I. Механика
Тестирование онлайн
Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.
Угловая скорость
Выберем на окружности точку 1. Построим радиус. За единицу времени точка переместится в пункт 2. При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.
Период и частота
Период вращения T — это время, за которое тело совершает один оборот.
Частота вращение — это количество оборотов за одну секунду.
Частота и период взаимосвязаны соотношением
Связь с угловой скоростью
Линейная скорость
Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.
Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено — это есть период T. Путь, который преодолевает точка — это есть длина окружности.
Центростремительное ускорение
При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.
Используя предыдущие формулы, можно вывести следующие соотношения
Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.
Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.
Вращение Земли
Связь со вторым законом Ньютона
Как вывести формулу центростремительного ускорения
Движение по циклоиде*
Перемещение тел по окружности достаточно распространено в нашей жизни и в природе. Яркими примерами этого типа перемещения являются вращения ветровых мельниц, планет вокруг своих звезд и колес транспортных средств. В данной статье рассмотрим, какими формулами движение по окружности тел описывается.
Перемещение по окружности и по прямой линии в физике
В физике вопросами движения занимается кинематика. Она устанавливает связь между величинами, описывающими этот процесс. В динамике также уделяется внимание движению, однако она ориентирована на описание причин его возникновения. Другими словами, если для кинематики главными физическими величинами являются путь и скорость, то для динамики — это действующие на тела силы.
Вам будет интересно:Интерес: определение, понятие, типы и функции
В физике принято выделять два идеальных типа траекторий движения:
- прямая линия;
- окружность.
Математический аппарат для описания движения по обоим типам траекторий развит настолько хорошо, что понимание формул, например для прямолинейного движения, автоматически приводит к пониманию выражений для движения по окружности. Единственная принципиальная разница между формулами указанных типов перемещения заключается в том, что для движения по окружности удобно использовать угловые характеристики, а не линейные.
Вам будет интересно:Педагогическая система Макаренко: принципы и компоненты
Далее в статье будем рассматривать исключительно кинематические формулы движения по окружности тел, не вдаваясь в подробности динамики.
Угловые характеристики движения: угол поворота
Прежде чем записывать формулы движения по окружности в физике, следует ввести величины, которые будут фигурировать в этих формулах.
Начнем с угла поворота. Будем обозначать его греческой буквой θ (тета). Поскольку вращение предполагает движение точки вдоль одной и той же окружности, то значение угла поворота θ за определенный промежуток времени можно использовать для определения количества оборотов, которое сделала эта точка. Напомним, что вся окружность равна 2*pi радиан, или 360o. Тогда формула для числа оборотов n через угол θ примет вид:
Вам будет интересно:Академик Рыбаков Б.А.: биография, археологическая деятельность, книги
n = θ/(2*pi)
Здесь и далее во всех формулах угол выражается в радианах.
Пользуясь известным углом θ, также можно определить линейное расстояние, которое точка прошла вдоль окружности. Это расстояние будет равно:
L = θ*r
Здесь r — радиус рассматриваемой окружности.
Угловая скорость и ускорение
Кинематические формулы движения по окружности точки предполагают также использование понятий угловой скорости и углового ускорения. Обозначим первую буквой ω (омега), а вторую буквой α (альфа).
Физический смысл угловой скорости ω прост: эта величина показывает, на какой угол в радианах поворачивается точка за каждую секунду времени. Данное определение имеет следующее математическое представление:
ω = dθ/dt
Эта формула скорости движения по окружности записана в дифференциальной форме. Полученная с ее помощью величина ω называется мгновенной скоростью. Ее удобно использовать, если движение не является равномерным, то есть происходит с переменной скоростью.
Угловое ускорение α — это величина, которая описывает быстроту изменения скорости ω, то есть:
α = dω/dt
Угловое ускорение измеряется в радианах в секунду квадратную (рад/с2). Так, 1 рад/с2 означает, что тело увеличивает за каждую секунду времени скорость на 1 рад/с.
Учитывая выражение для ω, записанное выше, равенство можно представить в такой форме:
α = d2θ/dt2
В зависимости от особенностей движения по окружности величина α может быть постоянной, переменной или нулевой.
Равномерное движение
Когда на вращающееся тело не действует никакая внешняя сила, то угловая скорость будет оставаться постоянной сколь угодно длительное время. Такое движение получило название равномерного вращения. Оно описывается следующей формулой:
θ = ω*t
В этом выражении переменными являются всего две величины: t и θ. Скорость ω = const.
Следует отметить один важный момент: нулю равна лишь равнодействующая внешних сил на тело, внутренние же силы, действующие в системе, нулю не равны. Так, внутренняя сила заставляет вращающееся тело изменять свою прямолинейную траекторию на криволинейную (окружность). Эта сила приводит к появлению центростремительного ускорения. Последнее не изменяет ни скорость ω, ни линейную скорость v, оно лишь изменяет направление движения.
Равноускоренное движение по окружности
Формулы для этого типа перемещения можно получить непосредственно из приведенных математических выражений для величин ω и α. Равноускоренное движение предполагает, что за более-менее длительный промежуток времени модуль и направление ускорения α не изменяются. Благодаря этому можно проинтегрировать дифференциальное выражение для α и получить следующие две формулы:
ω = ω0 + α*t;
ω = ω0 — α*t
Очевидно, что в первом случае движение будет равноускоренным, во втором — равнозамедленным. Величина ω0 здесь — это некоторая начальная скорость, которой вращающееся тело обладало до появления ускорения.
Для равноускоренного движения не существует конечной скорости, поскольку она может возрастать сколь угодно долго. Для равнозамедленного движения конечным состоянием будет прекращение вращения, то есть ω = 0.
Теперь запишем формулы для определения угла θ при движении с постоянным ускорением. Эти формулы получаются, если произвести двойное интегрирование по времени для выражения α через θ. Получаются следующие выражения:
θ = ω0*t + α*t2/2;
θ = ω0*t — α*t2/2
То есть центральный угол θ, на который тело повернется за время t, будет равен сумме двух слагаемых. Первое слагаемое — это вклад в θ равномерного движения, второе — равноускоренного (равнозамедленного).
Связь между угловыми и линейными величинами
При рассмотрении понятия угла поворота θ уже была приведена формула, которая его связывает с линейным расстоянием L. Здесь же рассмотрим аналогичные выражения для скорости ω и ускорения α.
Линейная скорость v при равномерном движении определяется как расстояние L, пройденное за время t, то есть:
v = L/t
Подставляя сюда выражение для L через θ, получаем:
v = L/t = θ/t*r = ω*r
Мы получили связь между линейной и угловой скоростью. Важно отметить, что удобство использования угловой скорости связано с тем, что она не зависит от радиуса окружности. В свою очередь, линейная скорость v возрастает линейно с увеличением r.
Остается записать связь между линейным ускорением a и его угловым аналогом α. Чтобы это сделать, запишем выражение для скорости v при равноускоренном движении без начальной скорости v0. Получаем:
v = a*t
Подставляем сюда полученное выражение связи между v и ω:
ω*r = a*t =>
a = ω/t*r = α*r
Как и скорость, линейное ускорение, направленное по касательной к окружности, зависит от радиуса.
Ускорение центростремительное
Выше уже было сказано несколько слов об этой величине. Здесь приведем формулы, которые можно использовать для ее вычисления. Через скорость v выражение для центростремительного ускорения ac имеет вид:
ac = v2/r
Через угловую скорость его можно записать так:
ac = ω2*r2/r = ω2*r
Величина ac не имеет никакого отношения к тангенциальному ускорению a. Центростремительное ускорение обеспечивает поддержание вращающегося тела на одной окружности.
Задача на определение угловой скорости вращения планеты
Известно, что ближе всего к солнцу находится Меркурий. Полагая, что он вращается по окружности вокруг светила, мы можем определить его угловую скорость ω.
Для решения задачи следует обратиться к справочным данным. Из них известно, что планета делает полный оборот вокруг светила за 87 дней 23,23 часа земных. Это время называется периодом обращения. Учитывая, что движение происходит с постоянной угловой скоростью, запишем рабочую формулу:
θ = ω*t =>
ω = θ/t
Остается перевести время в секунды, подставить значение угла θ, соответствующее полному обороту (2*pi), и записать ответ: ω = 8,26*10-7 рад/c.
Человек регулярно сталкивается с разными видами движения. Перемещение тела по окружности позволяет понять многие физические процессы. На основе закономерностей такого явления работают разнообразные механизмы. Рассчитать характеристики движения по окружности достаточно просто, если знать и уметь применять несколько основных формул.
Движение тела по окружности — какими законами описывается
Движением по окружности в теории называют вращение какой-либо материальной точки или тела относительно оси, неподвижной в выбранной системе отсчета и не проходящей через центр тела.
Тело может двигаться по окружности двумя способами:
- равномерно;
- неравномерно.
Равномерное движение тела характеризуется постоянной угловой скоростью. Для описания такого перемещения применяют следующие формулы:
- угловая скорость: (omega =frac{2pi }{T})
- скорость движения: (V =frac{2pi R}{T}=omega R)
- угол поворота: (phi =2pi frac{t}{T}=omega t)
- ускорение: (frac{2pi v}{T}=omega ^{2}R)
Неравномерное движение возможно при переменной угловой скорости тела. В данном случае применимы формулы:
- тангенциальное ускорение: (a_{t}=frac{dv}{dt})
- центростремительное ускорение: (a_{n}=frac{v^{2}}{R}=omega ^{2}R)
В представленных уравнениях используются такие параметры, как:
- Т — период вращения;
- t — время;
- ω — угловая скорость;
- R — радиус;
- at — тангенциальное ускорение;
- an — центростремительное или полное ускорение.
При отсутствии специальных оговорок, в процессе решения задач движение тела по окружности принимают за равномерное. Для расчета пройденного пути используют формулу:
(S=frac{v}{t})
где:
- S является расстоянием, которое преодолело тело;
- v представляет собой скорость движения тела;
- t определяет время движения.
Таким образом, справедливы выражения:
(v=frac{S}{t})
(t =frac{v}{S})
Величины, которые применяют для решения задач, характеризуются положительными значениями:
S > 0, v > 0, t > 0
При решении задач принято все величины переводить в единицы измерения, согласно системе СИ.
Секретом заданий на движение тела по окружности является то, что обгоняющий будет преодолевать на 1 круг больше при первом обгоне. Данное расстояние считается на n кругов больше, если первый объект обогнал другого в n-ый раз.
Задачи на движение по окружности от простых до сложных
Задачи на движение тела по окружности отличаются по степени сложности. Можно рассмотреть примеры простых заданий.
Задача 1
Длина круговой трассы составляет 8 километров. Из ее точки в один момент времени в одинаковом направлении выехали два автомобиля. Первый автомобиль развил скорость 114 км/ч и, спустя 20 минут после начала движения, обогнал второй автомобиль на один круг. Требуется определить скорость, с которой двигался второй автомобиль. Ответ необходимо представить в км/ч.
Решение
Известно, что старт произошел одновременно для обоих автомобилей. Через 20 минут после начала движения первое транспортное средство опережало второе на один круг. Таким образом, в течение 20 минут или 1/3 часа первый автомобиль преодолел на 1 круг больше, то есть на 8 км больше. За час первый автомобиль проехал на 8*3=24 км больше, чем второй. Скорость второго транспортного средства на 24 км/ч меньше по сравнению с первым, и равна 114-24=90 км/ч.
Ответ: второй автомобиль двигался со скоростью 90 км/ч.
Задача 2
Из пункта А круговой трассы выехал велосипедист, а спустя полчаса стартовал мотоциклист. Через 10 минут после начала пути водитель мотоцикла догнал велосипедиста в первый раз. Спустя еще 30 минут мотоциклист догнал велосипедиста повторно. Требуется определить, какова скорость мотоциклиста, в том случае, когда длина трассы составляет 30 км. Ответ необходимо представить в км/ч.
Решение
В первую очередь требуется перевести минуты в часы. Скорости мотоциклиста и велосипедиста можно обозначить х и у. В первый раз водитель мотоцикла обогнал велосипедиста, спустя 10 минут или 1/6 часа после начала движения. До этого момента велосипедист находился в движении 40 минут или 2/3 часа.
Можно упростить запись условий задачи:
велосипедист: v = х, t = 2/3, S = 2/3*х;
мотоциклист: v = у, t = 1/6, S = 1/6*у.
Велосипедист и мотоциклист преодолели одинаковый путь:
(frac{1}{6}y=frac{2}{3}x)
Спустя 30 минут или 1/2 часа после первого обгона мотоциклист выполнил второй обгон велосипедиста.
Таким образом:
велосипедист: v = х, t = 1/2, S = 1/2*х;
мотоциклист: v = у, t = 1/2, S = 1/2*у.
Требуется определить расстояния, которые преодолели гонщики. Мотоциклист обогнал велосипедиста, то есть проехал больше на один круг. Это является ключевым моментом в данной задаче. Один круг составляет 30 километров. Второе уравнение будет иметь вид:
(frac{1}{2}y-frac{1}{2}x=30)
Далее необходимо решить полученную систему:
у = 4х
у – х = 60
Таким образом, х = 20, у = 80.
Ответ: скорость мотоциклиста равна 80 км/ч.
Бывают задания на движение тела по окружности с повышенной степенью сложности. Как правило, подобные примеры при невозможности проведения экспериментов требуют сложных вычислений.
Задача 3
На часах со стрелками время 8 часов 00 минут. Требуется определить, через сколько минут минутная стрелка в четвертый раз догонит часовую стрелку.
Решение
Спустя один час минутная стрелка преодолевает один круг, а часовая проходит лишь 1/12 циферблата. Допустим, что скорости равны 1 круг в час и 1/12 круга в час соответственно. Начало движения приходится на 8.00. Необходимо определить время, в течение которого минутной стрелке в первый раз удастся догнать часовую.
Минутная стрелка преодолеет на 2/3 круга больше. Исходя из этого, можно записать уравнение:
(1*t-frac{1}{12}t=frac{2}{3})
Таким образом, спустя 8/11 часа стрелки совпадут. Предположим, что через время z стрелки совпадут повторно. Минутная стрелка преодолеет расстояние 1*z, а часовая 1/12*z. При этом минутной стрелкой будет пройдено на один круг больше. Можно записать уравнение:
(1*z-frac{1}{12}z=1)
Решение данного уравнения будет таким:
(z=frac{12}{11})
Таким образом, через 12/11 часа стрелки совпадут повторно. Спустя еще 12/11 часа они встретятся вновь и так далее. Поэтому при старте в 8.00 в четвертый раз минутная стрелка догонит часовую через:
(frac{8}{11}+3frac{12}{11}) часа
Ответ: минутная и часовая стрелки совпадут в четвертый раз через (frac{8}{11}+3frac{12}{11})часа.
Нередко при решении задач на движение по окружности требуется рассчитать среднюю скорость тела. Важно, что данная величина не совпадает со средним арифметическим скоростей. Средняя скорость определяется с помощью формулы:
(v=frac{S_{0}}{t_{0}})
где v является средней скоростью;
S0 представляет собой общий путь;
t0 определяет общее время.
При наличии двух участков пути средняя скорость рассчитывается по формуле:
(v=frac{S_{1}+S_{2}}{t_{1}+t_{2}})
Наиболее сложными задачами считаются примеры с пятизначными дискриминантами. Рассмотрим алгоритм действий в таком случае.
Задача 4
Пара гонщиков участвует в соревновании. Путь, который требуется преодолеть, равен 60 кругам кольцевой трассы в 3 км. После одновременного старта первый гонщик пересек финиш раньше, чем второй на 10 минут. Требуется рассчитать среднюю скорость второго гонщика. Известно, что впервые первый участник обогнал второго на круг, спустя 15 минут после начала движения. Ответ требуется записать в км/ч.
Решение
Первый участник гонки, находясь в движении 15 минут, догнал второго гонщика на первом круге. Таким образом, в течение 15 минут он преодолел на 1 круг или на 3 км больше, чем второй. За час первый гонщик проехал 3*4=12 километров больше. При этом скорость его движения на 12 км/ч превышает скорость второго гонщика. 10 минут соответствует ¼ часа. Можно записать уравнение:
(frac{180}{x}-frac{180}{x+12}=frac{1}{6})
Далее необходимо преобразовать выражение к квадратному уравнению:
(x^{2}+12x-12960=0)
Таким образом, получен пятизначный дискриминант. Есть более простой вариант решения задачи. Можно записать уравнение:
(frac{180}{x}-frac{180}{x+12}=frac{1}{6})
В нем 180 можно поделить на 12. Заменим х=12z:
(frac{180}{12z}-frac{180}{12z+12}=frac{1}{6})
(frac{15}{z}-frac{15}{z+1}=frac{1}{6})
(frac{90}{z}-frac{90}{z+1}=1)
Данное равенство можно преобразить в квадратное уравнение. Целый положительный корень такого выражения z=9. Тогда получим:
(х=12z=108)
Ответ: средняя скорость второго гонщика равна 108 км/ч.
Нахождение линейной скорости при движении по окружности
Любая точка, находящаяся на окружности, перемещается с некоторой скоростью. Данная величина называется линейной скоростью. Вектор линейной скорости всегда совпадает по направлению с касательной к окружности. К примеру, стружка из точильного станка движется, повторяя направление мгновенной скорости.
Можно рассмотреть какую-то точку на окружности, совершившую один оборот. При этом было затрачено время равное периоду Т. Расстояние или путь, пройденный точкой, представляет собой длину рассматриваемой окружности.
Задачи на тему равномерное движение по окружности
Задача 1
Радиус выпуклого моста равен 90 м. Требуется определить скорость, с которой автомобиль должен пройти его середину, чтобы пассажир на мгновение ощутил невесомость.
Решение
Согласно условиям задачи:
R = 90 м
N = 0
Сила реакции опоры обладает нулевым значением, так как пассажир в состоянии невесомости не оказывает давление на сиденье автомобиля.
Решение задачи необходимо представить в системе отсчета, которая связана с Землей. Человек совершает движение вместе с автомобилем. Ускорение при этом направлено вниз. На пассажира действует сила притяжения Земли, которая будет центростремительной:
(mg=mfrac{v^{2}}{R})
Таким образом:
(v=sqrt{frac{Rmg}{m}}=sqrt{Rg}=sqrt{90*10}=30) м/с
Ответ: скорость автомобиля составляет 30 м/с.
Задача 2
Масса девочки 40 кг. Она качается на качелях, длина подвеса которых составляет 4 м. Требуется определить силу, с которой девочка давит на сиденье при прохождении среднего положения со скоростью 5 м/с.
Решение
На девочку действует сила тяжести (mvec{g}) и сила реакции опоры (vec{N}).
Качели находятся под действием силы давления (vec{F_{g}}), которая направлена вниз. Согласно третьему закону Ньютона, данная сила соответствует взятой со знаком минус силе реакции опоры:
(vec{F_{g}}=-vec{N})
Таким образом, решением задачи является определение силы реакции опоры. Исходя из закона динамики:
(mvec{g}+vec{N}= mvec{a})
В проекции на ось Х:
(N-mg=mfrac{v^{2}}{R})
Из чего следует вывод:
(F_{g}=left|N right|=m(g+frac{v^{2}}{R}))
(F_{g}=40(10+frac{5^{2}}{4})=650) Н
Ответ: сила равна 650 Н.
Задача 3
Шарик привязали с помощью нити к подвесу. Он описывает в горизонтальной плоскости окружность, совершая движение с постоянной скоростью. Нить обладает длиной 0,6 м и составляет с вертикалью угол в 60 градусов. Необходимо рассчитать, какова скорость шарика.
Решение
Сумма сил (mvec{g}) и натяжения (vec{F_{n}}), исходя из правила параллелограмма, соответствует результирующей силе, направленной в центр вращения (sum_{i}^{}{vec{F}_{i}}):
(sum_{i}^{}{vec{F}_{i}}= mvec{g}+vec{F_{n}}= mvec{a})
Силы в сумме определяются из прямоугольного треугольника с углом α равным 60 градусам. Исходя из того, что (vec{F_{n}}) является противолежащим катетом, получим:
(vec{F_{n}}=mg*tg α)
Таким образом:
(mg*tg α= mvec{a}= mfrac{v^{2}}{R})
(v^{2}=frac{mg*tan alpha *R}{m}=gR*tan alpha)
R включен в прямоугольный треугольник, в котором длина нити представляет собой гипотенузу. R является катетом, противолежащий углу α в 60 градусов.
(R=l*sin alpha)
Преобразив формулу квадрата скорости шарика с помощью подстановки выражения для радиуса, получим:
(v^{2}=gl*sin alpha *tan alpha )
(v=sqrt{gl*sin alpha *tan alpha }=sqrt{10*0.6*frac{sqrt{3}}{2}*sqrt{3}}=3) м/с
Ответ: скорость шарика составляет 3 м/с.
Задача 4
Необходимо определить максимальную скорость мотоцикла по горизонтальной плоскости, который описывает при этом дугу окружности с радиусом 100 м. Коэффициент трения резины о плоскость составляет 0,4.
Решение
Во время поворота мотоцикл наклоняется к центру поворота. На транспортное средство оказывают действие:
- сила тяжести (mvec{g});
- сила реакции опоры (vec{N});
- сила трения (vec{F_{tr}});
- сила тяги (vec{F_{t}});
- сила сопротивления (vec{F_{c}}).
Данные силы в сумме составляют:
(mvec{g}+vec{N}+vec{F_{tr}}+vec{F_{t}}+vec{F_{c}}= mvec{a})
Согласно выражениям:
(mvec{g}+vec{N}=0)
(vec{F_{t}}+vec{F_{c}}=0)
Получим:
(vec{F_{tr}}= mvec{a})
Сила трения составляет:
(F_{tr}= mu mg)
Таким образом:
(mu mg=ma= mfrac{v^{2}}{R})
(v=sqrt{frac{mu mgR}{m}}=sqrt{mu gR}=sqrt{0.4*10*100}=20) м/с
Ответ: максимальная скорость равна 20 м/с.
Задачи разной сложности по теме движения тела по кружности часто встречаются не только в школьной программе, но и во время обучения в вузе. Знание основных закономерностей позволит быстро найти решение примера любой сложности. Если в процессе расчетов возникают трудности, всегда можно обратиться за помощью к сервису Феникс.Хелп.
В механике мы сталкиваемся с круговым движением, когда объекты движутся по кривой. Подчеркнем о перемещении при круговом движении.
В отличие от линейного перемещения, представляющего собой разницу между начальным и конечным положениями, при круговом движении основное значение придается угловому перемещению, которое является мерой смещения объектов в радианах. Он дает представление об угле движения объекта по круговой траектории.
Перемещение действительно является важной физической величиной в механике. Давайте глубже поймем смещение в контексте кругового движения.
Имеет ли круговое движение перемещение?
Смещение — одна из физических величин, с которыми мы сталкиваемся в механике. Мы исследуем, имеет ли значение смещение в круговом движении.
Круговое движение имеет смещение. Мера наименьшего расстояния между начальным и конечным положениями движения называется смещением и определяется количественно путем указания как величины, так и направления. Кроме того, угловое смещение имеет значение в контексте кругового смещения.
Для тела, движущегося по кругу, чистая величина линейного смещения, когда оно совершает один круг, равна нулю. Однако угловое смещение дает меру угла, покрываемого движением объекта по окружности. Угловое смещение дается в угловых единицах, то есть в радианах или градусах.
Каким образом круговое движение имеет смещение?
Круговое движение — это изменение положения или перемещение объекта по криволинейному маршруту или по окружности. Рассмотрим, как круговое движение имеет смещение.
Круговое движение сопровождается линейным и угловым смещением. При движении тела по окружности преодолевается определенный угол при движении из одной точки в другую и при этом происходит угловое смещение. Таким образом, круговое движение имеет угловое смещение на 360 градусов, когда оно завершает один круг.
Почему круговое движение имеет смещение?
Тело, совершающее круговое движение, меняет свое положение во времени. Давайте посмотрим, почему смещение является частью кругового движения.
Круговые движения имеют смещение, потому что объект меняет свое положение от одной точки к другой, и в каждом положении существует конечная линейная скорость, направление которой всегда меняется. Без перемещения нет скорости.
Линейная скорость является мерой перемещения в единицу времени. При движении объекта по круговой траектории скорость в точке его движения определяется касательной, направленной вдоль направления движения.
Когда круговое движение имеет смещение?
Общеизвестно, что движущийся объект имеет смещение, но давайте обсудим ситуации, когда круговое движение имеет смещение.
Круговое движение имеет смещение, когда объект движется по круговой траектории и останавливается в любой точке, кроме начального положения. Однако существует определенное значение углового смещения всякий раз, когда объект находится в движении.
Объект в движении всегда имеет значение смещения, если только его начальное и конечное положение не совпадают. Но даже когда объект совершает один круг, значение углового смещения не равно нулю и равно 2π радианам или 360 градусам.
Как найти круговое перемещение?
Перемещение при круговом движении является важной физической величиной. Давайте рассмотрим способы нахождения смещения при круговом движении.
- Линейное перемещение можно найти по длине хорды между начальным и конечным положениями.
- Для определения углового смещения имеем формулу θ = s / r
- Где, θ = угловое смещение (градусы или радианы), s = длина дуги или расстояние, пройденное телом, r = радиус круга
Кредиты на изображения: Wikimedia Commons
На рисунке показано круговое движение, и частица движется из положения A0 к А(t). Линейное смещение будет определяться мерой отрезка, соединяющего две точки. Угловое смещение определяется значением θ.
Когда перемещение равно нулю при круговом движении?
Бывают ситуации, когда объект движется, но смещение равно нулю. Проанализируем ситуации, когда перемещение равно нулю при круговом движении.
При круговом движении смещение равно нулю, когда объект начинает свое движение из определенной точки, движется по круговой траектории и, наконец, достигает одно и то же исходное положение. Другой случай, когда перемещение может быть равно нулю, — это когда тело покоится и не меняет своего положения.
Смещение остается нулевым независимо от того, сколько оборотов было совершено от начального до конечного положения.
Каково направление смещения при круговом движении?
Смещение, векторная величина, определяется величиной, а также направлением. Кратко опишем направление смещения при круговом движении.
Направление углового смещения при круговом движении задается правилом большого пальца правой руки. Аналогично, От начального положения к конечному положению есть направление линейного перемещения при любом движении, а значит, и при круговом движении.
В соответствии с правилом большого пальца правой руки большой палец указывает в направлении углового смещения, если пальцы правой руки скручиваются по кругу вокруг направления движения. Если пальцы загибаются против часовой стрелки, то угловое смещение положительное, и наоборот.
Задача о перемещении в круговом движении.
Тело совершает три четверти пути в круговом движении. Определите его линейное перемещение и угловое перемещение, если радиус равен 7 см, а длина окружности равна 44 см.
Решение:
Дано, длина окружности = 44 см.
Радиус окружности, r = 7см
Объект проходит три четверти расстояния. Это означает, что объект движется из A в B по криволинейному пути. Следовательно, пройденное расстояние будет
с = (3/4) × 44 см
Поскольку перемещение — это кратчайший путь между начальной точкой А и конечной точкой В,
Следовательно, на рисунке смещение — это кратчайший отрезок линии AB, окрашенный в синий цвет.
Если центр окружности О, то
По теореме Пифагора
АВ = [ОА2 + ОБ2] (1 / 2) cm
АВ = [72 + 72] (1 / 2) cm
АВ = 7×2(1 / 2) cm
АВ = 9.899 см
Угловое смещение определяется выражением
θ = s / r
θ = (3/4) × (44/7)
θ = 1.5 π радиан
Следовательно, линейное перемещение = 9.899 см, направленный от А к В по линии, соединяющей А и В.
Угловое смещение = + 4.71 радиан, так как направление движения против часовой стрелки.
Заключение
В целом мы имели дело с перемещением при круговом движении, которое включает в себя линейное и угловое перемещение. Мы обсудили факты о том, когда и как значение водоизмещения быть нулевым, так и ненулевым.
Наряду с движением вдоль прямой в школьной физике рассматривают движение по окружности. Для него, по аналогии с прямолинейным движением, вводятся понятия пройденного пути, скорости движения и ускорения.
В физике выделяют несколько видов движения тел. Движение по окружности – это один из случаев движения вдоль кривой линии — криволинейного движения.
Сравним понятия пройденного пути, скорости и ускорения для прямолинейного движения и движения по окружности.
Угловой путь
Для начала, вспомним, что линейное перемещение – это разница между конечным и начальным положением точки на оси (рис. 1).
[ S = x – x_{0} ]
Рис. 1. Линейное перемещение равно разности между конечным и начальным положениями точки на оси
Рассмотрим теперь колесо (рис. 2). На горизонтальной линии, проходящей через диаметр колеса, справа отметим красную точку, от которой мы начнем отсчитывать углы. Условимся считать, что возле этой точки находится нулевой угол.
Рис. 2. Точка из положения 1 сместилась в положение 2, пройдя угловой путь
На ободе колеса выберем точку, например — ниппель. Сначала ниппель находился в точке 1. Точка 1 сдвинута на угол (gamma_{1}) относительно начала отсчета.
Будем вращать колесо в направлении, обозначенном синей стрелкой. Повернем колесо на некоторый угол, так, чтобы к концу движения ниппель переместился в точку, обозначенную цифрой 2 на рисунке. Эта точка смещена на угол (gamma_{2}) по отношению к началу отсчета.
По аналогии с поступательным движением, угловой путь, который прошел ниппель — это разница (разность) угловых положений точек 1 и 2.
[large boxed{ varphi = gamma_{2} — gamma_{1} }]
(varphi left( text{рад}right)) – угловой путь измеряется в радианах.
Угловой путь – это угол, на который повернулся ниппель, по отношению к его начальному положению.
Угловая скорость — куда она направлена
Если тело двигалось равномерно (с неизменной скоростью), то линейную скорость можно определить по формуле
[v = frac{S}{t} ]
(v left( frac{text{м}}{c} right)) — линейная скорость – это путь, деленный на время, поэтому она имеет размерность метров деленных на секунду.
Аналогично линейному случаю, если угловой путь поделить на время движения, получим угловую скорость.
[ large boxed{ omega = frac{varphi}{t} } ]
(omega left( frac{text{рад}}{c} right)) – угловая скорость – это угловой путь, деленный на время, поэтому она имеет размерность радиан деленных на секунду.
Угловая скорость ( omega ), так же, как и линейная скорость, является вектором. Но в отличии от линейной скорости его направление можно определить по правилу буравчика (правого винта).
Примечание: Направление вектора угловой скорости ( vec{omega} ) можно определить по правилу буравчика (правого винта)!
На рисунке 3 окружность располагается в горизонтальной плоскости, а вектор ( vec{omega }) направлен вдоль вертикальной оси вращения. Направление вращения указано синей стрелкой.
Рис. 3. Линейная и угловая скорости точки, вращающейся по окружности. Угловая скорость направлена по правилу правого винта вдоль оси вращения
При движении по окружности вектор линейной скорости (vec{v}) изменяет свое направление. Но в каждой точке окружности вектор (vec{v}) направлен по касательной к окружности, т. е. перпендикулярно радиусу.
Примечание: Касательная и радиус перпендикулярны, это известно из геометрии.
Если точка начнет вращаться в противоположную сторону, то векторы линейной и угловой скорости развернутся противоположно направлениям, указанным на рисунке 3.
Связь между линейной и угловой скоростью
Угловая и линейная скорость связаны математически. Линейная скорость – это векторное произведение вектора угловой скорости и вектора радиуса окружности.
Примечание: Радиус окружности – это вектор, он направлен от центра окружности к ее внешней границе.
Векторный вид:
[large boxed{ left[vec{omega}, vec{R} right] = vec{v} }]
Скалярный вид записи связи скоростей:
[ large boxed{ omega cdot R = v }]
(omega left( frac{text{рад}}{c} right)) – угловая скорость;
(v left( frac{text{м}}{c} right)) — линейная скорость;
(R left( text{м}right)) – радиус окружности.
Частота и период
Вращательное движение описывают с помощью таких характеристик, как частота и период.
Период обращения – это время одного полного оборота. В системе СИ период измеряют в секундах.
( T left(c right)) – время, за которое тело совершило полный оборот – период. Время – это скалярная величина.
Частота отвечает на вопрос: «Сколько полных оборотов совершило тело за одну секунду?».
( displaystyle nuleft( frac{1}{c} right)) – частота оборотов, скаляр.
Вместо записи ( displaystyle left( frac{1}{c} right)) иногда используют (displaystyle left( c^{-1} right)), или ( left( text{Гц} right)) – Герц. Это фамилия Генриха Герца, знаменитого физика.
[displaystyle 1 text{Гц} = frac{1}{c} = c^{-1} ]
Частота и период связаны обратной пропорциональностью:
[ large boxed{ T = frac{1}{nu} } ]
Количество оборотов
Двигаясь по окружности достаточное время, тело может пройти не один оборот. Зная угловой путь (varphi ) мы можем вычислить количество N оборотов.
[large boxed{ varphi = 2 pi cdot N }]
( N ) – количество оборотов, скаляр. Обороты считают поштучно.
Связь между угловой скоростью и частотой
Разделим обе части уравнения на время t, в течение которого тело вращалось
[ frac{varphi }{t} = 2 pi cdot frac{N}{t} ]
Левая часть уравнения – это угловая скорость.
[ large boxed{ frac{varphi }{t} = omega }]
А дробь в правой части – это частота
[ large boxed{ frac{N}{t} = nu }]
Таким образом, мы получили связь между угловой скоростью и частотой
[ large boxed{ left|vec{omega} right|= 2 pi cdot nu } ]
Примечание: Решая задачи на равноускоренное движение по окружности, удобно переходить от частоты к угловой скорости. Тогда можно будет применять аналогию с формулами для равноускоренного движения по прямой.