Как найти площадь фигуры тремя способами

Почему бы просто не считать клеточки?

Возможно, вы читаете всё это и думаете: зачем все эти сложности? Формулы запоминать. Дорисовывать. Тут ведь сразу видно, сколько клеточек в фигуре.

Вот, например, трапеция:

Посчитаем клеточки: их всего 46, верно?

Но стоп, там же некоторые из них только наполовину внутри фигуры. Отметим их – всего таких 10. Итого, 36 полных (красные точки) и 10 половинчатых, вместе ( 36+frac{10}{2} = 41)

Вроде бы всё верно. Но, если присмотреться, можно заметить ещё маленькие треугольнички, которые попали внутрь. А также, что «синие» клеточки слева на самом деле разрезаны не ровно пополам – какие-то чуть больше, какие-то меньше…

Как всё это учитывать?

Попробуем рассуждать так: заметно, что тот маленький розовый треугольник дополняет серый кусок клетки.

А жёлтые сколько занимают? Постарайтесь ответить сами.

Если всё сделать правильно, то увидите, что жёлтые кусочки можно сложить вместе в одну целую клетку.

Итак, 2 жёлтых куска = 1 клетка.

Розовый треугольник + серый кусок = 1 клетка. Всего у нас две таких пары (розовый+серый) – это 2 полных клетки. 

Всё остальное как было: 36 полных клеток и 6 половинок у правой стороны – это ( 36+frac{6}{2}=39) клетки.

Итого клеток: ( 1 + 2 + 39 = 42).

Проверим результат по формуле площади трапеции: нижнее основание 11, верхнее основание 3, высота 6. Полусумма оснований равна 7, умножаем на высоту – получилось 42. Всё совпало.

Но! Настолько ли проще был наш способ подсчёта клеточек? Не сказал бы. А если там будет несколько косых линий, то вообще можно замучиться собирать этот паззл (искать, какие кусочки друг друга дополняют).

Вычислите площадь простых фигур тремя способами

Стороны клеток равны 1. Вычислите самостоятельно площадь фигуры всеми тремя способами. Сравните результаты.

Вычислите площадь произвольных фигур по формуле Пика

Вычислите самостоятельно площади фигур с помощью формулы Пика:

Посчитайте площадь корабля и котика по формуле Пика

Посчитайте самостоятельно для тренировки и чтобы запомнить формулу Пика!

Фигуры с отверстиями — посчитайте площади двумя способами

Ну и напоследок фигуры с «дырками». Как думаешь, здесь придётся вычислять сначала площадь целой фигуры, а потом площадь дырки?

Или достаточно просто посчитать точки внутри закрашенной области и на её границах (в том числе, на границе с дыркой)?

Проверим на простом примере: это квадрат ( 4times 4), и в нём вырезан прямоугольник ( 1times 2), значит, его площадь ( 16-2=14).

А теперь по точкам. На границах (включая внутренние) ( Г = 22). Внутри ( В = 3). Тогда площадь по формуле Пика

( S = frac{22}{2} + 3 -1 = 13.)

Хм, близко, но не совпало. Может, я где-то ошибся? Давай ещё одну фигуру, для верности.

Сосчитай сам и проверь.

Что получилось?

У меня снова на 1 меньше.

Так может быть просто формулу немного «подкрутить»? Нет!

Очень и очень не рекомендую вам запоминать несколько похожих формул для похожих случаев, потому что придёт время, и вы обязательно перепутаете формулу.

Даже если вы уверены, что не перепутаете, оно всё равно того не стоит. В общем, наилучший вариант – это запомнить одну формулу. А если попалась фигура с дыркой, вычислить всю фигуру, а потом дырку. И вычесть.

Площадь поверхности пирамиды

Для пирамиды тоже действует общее правило:

Площадь полной поверхности пирамиды – это сумма площадей всех граней.( displaystyle {{S}_{полн. пов. }}={{S}_{боков.пов. }}+{{S}_{основания }})

Теперь давай посчитаем площадь поверхности самых популярных пирамид.

Площадь поверхности правильной треугольной пирамиды

Пусть сторона основания равна ( displaystyle a), а боковое ребро равно ( displaystyle b). Нужно найти ( displaystyle {{S}_{осн}}) и ( displaystyle {{S}_{ASB}}).

И тогда

( displaystyle {{S}_{полн. пов. }}=3{{text{S}}_{ASB}}+{{text{S}}_{text{осн}.}})

Вспомним теперь, что

( displaystyle {{S}_{осн}}) — это площадь правильного треугольника ( displaystyle ABC).

И еще вспомним, как искать эту площадь.

Используем формулу площади:

( displaystyle S=frac{1}{2}abcdot sin gamma ).

У нас «( displaystyle a)» — это ( displaystyle a), а «( displaystyle b)» — это тоже ( displaystyle a), а ( displaystyle sin gamma =sin 60{}^circ =frac{sqrt{3}}{2}).

Значит, ( displaystyle {{S}_{ABC}}=frac{1}{2}{{a}^{2}}frac{sqrt{3}}{2}=frac{{{a}^{2}}sqrt{3}}{4}).

Теперь найдем ( displaystyle {{S}_{Delta ASB}}).

Пользуясь основной формулой площади и теоремой Пифагора, находим

( displaystyle {{S}_{Delta ASB}} = frac{1}{2}asqrt{b^2-frac{a^2}{4}})

Внимание: если у тебя правильный тетраэдр (т.е. ( displaystyle b=a)), то формула получается такой:

( displaystyle S={{a}^{2}}sqrt{3}).

Содержание

  1. Площадь
  2. Что такое площадь
  3. Единицы измерения площади
  4. Формула нахождения площади в математике
  5. Площадь прямоугольника
  6. Площадь квадрата
  7. Площадь круга
  8. Площадь эллипса
  9. Площадь параллелограмма
  10. Площадь ромба
  11. Площадь трапеции
  12. Площадь треугольника
  13. Пояснения на примерах
  14. Задачи на нахождение площади сложных фигур
  15. Урок 21. Математика и игры 3–4 классы
  16. В данный момент вы не можете посмотреть или раздать видеоурок ученикам
  17. Получите невероятные возможности
  18. Конспект урока «Задачи на нахождение площади сложных фигур»

Площадь

Что такое площадь

Понятие площади фигур рассматривается одним из разделов математики — конкретно, геометрией. Результат решения задач с нахождением площади геометрических фигур может использоваться для решения математических задач, в быту, в производстве.

Площадь фигуры — численная характеристика, которая передает информацию о размере геометрической фигуры.

Фигура, в математическом мире определяемая как множество точек на плоскости, должна быть ограничена со всех сторон, чтобы иметь понятие площади. Если фигура располагается на одной плоскости, она не имеет объема, а только площадь.

В самом простом случае, площадь фигуры можно посчитать по количеству клеток, которые она занимает. Подобным способом можно легко посчитать площадь квадрата, прямоугольника или прямоугольного равнобедренного треугольника.

Площадь в геометрии обозначается знаком S, от английского square — площадь.

Как математическая характеристика, площадь имеет четыре характеристики:

  1. Положительность — величина площади не может быть отрицательной.
  2. Нормировка — если сторона квадрата равна единице, то он имеет площадь 1.
  3. Равнозначность — фигуры с равными сторонами и одинаковые по свойствам имеют одинаковую площадь.
  4. Сложение площадей — фигуры, располагающиеся рядом, но не имеющие общих точек соприкосновения, будут иметь площадь равную сумме их отдельных площадей.

Единицы измерения площади

Площадь фигуры может измеряться в разных единицах в зависимости от поверхности, на которой располагается. Основной системой измерения считается Международная система единиц СИ.

Площадь измеряется в единицах измерения в квадрате:

  • барн — 10 — 28 м 2 ;
  • квадратный миллиметр — 1 м м 2 ;
  • квадратный сантиметр — 1 с м 2 ;
  • квадратный метр — 1 м 2 ;
  • квадратный километр — 1 к м 2 ;
  • ар — 1 а = 100 м 2 ;
  • гектар — 1 г а = 10000 м 2 и другие.

В Древней Руси употребляли такие величины, как квадратная верста, десятина, квадратный сажень.

В античных источниках единицей измерения площади были актус, арура, центурия, югер.

В некоторых странах есть свои единицы измерения площади, например, рай в Таиланде. Также другими единицами измерения могут пользоваться разные виды научного знания, например, понятием планковской площади пользуется ядерная физика.

Формула нахождения площади в математике

Существует множество формул нахождения площади простых геометрических фигур, которые зависят, в основном, от количества углов, сторон и их соотношений.

Площадь прямоугольника

Прямоугольником является геометрическая фигура, все углы которой равны 90°. При этом таких углов должно быть, как минимум три, а четвертый будет равен 90° в силу закона о сумме углов четырехугольника в евклидовой геометрии.

Вычисление площади прямоугольника будет происходить через умножение сторон:

где a и b являются сторонами прямоугольника.

Площадь квадрата

Квадратом является прямоугольник с равными сторонами. Все его углы равны 90°. Площадь квадрата можно найти сразу двумя способами:

  • по длине стороны;
  • через его диагонали.

По длине стороны:

Так как квадрат является частным случаем прямоугольника, его площадь также можно найти по формуле S = a × b , однако в таком случае a и b будут равны, а формула по смыслу будет повторять выше написанную.

Через диагонали:

где a — длина сторон квадрата;

d — длина диагоналей квадрата.

Площадь круга

Кругом является часть плоскости, которая лежит внутри окружности. Круг не имеет ни одного угла, а точки его окружности находятся на равном удалении от центра.

Площадь круга можно найти двумя способами:

  • через его радиус;
  • через его диаметр.

Через радиус:

где π — постоянная Пи, равна 3,14.

Радиус, упоминаемый в формуле, является линией или отрезком, соединяющим центр и любую из точек окружности.

Через диаметр:

где π — постоянная Пи, равна 3,14.

Диаметр является отрезком, соединяющим две точки окружности и проходящим через центр. Он включает в себя два противоположно направленных радиуса.

Площадь эллипса

Эллипс является частным случаем окружности. Он, так же, как и круг, не имеет ни одного угла, но при этом точки окружности находятся на разном удалении от центра.

Найти площадь эллипса можно только одним способом: через произведение длин большой и малой полуосей эллипса и числа пи.

Площадь эллипса находится через произведение длин большой и малой полуосей эллипса и числа пи:

Площадь параллелограмма

Параллелограмм является геометрической фигурой с 4 углами и 4 сторонами, однако он отличается от прямоугольника по строению. Его противолежащие стороны попарно параллельны, а углы равны зеркально противолежащим.

Частными случаями параллелограмма являются квадрат, прямоугольник и ромб.

Найти площадь параллелограмма можно тремя способами:

  • через сторону и высоту;
  • через две его стороны и величину угла между ними;
  • через диагонали и угол между ними.

Через сторону и высоту:

где a — сторона, к которой проведена высота,

h — высота непосредственно.

Через две стороны и величину угла между ними:

Через диагонали и угол между ними:

S = 1 2 × d 1 × d 2 × sin y

где d 1 и d 2 — это диагонали параллелограмма,

y — угол между ними.

Площадь ромба

Ромб, как частный случай параллелограмма, имеет те же свойства, кроме того, что все его стороны равны.

Площадь ромба также можно найти тремя способами:

  • по длине стороны и высоте;
  • по длине стороны и углу;
  • по длине его диагоналей.

По длине стороны и высоте:

Формула площади ромба по стороне и высоте выглядит так же, как и площадь параллелограмма по таким же характеристикам, с условием, что все высоты ромба будут равны:

По длине стороны и углу:

Формула площади ромба через длину сторон и углу между ними похожа на соответствующую формулу площади параллелограмма с условием того, что стороны равны, а значит, их перемножение можно заменить квадратом величины стороны:

По длине его диагоналей:

S = 1 2 × d 1 × d 2

Площадь трапеции

Трапеция отличается от всех предыдущих фигур тем, что только две ее стороны, боковые, могут быть равны между собой. При этом они не параллельны. Две другие стороны параллельны, но не равны. Сумма углов трапеции равна 360°.

Площадь трапеции можно найти двумя способами:

  • по формуле Герона;
  • по длине основ и высоте.

По формуле Герона:

S = a + b a — b p — a p — b p — a — c p — a — d

где a , b — длины оснований трапеции,

c , d — длины боковых сторон,

p = a + b + c + d 2

По длине основ и высоте:

Площадь треугольника

Треугольник является геометрической фигурой с тремя сторонами и суммой углов, равной 180°. По величине углов треугольники делятся на острые, тупые и прямоугольные. По числу равных сторон треугольники делятся на разносторонние, равносторонние и равнобедренные.

Площадь треугольника можно найти множеством способов:

  • по гипотенузе и острому углу;
  • через сторону и высоту;
  • через три стороны;
  • через две стороны и угол между ними;
  • через три стороны и радиус описанной окружности;
  • через три стороны и радиус вписанной окружности.

По гипотенузе и острому углу:

S = 0 , 25 × c 2 × sin 2 a

где c — гипотенуза,

a — любой из прилежащих острых углов.

Через сторону и высоту:

Через три стороны:

S = p ( p — a ) p — b p — c

где р — полупериметр.

p = a + b + c + d 2

Через две стороны и угол между ними:

S = 1 2 × a × b × sin y

Через три стороны и радиус описанной окружности:

Через три стороны и радиус вписанной окружности:

где р — полупериметр.

p = a + b + c + d 2

Пояснения на примерах

Стены класса равны 7 и 5 метрам. Чему будет равна площадь пола в данной комнате?

Решение: S = 7 × 5 = 35

Елена делает торты на заказ. Ей поступила просьба сделать небольшой торт, чтобы он поместился в форму с диаметром 16 сантиметров. Какую форму должна взять Елена для торта, если площадь формы А равна 113 с м 2 , площадь формы В равна 176 с м 2 , а площадь формы С — 283 с м 2 ?

Решение: S = π × 15 2 = 201 , 06 с м 2 . Торт из формы А будет слишком маленьким, а из формы С — слишком большим. Подходит форма В.

Ткань летучего змея порвалась. Вася решил сделать новую форму. Он посчитал, что длина жердей летучего змея равна 15 и 23 см. Форму какой площади нужно взять Васе с учетом того, что для припусков для пришивания нужно взять еще 2 см?

Решение: S = 1 2 × ( 15 + 2 ) × ( 23 + 2 ) = 195 , 5 с м 2 или 1 , 955 м 2 .

Равнобедренный треугольник имеет основание 4 дм и высоту 7 дм. Сколько будет его площадь?

Источник

Задачи на нахождение площади сложных фигур

Урок 21. Математика и игры 3–4 классы

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Задачи на нахождение площади сложных фигур»

Давайте вспомним, как найти площадь прямоугольника. Чтобы найти площадь прямоугольника, надо длину умножить на ширину.

Вот формула для нахождения площади прямоугольника:

В этой формуле латинской буквой S обозначается площадь, буквами a и b – стороны прямоугольника.

Выполним задание, в котором надо найти площадь прямоугольника со сторонами 5 см и 3 см.

Решение. Итак, чтобы найти площадь прямоугольника, надо его длину умножить на ширину.

Произведение чисел 5 и 3 равно 15. Значит, площадь прямоугольника равна 15 квадратным сантиметрам. Не забудьте, что площадь измеряется именно в квадратных единицах. В данной задаче это квадратные сантиметры. Также важно помнить, что длина и ширина должны быть выражены в одинаковых единицах длины.

Ответ: площадь прямоугольника равна 15 см 2 .

Теперь давайте найдём площадь квадрата со стороной 4 см.

Решение. У этого квадрата каждая сторона равна 4 см, поэтому умножим 4 на 4 и получится, что площадь квадрата равна 16 квадратным сантиметрам.

Ответ: площадь квадрата равна 16 см 2 .

Ну а сейчас перейдём к решению задач, в которых нам надо будет найти площадь сложных фигур.

Найдите площадь фигуры, изображённой на рисунке.

Эта фигура не является ни прямоугольником, ни квадратом. Но мы можем разделить эту фигуру на два прямоугольника, например, вот таким образом.

А площади прямоугольников мы легко можем найти с помощью известной формулы.

Напомним, что противоположные стороны прямоугольника равны.

Итак, стороны первого прямоугольника равны 5 см и 4 см.

5 · 4 = 20 (см 2 ) – площадь первого прямоугольника

Найдём площадь второго прямоугольника.

Ширина этого прямоугольника равна 2 см.

7 – 4 = 3 (см) – длина второго прямоугольника

3 · 2 = 6 (см 2 ) – площадь второго прямоугольника

Мы нашли площади прямоугольников, из которых состоит сложная фигура. Чтобы найти площадь этой фигуры, надо сложить найденные площади.

20 + 6 = 26 (см 2 ) – площадь сложной фигуры

Ответ: площадь фигуры, изображённой на рисунке, равна 26 см 2 .

Площадь этой сложной фигуры найти другим способом. Можно разделить её на два прямоугольника вот таким образом.

Найдём площадь первого прямоугольника.

Одна его сторона равна 4 см.

5 – 2 = 3 (см) – длина стороны первого прямоугольника

4 · 3 = 12 (см 2 ) – площадь первого прямоугольника

Теперь найдём площадь второго прямоугольника.

7 · 2 = 14 (см 2 ) – площадь второго прямоугольника

12 + 14 = 26 (см 2 ) – площадь сложной фигуры

Ответ: площадь фигуры, изображённой на рисунке, равна 26 см 2 .

Решим следующую задачу.

Найдём площадь ещё одной фигуры, изображённой на рисунке.

Чтобы найти площадь этой фигуры, тоже разделим её на простые фигуры. Сделаем это вот таким образом.

Получилось 3 прямоугольника.

Найдём площадь первого прямоугольника.

7 · 2 = 14 (см 2 ) – площадь первого прямоугольника

Найдём площадь второго прямоугольника.

7 – 4 = 3 (см) – длина одной стороны второго прямоугольника

8 – 2 – 3 = 3 (см) – длина другой стороны второго прямоугольника

Получается, что это квадрат, так как длина всех его сторон равна 3 см.

3 · 3 = 9 (см 2 ) – площадь квадрата

И найдём площадь последнего прямоугольника.

Его ширина равна 3 см. Длина равна 7 см.

3 · 7 = 21 (см 2 ) – площадь третьего прямоугольника

Таким образом, мы нашли площади всех трёх фигур, на которые разделили данную сложную фигуру. Площадь этой сложной фигуры найдём как сумму площадей трёх фигур.

14 + 9 + 21 = 44 (см 2 ) – площадь сложной фигуры

Ответ: площадь фигуры, изображённой на рисунке, равна 44 см 2

Отметим, что площадь этой фигуры можно было бы найти, разделив её на простые фигуры и вот таким образом:

И решим ещё одну задачу.

Найдите площадь незаштрихованной фигуры.

На рисунке изображён прямоугольник со сторонами 9 см и 5 см. Внутри этого прямоугольника расположен ещё один прямоугольник со сторонами 5 см и 3 см. Давайте найдём площадь каждого из них.

9 · 5 = 45 (см 2 ) – площадь большего прямоугольника

5 · 3 = 15 (см 2 ) – площадь меньшего прямоугольника

А как найти площадь незаштрихованной фигуры? Площадь этой фигуры найдём, если из площади большего прямоугольника вычтем площадь меньшего прямоугольника.

45 – 15 = 30 (см 2 ) – площадь незаштрихованной фигуры

Ответ: площадь незаштрихованной фигуры равна 30 см 2 .

Источник

«Измерение площадей плоских фигур произвольной формы: нестандартные методы»

  • Авторы
  • Руководители
  • Файлы работы
  • Наградные документы

Шихалиев Р.М. 1


1МБОУ «СОШ №3 г. Тосно»

Неизвестный Е.В. 1


1МБОУ «СОШ №3 г. Тосно»


Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Введение

Работа посвящена исследованию и сравнению методов измерения площадей фигур произвольной формы.

Актуальность и практическая значимость исследования.

В школьном курсе математики мы в основном имеем дело с многоугольниками. С проблемой вычисления площади фигур я столкнулся при решении различных задач, суть которых сводилась к тому, что требовалось найти площадь различных многоугольников, которых мы не рассматривали на уроках математики. Ведь до 8 класса мы знакомимся только с формулами для вычисления площади квадрата, прямоугольника и прямоугольного треугольника. Так как на уроке мы обычно выполняем решение в тетради, то я обратил внимание, что вычислить площадь того же квадрата помогают клетки, изображенные в тетради. Просматривая различную информацию в интернете, я натолкнулся на формулу, которая позволяет вычислить площадь фигуры, но только не по клеткам, а по их узлам. Между тем, на практике часто возникает необходимость найти площадь фигуры неправильной формы. Например, необходимость определить площадь территории по плану или карте. Но для площадей сложных фигур отсутствуют общие формулы, аналогичные формулам для многоугольников. Впоследствии мне захотелось узнать, есть ли другие способы для вычисления площади различных фигур на клетчатой бумаге, какой из них проще, менее затратен по времени.

Гипотеза: площадь сложной фигуры может быть измерена приближенными методами с точностью, достаточной для практических целей.

Цель работы: исследовать различные способы вычисления площадей фигур, сравнить полученные результаты.

Задачи исследования:

изучить литературу по исследуемой теме;

отобрать интересную и понятную информацию для исследования;

найти различные методы и приёмы вычисления площади фигур на клетчатой бумаге.

изучение методов нахождения площади с помощью взвешивания.

измерение с помощью методов взвешивания площадей контрольных фигур: прямоугольника, квадрата, выявление погрешностей измерения

провести сравнительный анализ «плюсов» и «минусов» найденных способов.

провести эксперимент в 8В классе об выявлении математических знаний у учащихся при вычислении площади фигур;

Поиск интересных задач на нахождение площади фигуры.

проанализировать и систематизировать полученную информацию.

Объектом исследования являются методы измерения площади фигур произвольной формы:

1) метод взвешивания;

2) использование клетчатой бумаги;

3) применение точных формул.

Предметом исследования является площадь фигур произвольной формы.

Из истории возникновения понятия «Площадь».

В повседневной жизни мы часто встречаемся с понятием площади. Мы говорим: площадь квартиры, площадь садового участка и т.д.

Необходимость в понятии «площадь» возникла из жизненных потребностей. В древности люди использовали для измерения длин те измерительные приборы, которые всегда были при себе.

Позже возникла потребность в измерении и сравнении разнообразных «фигур» (н.п. земельных участков). Было необходимо ввести величину, которая характеризовала бы величину той части плоскости, которую занимает фигура. Эту величину назвали площадью.

Измерение площадей является одним из самых древних разделов геометрии. В частности, название “геометрия” означает “землемерие”, т.е. связано именно с измерением площадей. Основы этой науки были заложены в Древнем Египте, где после каждого разлива Нила приходилось заново производить разметку участков, покрытых плодоносным илом, т. е. вычислять их площади.

Вавилоняне, так же как и египтяне измеряли большей частью простейшие фигуры, встречающиеся при межевании земель, возведении стен и насыпей, строительстве плотин и каналов и т.п.

Сохранилось немало планов земельных угодий, разделенных на прямоугольники, трапеции и треугольники, а также планов различных строений, свидетельствующих, что вавилонский землемер или архитектор должен был хорошо чертить и проводить геометрические расчеты.

Многие ученые решали проблему вычисления площади фигуры. В историю с понятием площади вошли имена Евклида, Архимеда, Пифагора, Герона Александрийского, Рене Декарта, Пьера Ферма, Георга Пика и др. Ими открыто большое количество различных формул и способов для вычисления площади фигуры.

Способы вычисления площади фигуры на клетчатой бумаге.

При изучении вычисления площадей многоугольников на клетчатой бумаге я заметил, что все задачи строятся на понятии узла. Узел напоминает узел в рыболовной сетке — пересечение горизонтальных и вертикальных линий. Все задачи достаточно разнообразны и занимательны, они заставляют думать, размышлять, анализировать, искать аналогии.

Рис.1. фотография рыбацкой сетки

Рассмотрим вычисление площади одной и той же фигуры тремя способами и сравним результат вычисления. [1, с.36]

Три способа вычисления площади выпуклого многоугольника.

Разбиение. Смысл данного способа состоит в том, что многоугольник разрезается на прямоугольники и (или) прямоугольные треугольники с вершинами в узлах сетки.

Тогда площадь фигуры можно сосчитать по формуле:

Sф = S1 + S2 + S3 = 10 + 1 + 12 = 23.

Дополнение до прямоугольника. Смысл данного способа – это дополнение многоугольника до прямоугольника так, чтобы его стороны проходили через вершины четырехугольника, а затем вычитание лишних частей. Получим, что площадь фигуры равна:

Sф = Sпр — (S1 + S2) = 36 — (1 + 12) = 23.

Формула Пика. Любая фигура изображенная на листе бумаги делит его на внутреннюю область и внешнюю, а еще есть граничные точки многоугольника. Нас интересуют внутренние узлы и узлы, которые лежат на границе многоугольника. Тогда формула выглядит так S = В + Г/2 — 1, где В — количество внутренних узлов, а Г — количество узлов на границе многоугольника.

Эта формула получила название формула Пика в честь австрийского математика Георга Пика которая появилась в его восьмистраничной работе 1899 года, опубликованной в Праге.

Используя рисунок В= 17, Г = 14, получаем

S = 17 + 14/2 — 1 = 23.

Вычисляя площадь выпуклого многоугольника тремя способами, я получил один и тот же результат.

Три способа вычисления площади невыпуклого многоугольника.

Способ разбиенияне подходит для данной фигуры, т.к. невозможно разбить ее на прямоугольники и (или) прямоугольные треугольники с вершинами в узлах сетки.

Дополнение до прямоугольника.

Достраивая многоугольник до прямоугольника, и отсекая лишние части, найдем площадь фигуры

Sф = S — (S1 + S2 + S3 + S4) = 42 — (6 + 2 + 1 + 1) = 16 — 10 = 6.

ФормулаПика.

При подсчете внутренних узлов многоугольника и узлов, лежащих на границе получим, что

В = 5; Г = 4; S = 5 + 4/2 — 1 = 6.

И опять я получил один и тот же результат.

Вычисление площади кольца по формуле Пика.

А если взять не многоугольник, а, например, кольцо и перенести его на клетчатую бумагу? Понятно, что первый и второй способы не удастся использовать. Применим формулу Пика и сравним полученный результат с результатом, полученным используя формулу для вычисления площади круга.

Возьмем кольцо, которое построим с помощью двух окружностей с радиусами R=4 и r = 2.

Вычислим площадь кольца с помощью формулы Пика:

В = 32, Г = 8, S= 32 + 4 — 1 = 35.

Вычислим площадь кольца по формуле площади круга, округлив число π до единиц.

S = πR2 — πr2 = 3* 16 — 3*4 = 48 — 12 = 36.

Округлим теперь π до десятых:

S = πR2 — πr2 = 3,1* 16 — 3,1*4 = 49,6 — 12,4 = 37,2.

А если округлить число π до сотых, то получим:

S = πR2 — πr2 = 3,14* 16 — 3,14*4 = 50, 24 — 12,56 = 37,68.

Сравнив результаты можно сделать вывод, что существует погрешность в вычислении площади по формуле Пика и чем точнее число π, тем она больше. Следовательно, данную формулу можно применять только для вычисления площадей многоугольников. [2, с.17], [4]

Метод взвешивания

Метод измерения вспомогательной величины придуман еще в древности и заключается в измерении массы плоской копии измеряемой фигуры. Если толщина листа, из которого изготовлены взвешиваемая фигура, постоянна, то масса фигуры прямо пропорциональна ее площади. Нужно нанести на плотную бумагу квадрат, площадь которого S0 точно известна, вырезать его и определить на весах его массу m0. На такую же бумагу перенести фигуру с искомой площадью S. Вырезать фигуру и определите её массу m. Затем, пользуясь правилом пропорции – S/S0 = m/m0, вычислить искомую площадь. [3, с.65]

Тогда

Вычисление площади клинового листа

Для решения задачи была взят фотография кленового листа (рис. 2).

Рисунок 2. Фотография листа клена

1Разбиение.

Окантовка листа была перенесена на лист бумаги и была разбита (разрезана) на прямоугольники и (или) прямоугольные треугольники. (Рисунок 3).

Рисунок 3. Разбиение листа клена на прямоугольники и прямоугольные треугольники

После чего произведен расчет площади каждого прямоугольника и прямоугольного треугольника в см2

     
     
     
     
   

7,56

     
     
     
     
     
     
     
     
     
     
     
     
     
     
     

Тогда общая площадь листа будет равна:

Sобщая = S1+S2+…+S54

см2

2. Дополнение до прямоугольника.

Окантовка листа была перенесена на лист бумаги и была дополнена до прямоугольника. (Рисунок 4).

Рисунок 4. Дополнение листа клена на прямоугольника

После чего произведен расчет площади общего прямоугольника и каждого прямоугольника и прямоугольного треугольника в см2

Общий прямоугольник имеет размеры 18,2 см на 15 см, т. Е. его площадь прямоугольника составляет S=18,2∙15=273 см2

     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     

Sобщая= S – (S1+S2+…+S42)

см2

3Формула Пика.

Окантовка листа была перенесена на миллиметровую бумагу. (Рисунок 5).

Рисунок 5. Разбиение листа клена на узлы

В (внутренние точки) =13353 шт.

Г (граничные точки) = 725 шт.

Тогда по формуле S = В + Г/2 – 1

S=13353+362,5-1=13714,5мм2=137,145 см2

4. Метод взвешивания

Для проведения взвешивания взяли лист бумаги SvetoCopy. По ее плотности определили вес бумаги при помощи таблицы и путем взвешивания. Результаты сошлись. Вес одного листа бумаги А4 =5г. Размеры листа А4 равны 210х297мм, т.е. площадь одного листа равна S0 = 623,7 см2

Рис. 6. Фотография оборотной стороны упаковки бумаги SvetoCopy

Рис. 7. Таблицы дляболее точного измерения массы листа по его плотности.

Для определения погрешности вычислений вырезали в качестве эталонов несколько геометрических фигур (прямоугольник (эталон 1) и квадрат (эталон 2)), площадь которых можно сравнить вычислив ее по формуле.

Прямоугольник имеет размеры: 7см на 5 см, а квадрат: 5см на 5см.

S0 = 623,7 см2

т0= 5000мг

Наименование

образца

Площадь

по формуле, см2

Взвешивание

Погрешность измерения

Масса,

мг

Площадь, см2

эталон 1

35

250

31,185

1,908

эталон 2

25

150

18,711

3,145

Лист А4

623,7

5000

623,7

0

Лист клена

1100

137,214

2,526

Количественной характеристикой точности является погрешность измерения. Если известно точное значение некоторой величины и ее приближенное значение x, то предельной абсолютной погрешностью приближенного значения называется величина , а предельной относительной погрешностью – величина . Однако на практике точные значения измеряемой величины неизвестны, а приближенное значение заключено в некоторых пределах: . В этом случае считают, что .

Таким образом после взвешивания величина площади листа клена составляет 137,214 см2 с погрешностью измерения 2,53 см2

Рис. 8. Фотографии опреденения массы листа

Сравнительный анализ способов нахождения площади многоугольника на клетчатой бумаге.

1. Разбиение.

Этот способ прост в подсчёте площадей фигур, которые разбиваются на прямоугольники и (или) прямоугольные треугольники с вершинами в узлах сетки. К ним относятся выпуклые многоугольники.

К минусам можно отнести то, что в использовании этого способа приходится производить множество действий, а так же невозможность подсчёта площади фигур, которые не разбиваются на прямоугольники и (или) прямоугольные треугольники с вершинами в узлах сетки.

2. Дополнение до прямоугольника.

Этот способ так же прост в подсчёте при вычислении площади при небольшом количестве фигур, площадь которых необходимо отнять.

Минусы этого способа — сложность подсчёта площади многоугольников необычной

формы, большое количество фигур, площадь которых необходимо отнять, а так же невозможность подсчёта площади фигур, не относящихся к многоугольникам.

3. Формула Пика.

К плюсам я отнес то, что легко вычисляется площадь многоугольника с необычной формой, в отличие от предыдущих способов, краткость формулы, а так же возможность вычисления приближенного значения площади местности по карте, представив ее в виде многоугольника, перенеся ее на клетку.

Минусами этого способа считаю сложность вычисления площади фигуры с большим количеством узлов, а так же, если в фигуре есть «спорные» узлы (узлы, лежащие близко к стороне многоугольника). Вычисляя площадь фигур, не относящихся к многоугольникам, результат получается не точным.

4. Метод взвешивания.

К минусам я отнес, что можно вычислить площадь фигуры с помощью весов с большой погрешностью измерения и большей продолжительности времени измерения

Заключение

Изучив различные источники, выяснилось, что существует различные способы вычисления фигур по клеткам, но для меня были интересны и понятны три: разбиение, дополнение до прямоугольника и вычисления по формуле Пика.

Моя гипотеза – о том, что если геометрическая фигура изображена на клетчатой бумаге, то ее площадь можно вычислить различными способами и убедиться, что результаты вычислений будут одинаковыми, частично подтвердилась. Рассмотрев все три способа, я пришел к выводу, что не для всякой фигуры можно приметить каждый из них. У каждого из них есть свои плюсы и минусы.

Все три способа можно применить только для выпуклых многоугольников, перенеся их на клетчатую поверхность.

Формула Пика интересна своей простотой. И пусть она при вычислении площадей, не относящихся к многоугольникам, дает приближенное значение, можно легко оценить площадь той или иной территории на карте.

Как показал метод взвешивания является пригодным для приближенного нахождения площадей фигур сложной формы.

Список литературы и Интернет-ресурсов

Жарковская Н. М., Рисс Е. А. Геометрия клетчатой бумаги. Формула Пика // Математика, 2009, № 17, с. 24-25.

История математики с древнейших времен до начала XIX столетия, под редакцией Ю.П. Юшкевича., издательство Наука., М., 1970г

Смирнова И. М., Смирнов В. А. Геометрия на клетчатой бумаге. – М.: Чистые пруды, 2009.

https://ege.sdamgia.ru/

http://www.pppa.ru/additional/01geodesy/06/02topo.php

http://ru.wikihow.comhttp://knowledge.allbest.ru/mathematics/3c0b65635b3bd68b4c43b89521306d27_0.html

http://argonavt.narod.ru/Kenpark.html

Приложение 1

Опрос сверстников о знании ими способов вычисления площадей плоских фигур

Анкета

Умеете ли вы определять площадь не стандартного многоугольника?

Если да, то как? (определите площади следующих фигур)

А можете ли вы определить площадь нестандартной фигуры (например, площадь лужи). И если да, то как?

Результаты опроса

1 вопрос:

Рис. 9. Гистограмма ответов на 1 вопрос

2. вопрос:

Рис. 10. Гистограмма ответов на 2 вопрос

Вывод по 1 и 2 вопросу: практически 70% респондентов не владеют знаниями вычисления площади многоугольника, если он не стандартной формы.

3 вопрос:

Рис. 11. Гистограмма ответов на 3 вопрос

После проведения анкетирования я показал как измерить площадь лужи при помощи палетки (использовал видео с сайта «математические этюды»)

Рис. 12. Фотографии моего рассказа одноклассникам о измерении площади лужи при помощи палетки

Приложение 2

Работы одноклассников по вычислению площади собственной ладони по формуле Пика

Рис. 13. Фотографии работ одноклассников по вычислению площади собственной ладони по формуле Пика

Просмотров работы: 5096

Периметр данного многоугольника можно найти сложив длинны всех его сторон, но для начала придётся найти длинны двух сторон — АВ и АК:

АВ = CD + EK = 2 + 1 = 3 см

AK = BC + DE = 4 + 2 = 6 см

Теперь можно найти периметр всей фигуры:

Р = AB + BC + CD + DE + EK + AK = 3 + 4 + 2 + 2 + 1 + 6 = 18 см

Площадь же многоугольника можно найти, как минимум пятью способами ( правда не уверен, что в третьем классе уже умеют находить площадь трапеций по длинам оснований и высоте — в данном случае трапеции ABCD и ADEK ). Для того, чтобы проще описать способы решения я добавил на чертёж ещё три точки ( впрочем, для разных вариантов решения не все точки потребуются одновременно ).

Вот такой чертёжик у меня получился

площадь многоугольника

Проще всего найти площадь этой фигуры так

S = S(ABEK) — S(CDEH) = AB * AK — CD * DE = 3 * 6 — 2 * 2 = 18 — 4 = 14 см²

Второй способ:

S = S(ABCG) + S(DEGK) = AB * BC + DE * EK = 3 * 4 + 2 * 1 = 12 + 2 = 14 см²

Третий способ:

S = S(BCDF) + S(AFEK) = BC * CD + AK * EK = 4 * 2 + 6 * 1 = 8 + 6 = 14 см²

Четвёртый способ:

S = S(BCDF) + S(AFDG) + S(DEKG) = BC * CD + AG * AF + DE * EK = 4 * 2 + 4 * 1 + 2 * 1 = 8 + 4 + 2 = 14 см²

Ну, и, наконец, пятый способ с трапециями ( извиняюсь, забыл провести на чертеже ещё и AD, впрочем в решении его величина не важна ):

S = S(ABCD) + S(ADEK) = BC * ( AB + CD )/2 + EK * ( DE + AK )/2 = 4 * ( 3 + 2 )/2 + 1 * ( 2 + 6 )/2 = 10 + 4 = 14 см²

Ответ: периметр многоугольника равен 18 см, а его площадь — 14 см²

Две фигуры называют равными, если одну их них можно так наложить на другую,
что эти фигуры совпадут.

Площади равных фигур равны. Их периметры тоже равны.

Площадь квадрата

Запомните!
!

Для вычисления площади квадрата нужно умножить его длину на саму себя.

S = a · a

Пример:

площадь квадрата
SEKFM = EK · EK

SEKFM = 3 · 3 = 9 см2

Формулу площади квадрата, зная
определение степени,
можно записать следующим образом:

S = a2

Площадь прямоугольника

Запомните!
!

Для вычисления площади прямоугольника нужно умножить его длину на ширину.

S = a · b

Пример:

площадь прямоугольника
SABCD = AB · BC

SABCD = 3 · 7 = 21 см2

Запомните!
!

Нельзя вычислять периметр или площадь, если длина и ширина выражены в разных единицах длины.

Обязательно проверяйте, чтобы и длина, и ширина были выражены в одинаковых единицах, то есть обе в см, м и т.д.

Площадь сложных фигур

Запомните!
!

Площадь всей фигуры равна сумме площадей её частей.

Задача: найти площадь огородного участка.

площадь фигуры

Так как фигура на рисунке не является ни квадратом, ни прямоугольником, рассчитать её площадь можно используя
правило выше.

Разделим фигуру на два прямоугольника, чьи площади мы можем легко рассчитать по известной формуле.

площадь сложной фигуры
SABCE = AB · BC
SEFKL = 10 · 3 = 30 м2
SCDEF = FC · CD
SCDEF = 7 · 5 = 35 м2

Чтобы найти площадь всей фигуры, сложим площади найденных прямоугольников.
S = SABCE + SEFKL
S = 30 + 35 = 65 м2

Ответ: S = 65 м2 — площадь огородного участка.


Свойство ниже может вам пригодиться при решении задач на площадь.

Запомните!
!

Диагональ прямоугольника делит прямоугольник на два равных треугольника.

Площадь любого из этих треугольников равна половине площади прямоугольника.

Рассмотрим прямоугольник:

диагональ прямоугольника делит на равные треугольники

АС — диагональ прямоугольника
ABCD. Найдём площадь треугольников
знак треугольника
ABC и
знак треугольникаACD

Вначале найдём площадь прямоугольника по формуле.

SABCD = AB · BC
SABCD = 5 · 4 = 20 см2

Sзнак треугольника
ABC
= SABCD : 2

Sзнак треугольника
ABC
= 20 : 2 = 10 см2

Sзнак треугольника
ABC
=
Sзнак треугольника
ACD
= 10 см2


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

3 декабря 2015 в 22:54

Ирина Петренко
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Ирина Петренко
Профиль
Благодарили: 0

Сообщений: 1

как написать правильно площадь треугольника?undecided

0
Спасибоthanks
Ответить

9 декабря 2015 в 19:41
Ответ для Ирина Петренко

Тима Клюев
(^-^)
Профиль
Благодарили: 0

Сообщений: 8

(^-^)
Тима Клюев
Профиль
Благодарили: 0

Сообщений: 8


S(рисуешь мини треугольник) = ,,,,,

0
Спасибоthanks
Ответить


Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как составить программы для компа
  • Как найти красивых девушек вконтакте
  • Как найти свои способности в магии
  • Как найти ожидаемую частоту
  • Как на пожар составить предложение

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии