не увидим нужную фигуру.
Этот пример ещё и полезен тем, что в нём площадь фигуры считается с помощью двух определённых интегралов. Действительно:
1) на отрезке над осью
расположен график прямой
;
2) на отрезке над осью
расположен график гиперболы
.
Совершенно понятно, что площади можно (и нужно) сложить:
Ответ:
И познавательный пример для самостоятельного решения:
Пример 16
Вычислить площадь фигуры, ограниченной линиями ,
,
и координатными осями.
Итак, систематизируем важные моменты этой задачи:
На первом шаге ВНИМАТЕЛЬНО изучаем условие – КАКИЕ функции нам даны? Ошибки бывают даже здесь, в частности, арккотангенс зачастую принимают за арктангенс. Это, кстати, относится и к другим заданием, где встречается арккотангенс.
Далее следует ПРАВИЛЬНО выполнить чертёж. Сначала лучше построить прямые (если они есть), затем графики других функций (если они есть J). Последние во многих случаях выгоднее строить поточечно – найти несколько опорных точек и аккуратно соединить их линией.
Но здесь могут подстерегать следующие трудности. Во-первых, из чертежа не всегда понятны пределы интегрирования – так бывает, когда они дробные. На mathprofi.ru в соответствующей статье я рассмотрел пример с параболой и прямой
, где из чертежа не понятна одна из точек их пересечения. В таких случаях следует использовать аналитический метод, составляем уравнение:
и находим его корни:
– нижний предел интегрирования,
– верхний предел.
Во-вторых, не всегда понятен «внешний вид» линии, и функция (Пример 16) – яркий тому пример. Я и сам «с ходу» не представляю, как выглядит график этой функции. Здесь можно воспользоваться специализированными программами или онлайн сервисами (а-ля «построить график онлайн»), а в экстремальной ситуации найти побольше опорных точек (штук 10-15), чтобы поточнее провести «неизвестную» кривую.
Ну и, конечно, я призываю вас повышать свои знания и навыки в графиках, в частности, приведу прямую ссылку на особо полезную статью:
http://mathprofi.ru/kak_postroit_grafik_funkcii_s_pomoshyu_preobrazovanii.html
После того, как чертёж построен, анализируем полученную фигуру – ещё раз окидываем взглядом предложенные функции и перепроверяем, ТА ЛИ это фигура. Затем анализируем её форму и расположение, бывает, что площадь достаточно сложнА и тогда её следует разделить на две, а то и на три части.
Составляем определённый интеграл или несколько интегралов по формуле , все основные вариации мы разобрали выше.
Решаем определённый интеграл (ы). При этом он может оказаться достаточно сложным, и тогда применяем поэтапный алгоритм: 1) находим первообразную и проверяем её дифференцированием, 2) используем формулу Ньютона-Лейбница.
Результат полезно проверить с помощью программного обеспечения / онлайн сервисов или просто «прикинуть» по чертежу по клеточкам. Но и то, и другое не всегда осуществимо, поэтому крайне внимательно относимся к каждому этапу решения!
1.9. Объём тела вращения
1.7. Геометрический смысл определённого интеграла
| Оглавление |
Полную и свежую версию данного курса в pdf-формате,
а также курсы по другим темам можно найти здесь.
Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!
С наилучшими пожеланиями, Александр Емелин