Как найти площадь окружности видео

Содержание:

  • § 1  Формула площади круга
  • § 2  Применение формулы площади круга

§ 1  Формула площади круга

В этом уроке познакомимся с формулой площади круга и научимся применять ее.

Одной из древнейших практических задач является определение площадей геометрических фигур.

Площадь фигуры – это величина части плоскости, ограниченной многоугольником или какой-нибудь другой плоской замкнутой фигурой.

Круг – это часть плоскости, ограниченная окружностью, фигура замкнутая, значит, можно говорить о площади круга.

Вспомним свойства площади фигур.

Первое свойство: равные фигуры имеют равную площадь.

Второе свойство: если фигура разбивается на части, то площадь фигуры равна сумме площадей ее частей.

Выведем формулу площади круга. Рассмотрим рисунок.

На рисунке изображены окружности, проходящие через вершины правильных многоугольников.

Площади многоугольников очень незначительно отличаются от площади соответствующего круга.

Если увеличивать количество сторон многоугольника, то он практически сольется с окружностью.

Используем этот факт для получения формулы.

Пусть n – число сторон правильного многоугольника. Так как у него n равных сторон, то данный многоугольник можно разделить на n – равных треугольников с общей вершиной, которая является центром круга.

Площадь одного треугольника равна половине произведения стороны а и проведенной к ней высоты h.

Поскольку многоугольник разделен на n равных треугольников, следовательно, площадь многоугольника равна сумме площадей n равных треугольников.

Подставим формулу площади треугольника в данную формулу и получим: площадь многоугольника равна половине произведения стороны, высоты, проведенной к данной стороне треугольника и количества сторон многоугольника.

При увеличении количества сторон правильного многоугольника n произведение стороны a и количества сторон n – это практически длина окружности. А высота h — практически радиус окружности.

§ 2  Применение формулы площади круга

Вспомним формулу длины окружности:

C = 2πR, где R – радиус, и подставим вместо h (высоты) R (радиус).

Получим, что площадь равна половине удвоенного произведения πR и R.

Упростим выражение:

Значит, площадь равна произведению π R2.

Таким образом, мы получили формулу нахождения площади круга, так как уже говорилось, что если увеличивать количество сторон правильного многоугольника n, то он практически сольется с окружностью.

В математике говорят, что площадь многоугольника в рассмотренном случае стремится к площади круга, т.е. почти равна площади круга.

Перейдем к практической части.

На цирковой арене цирка «Шапито» нужно заменить половое покрытие. Чтобы закупить необходимое количество материла, необходимо знать площадь арены. Диаметр арены – 13м. Найдите ее площадь.

Выпишем необходимые данные.

Нужно найти площадь круга.

Если диаметр равен 13 м, то радиус 13:2 = 6,5 м.

Подставим данные в формулу: S = 3,14 ∙ 6,52.

Такую площадь имеет арена цирка.

Таким образом, в этом уроке мы вывели формулу площади круга и научились ее применять.

Список использованной литературы:

  1. Математика. 6 класс: поурочные планы к учебнику И.И. Зубаревой, А.Г. Мордковича //автор-составитель Л.А. Топилина. Мнемозина, 2009.
  2. Математика. 6 класс: учебник для учащихся общеобразовательных учреждений. И.И. Зубарева, А.Г. Мордкович. — М.: Мнемозина, 2013.
  3. Математика. 6 класс: учебник для общеобразовательных учреждений/Г.В. Дорофеев, И.Ф. Шарыгин, С.Б. Суворова и др./ под редакцией Г.В. Дорофеева, И.Ф. Шарыгина; Рос.акад.наук, Рос.акад.образования, М.: Просвещение, 2010.
  4. Математика. 6 класс: учеб. для общеобразоват. учреждений/Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд. – М.: Мнемозина, 2013.
  5. Математика. 6 кл.: учебник/Г.К. Муравин, О.В. Муравина. – М.: Дрофа, 2014.

Как найти площадь круга видео уроки

Площадь круга. Математика 6 класс.

Длина окружности. Площадь круга — математика 6 класс

Длина окружности. Площадь круга. 6 класс.

Наш проект живет и развивается для тех, кто ищет ответы на свои вопросы и стремится не потеряться в бушующем море зачастую бесполезной информации. На этой странице мы рассказали (а точнее — показали :) вам Как найти площадь круга видео уроки. Кроме этого, мы нашли и добавили для вас тысячи других видеороликов, способных ответить, кажется, на любой ваш вопрос. Однако, если на сайте все же не оказалось интересующей информации — напишите нам, мы подготовим ее для вас и добавим на наш сайт!
Если вам не сложно — оставьте, пожалуйста, свой отзыв, насколько полной и полезной была размещенная на нашем сайте информация о том, Как найти площадь круга видео уроки.


Как найти площадь круга — формула, примеры решения задач

Видео урок «Как найти площадь круга — формула, примеры решения задач» посвящен вопросу о том, как находить площадь круга. Эта задача относится к планиметрии, т.е. изучение фигур на плоскости. Площадь круга — это то, сколько пространства занимает этот круг на поверхности. Для определения площади круга существует специальная формула. Здесь вы узнаете, что собой представляет данная формула и как её использовать при решении задач. В формуле будет использоваться число Пи, т.е. это число, которое было вычислено людьми, и которое соответствует отношению длины окружности к длине её диаметра. Число Пи равно 3,14159, причем дальше цифры идут до бесконечности. Для решения задач, как правило, хватает использования этого числа с точностью до сотых долей. В этом видео уроке также будут рассмотрены конкретные примеры с решением задач, в которых используется формула нахождения площади круга. Например, вычисление диаметра круга, если известна его площадь, или нахождение площади круга, если известна длина окружности. Бесплатный видео урок «Как найти площадь круга — формула, примеры решения задач» вы можете смотреть онлайн в любое время. Удачи Вам!


  • Длительность: 6:49
  • Рейтинг: 5.0/1
  • 1
  • 2
  • 3
  • 4
  • 5


Если у Вас есть качественные видео уроки, которых нет на нашем сайте, то Вы можете добавить их в нашу коллекцию. Для этого Вам необходимо загрузить их на видеохостинг (например, YouTube) и добавить код видео в форму добавления уроков. Возможность добавлять свои материалы доступна только для зарегистрированных пользователей.

Как найти площадь круга видео уроки

Площадь круга. Математика 6 класс.

Площадь круга. Математика 6 класс.

Длина окружности. Площадь круга. 6 класс.

Длина окружности. Площадь круга. 6 класс.

6 класс, 3 урок, Длина окружности и площадь круга

6 класс, 3 урок, Длина окружности и площадь круга

Урок 25 Бесплатно Длина окружности и площадь круга

На этом уроке мы рассмотрим одни из самых древнейших геометрических фигур: окружность и круг.

Определим, какими элементами характеризуются круг и окружность, в чем сходство и различие этих фигур.

Узнаем, как рассчитать длину окружности и площадь круга.

Окружность и круг

Мы часто встречаем такие понятия, как окружность и круг.

Давайте попробуем разобраться, что называют окружностью, а что кругом.

Окружность — это замкнутая плоская кривая, все точки которой удалены на одинаковые расстояния от заданной точки, называемой центром окружности.

Центр окружности— это точка, которая находится на одинаковом расстоянии (равноудаленная) от любой точки окружности, ее обозначают обычно заглавной буквой О.

По сути, окружность — это изогнутая линия. Наглядно представить данную геометрическую фигуру можно, обведя стакан или блюдце карандашом, — оставшийся нарисованный след и будет окружностью.

Круг — это часть плоскости, ограниченная окружностью. Можно также сказать что это часть плоскости, которая находится внутри линии окружности.

Круг — плоская фигура, ее можно получить, закрасив окружность или вырезав его из бумаги по контуру окружности.

Свои имена окружность и круг приобрели не сразу.

В древние времена специальных названий для этих фигур не существовало. Люди пытались описать различные геометрические формы, сравнивая объекты. Например, говоря про что-то круглое, говорили: «такой, как солнце» или «такой, как орех» и т.п.

Только в Древней Греции окружность и круг приобрели себе свои названия.

Круг всегда привлекал к себе внимание как самая простая фигура из кривых, но самая загадочная.

У меня есть дополнительная информация к этой части урока!

Древние греки считали круг и окружность символом бесконечности и совершенства. Поражало то, что в каждой своей точке окружность устроена одинаково, представляя собой бесконечную линию, которая движется сама по себе.

У древних славян еще за долго до христианства круг был символом солнца.

В Древнем Египте и Греции круг изображали в виде змея Уробороса, который кусает свой хвост, образуя тем самым, окружность — этот символ обозначал бесконечность и цикличность во всей вселенной (смена дня и ночи, жизни и смерти т.д.).

Символика круга в различных религиях сопоставляется с целостностью, вечностью и бесконечной мудростью.

Например, в масонских учениях круг как форма без начала и конца — это источник бесконечного времени и пространства, в котором заключена тайна творения.

У буддистов круг символизирует единство внутреннего и внешнего мира.

В дзен-буддизме круг — это символ высшей степени просветления и совершенства. На основе этого представления построены принципы инь и янь (в виде круга, разделенного на две части, — символа взаимодействия и борьбы двух начал).

В христианстве круг служит эталоном божественного и духовного совершенства.

В живой и неживой природе круги и окружности встречаются как на макроуровнях, так и на микроуровнях. Например, движение электронов вокруг атомного ядра; вращение планет вокруг солнца; распространение волн на воде от упавшего груза; образование солнечного и лунного гало; срез дерева; зрачок глаза у человека и многое другое.

Рассмотрим подробней элементы, характерные для окружности.

Радиус окружности— это отрезок, соединяющий центр окружности и любую другую точку, расположенную на линии окружности.

С латинского радиус (radius)- луч, спица колеса. Радиус не сразу приобрел себе такое название.

Слово радиус впервые встречается в 1569 году у французского ученого П. Рамуса, а общепризнанным становится к концу XVII века.

Радиус обозначается маленькой латинской буквой (r) или заглавной (R).

В окружности можно провести столько же радиусов, сколько точек имеет линия окружности; все эти радиусы равны.

Диаметр — это отрезок прямой, проходящий через центр окружности и соединяющий две точки на этой окружности.

Диаметр в переводе с греческого (diametros) — поперечник.

Обычно диаметр обозначают латинской маленькой буквой d или заглавной D.

По величине диаметр равен двум радиусам, лежащим на одной прямой.

d = 2r

Следовательно, радиус- это половина диаметра.

r = d: 2

Пример 1

Радиус окружности равен 6 см.

Чему равен диаметр окружности?

r = 6 см

d — ?

Решение:

d = 2r

d = 2r= 2*6 = 12 (см) диаметр окружности

Ответ: d= 12 см

Пример 2

Диаметр окружности равен 12 см.

Чему равен радиус окружности?

d = 12 см

r — ?

Решение:

r = d : 2

r = 12 : 2 = 6 (см) радиус окружности

Ответ: r = 6 см

У меня есть дополнительная информация к этой части урока!

Секущая окружности — это прямая, пересекающая окружность в двух точках. В результате окружность делится на дуги.

Точки А и В — точки пересечения секущей с окружностью.

Образовались две дуги: (mathbf<cup AB и cup BA>)

Отрезок, который соединяет любые две точки на окружности (отрезок секущей), называется хордой.

Отрезок АВ (отрезок секущей) на рисунке — хорда окружности.

Хорда в переводе с греческого — струна, тетива.

На рисунке отрезок MN является хордой.

Если хорда проходит через центр окружности, то она является самой большой хордой для этой окружности. По своей сути она является диаметром для данной окружности и делит окружность на две равные дуги.

По мере удаления хорды от центра размеры ее уменьшаются, а дуги делятся на большую и малую.

АВ— самая большая хорда окружности- диаметр окружности.

CD, N1M1, NM, FE— хорды окружности.

Хорды окружности, удаленные на равные расстояния от центра, равны.

Хорды NM и N1M1 равны.

Если две хорды пересекаются в точке, то их отрезки пропорциональны.

Важно отметить, что все рассмотренные элементы окружности одинаковы и для круга.

Пройти тест и получить оценку можно после входа или регистрации

Длина окружности и площадь круга

Давайте выясним, что такое длина окружности и как ее определить.

Представьте, что окружность обернута нитью.

Если разрезать эту нить в некоторой точке и размотать ее, то длина нитки будет равна длине окружности.

Обычно длина окружности обозначается заглавной буквой С

Длина окружности (С) зависит от длины ее диаметра (d)

Обратите внимание на рисунок.

Вы можете заметить, что чем больше диаметр, тем больше длина окружности.

Из этого следует, что длина окружности прямо пропорционально зависит от диаметра окружности.

А значит, для любых окружностей отношение длины окружности (С) к длине диаметра (d) является числом постоянным.

Это число (коэффициент пропорциональности) обозначают греческой буквой (mathbf<pi>), читается «пи».

С— это длина окружности

d— диаметр окружности

запишем отношение (mathbf)

отсюда следует, что длина окружности равна

Так как диаметр окружности вдвое больше радиуса d = 2r, получим еще одну формулу для вычисления длины окружности

Выясним, чему равна постоянная величина — число (mathbf<pi>)

Число (mathbf<pi>)- это иррациональное число, т.е. число, которое представлено в виде бесконечной непериодической десятичной дроби.

У меня есть дополнительная информация к этой части урока!

История числа (mathbf< pi>) насчитывает около 4 тысячелетий.

Одно из первых доказательств древнего существования этого числа (mathbf< pi>) заключено в папирусе Ахмеса, в одном из старейших задачников (1650 год до н.э.), найденного в Древнем Египте.

В папирусе дано достаточно точное, особенного для того времени, значение числа, равного 3,1605.

Точнее число (mathbf< pi>) рассчитал древнегреческий математик Архимед. Он приближенно представил значение константы в виде обыкновенной дроби (mathbf<frac <22><7>>)

Архимеду удалось найти точное приближение числа (mathbf< pi>) (т.е. узкий числовой промежуток к которому принадлежит число (mathbf< pi>)).

Пройти тест и получить оценку можно после входа или регистрации

Решения задач по теме «Длина окружности и площадь круга»

Рассмотрим примеры решения задач

Задача 1

Найдите длину окружности, если ее радиус равен 4 см.

Число (mathbf<<pi>>) округлите до сотых.

r = 4 см

Длину окружности С — ?

Решение:

Подставив в формулу известные значения радиуса и постоянной (mathbf<pi>), получим:

Ответ: (mathbf)(см)

Задача 2

Длина окружности надувного бассейна 15,7м.

Найдите диаметр этого бассейна.

Число (mathbf<pi>) округлите до сотых.

C = 15,7 м

Диаметр d — ?

Решение:

Подставив в формулу известные значения длины окружности и постоянной (mathbf<pi>), получим:

Ответ: (mathbf) (м)

Задача 3

Диаметр окружности равен 6 см.

Найдите площадь круга, ограниченного этой окружностью.

Значение числа (mathbf<pi>) округлить до сотых.

d = 6 cм

Площадь круга S — ?

Решение:

Подставим в формулу известные значения диаметра окружности и постоянной , получим:

(mathbf<4><cdot>3,14<cdot>6^2 = frac <3,14<cdot>36> <4>> = 3,14<cdot>9=28,26) (cм 2 ) площадь круга

Ответ: (mathbf) (см 2 )

Задача 4

Вычислите площадь полукруга, если радиус круга равен 5 см.

Значение (mathbf<pi >) округлить до целых.

r = 5 cм

Площадь полукруга Sп — ?

Решение:

Площадь круга найдем по формуле:

Площадь полукруга будет равна половине площади всего круга.

Следовательно, формула для расчета площади полукруга получится вида:

Подставим в формулу известные значения радиуса круга и постоянной (mathbf<pi>), получим:

(mathbf <2>=37,5>) (cм 2 ) площадь полукруга

Ответ: (mathbf) (см 2 )

Задача 5

Найдите площадь круга, если известна длина окружности С.

Длина окружности С

Площадь круга S — ?

Решение:

Длина окружности выражается формулой:

Выразим неизвестный радиус окружности через длину окружности:

Площадь круга определяем по формуле:

Подставим, полученные выражения для радиуса окружности, в формулу площади круга, получим:

Сократим полученную дробь:

У меня есть дополнительная информация к этой части урока!

Кроме вычислительных задач, существуют задачи на построение окружности и круга.

Окружность и круг можно начертить с помощью чертежного инструмента, который называется циркуль.

В переводе с латинского языка circulus означает «окружность», «круг».

Циркуль использовали еще с древности, много тысяч лет назад, об этом свидетельствуют найденные на раскопках находки, изображения.

Циркуль представляет собой две одинаковые по длине «ножки». На конце одной из них игла, а на второй- грифель.

Есть циркуль, у которого вместо «ножки» с грифелем помещается карандаш.

Рассмотрим, как построить окружность (круг) на бумаге с помощью циркуля и линейки.

Если задан радиус окружности (круга), то в нулевую отметку на линейке ставим иголку циркуля, другая «ножка» циркуля с грифелем в точку на линейке, равной по значению заданному радиусу.

Ставим точку на листе бумаги — это будет центр окружности (круга), в эту точку ставим иголку циркуля.

Не отрывая грифеля второй «ножки» циркуля от бумаги проводим окружность с заданным радиусом.

Если в задаче задан диаметр, то, прежде чем совершать замер по линейке, необходимо диаметр разделить пополам.

Таким образом, устанавливаем раствор циркуля по линейке на расстояние d:2 = r и чертим окружность по выше изложенной схеме.

Чтобы начертить окружность на местности, пользуются колышком и веревкой. Колышек вбивают в землю — предполагаемый центр окружности; веревка одним концом закрепляется к этому колышку, второй конец веревки туго натягивается; далее очерчивают окружность.

Данный способ построения окружности (круга) может быть применен и на бумаге, если под рукой не оказалось циркуля.

В качестве колышка берется кнопка, к ней привязывается нить определенной длинны (длина нити равна значению заданного радиуса), ко второму концу привязывается карандаш

Пройти тест и получить оценку можно после входа или регистрации

Длина окружности. Площадь круга (Вольфсон Г.И.)

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке вы вспомните, что такое окружность и круг, а также некоторые их элементы. Кроме того, вы познакомитесь с числом и двумя новыми формулами: формулой длины окружности и формулой площади круга, научитесь применять их при решении задач.

Если у вас возникнет сложность в понимании тему, рекомендуем посмотреть урок «Точность и округление»

Математика. 6 класс

Длина окружности. Площадь круга
Измеряем длину окружности
Необходимо запомнить

Формулы длины окружности и площади круга позволяют решать много практических задач.

При решении задач обычно используют $pi approx 3,14$.

Длина окружности прямо пропорциональна её радиусу.

Площадь круга прямо пропорциональна квадрату радиуса.

Это интересно

В 1992 году в книгу рекордов Гиннесса был занесён факт вычисления 1 001 196 691 (одного миллиарда, одного миллиона, ста девяноста шести тысяч, шестисот девяноста одной) цифры числа π после запятой. Само число в книге не приводится, так как для его записи потребуется более тысячи страниц.

источники:

http://interneturok.ru/lesson/matematika/6-klass/otnosheniya-i-proporcii/dlina-okruzhnosti-ploschad-kruga

http://resh.edu.ru/subject/lesson/6913/main/

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как исправить аутизм
  • Как найти пожарную часть
  • Как найти в айфоне стикеры избранные
  • Цель существования человека как найти
  • Физика как найти время в физике формулы

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии