Как найти параллельные прямые у параллелепипеда

Прямоугольный параллелепипед. Что это такое?

О чем эта статья:

10 класс, ЕГЭ/ОГЭ

Определение параллелепипеда

Начнем с того, что узнаем, что такое параллелепипед.

Параллелепипедом называется призма, основаниями которой являются параллелограммы. Другими словами, параллелепипед — это многогранник с шестью гранями. Каждая грань — параллелограмм.

На рисунке два параллелограмма АВСD и A1B1C1D1. Основания параллелепипеда, расположены параллельно друг другу в плоскостях. А боковые ребра АA1, ВB1, CC1, DD1 параллельны друг другу. Образовавшаяся фигура — параллелепипед.

Внимательно рассмотрите, как выглядит параллелепипед и каковы его составляющие.

Когда пересекаются три пары параллельных плоскостей, образовывается параллелепипед.

Основанием параллелепипеда является, в зависимости от его типа: параллелограмм, прямоугольник, квадрат.

Параллелепипед — это:

Свойства параллелепипеда

Быть параллелепипедом ー значит неотступно следовать законам геометрии. Иначе можно скатиться до простого параллелограмма.

Вот 4 свойства параллелепипеда, которые необходимо запомнить:

  1. Противолежащие грани параллелепипеда равны и параллельны друг другу.
  2. Все 4 диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.
  3. Параллелепипед симметричен относительно середины его диагонали.
  4. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.

Подготовка к ЕГЭ по математике онлайн в школе Skysmart — отличный способ освежить знания и снять стресс перед экзаменом.

Прямой параллелепипед

Прямой параллелепипед — это параллелепипед, у которого боковые ребра перпендикулярны основанию.

Основание прямого параллелепипеда — параллелограмм. В прямом параллелепипеде боковые грани — прямоугольники.

Свойства прямого параллелепипеда:

  1. Основания прямого параллелепипеда — одинаковые параллелограммы, лежащие в параллельных плоскостях.
  2. Боковые ребра прямого параллелепипеда равны, параллельны и перпендикулярны плоскостям оснований.
  3. Высота прямого параллелепипеда равна длине бокового ребра.
  4. Противолежащие боковые грани прямого параллелепипеда — равные прямоугольники.
  5. Диагонали прямого параллелепипеда точкой пересечения делятся пополам.

На слух все достаточно занудно и сложно, но на деле все свойства просто описывают фигуру. Внимательно прочтите вслух каждое свойство, разглядывая рисунок параллелепипеда после каждого пункта. Все сразу встанет на места.

Формулы прямого параллелепипеда:

  • Площадь боковой поверхности прямого параллелепипеда
    Sб = Ро*h
    Ро — периметр основания
    h — высота
  • Площадь полной поверхности прямого параллелепипеда
    Sп = Sб+2Sо
    Sо — площадь основания
  • Объем прямого параллелепипеда
    V = Sо*h

Прямоугольный параллелепипед

Определение прямоугольного параллелепипеда:

Прямоугольным параллелепипедом называется параллелепипед, у которого основание — прямоугольник, а боковые ребра перпендикулярны основанию.

Внимательно рассмотрите, как выглядит прямоугольный параллелепипед. Отметьте разницу с прямым параллелепипедом.

Свойства прямоугольного параллелепипеда

Прямоугольный параллелепипед обладает всеми свойствами произвольного параллелепипеда.

  1. Прямоугольный параллелепипед содержит 6 граней. Все грани прямоугольного параллелепипеда — прямоугольники.
  2. Противолежащие грани параллелепипеда попарно параллельны и равны.
  3. Все углы прямоугольного параллелепипеда, состоящие из двух граней — 90°.
  4. Диагонали прямоугольного параллелепипеда равны.
  5. В прямоугольный параллелепипеде четыре диагонали, которые пересекаются в одной точке и делятся этой точкой пополам.
  6. Любая грань прямоугольного параллелепипеда может быть принята за основание.
  7. Если все ребра прямоугольного параллелепипеда равны, то такой параллелепипед является кубом.
  8. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).

Формулы прямоугольного параллелепипеда:

  • Объем прямоугольного параллелепипеда
    V = a · b · h
    a — длина, b — ширина, h — высота
  • Площадь боковой поверхности
    Sбок = Pосн·c=2(a+b)·c
    Pосн — периметр основания, с — боковое ребро
  • Площадь поверхности
    Sп.п = 2(ab+bc+ac)

Диагонали прямоугольного параллелепипеда: теорема

Не достаточно просто знать свойства прямоугольного параллелепипеда, нужно уметь их доказывать.

Если есть теорема, нужно ее доказать. (с) Пифагор

Теорема: Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

В данном случае, три измерения — это длина, ширина, высота. Длина, ширина и высота — это длины трех ребер, исходящих из одной вершины прямоугольного параллелепипеда.

Дан прямоугольный параллелепипед ABCDA1B1C1D1. Доказать теорему.

Доказательство теоремы:

Чтобы найти диагональ прямоугольного параллелепипеда, помните, что диагональ — это отрезок, соединяющий противоположные вершины.

Все грани прямоугольного параллелепипеда — прямоугольники.

ΔABD: ∠BAD = 90°, по теореме Пифагора

ΔB₁BD: ∠B₁BD = 90°, по теореме Пифагора

d² = d₁² + c² = a² + b² + c²

d² = a² + b² + c²

Доказанная теорема — пространственная теорема Пифагора.

Куб: определение, свойства и формулы

Кубом называется прямоугольный параллелепипед, все три измерения которого равны.

Каждая грань куба — это квадрат.

Свойства куба:

  1. В кубе 6 граней, каждая грань куба — квадрат.
  2. Противолежащие грани параллельны друг другу.
  3. Все углы куба, образованные двумя гранями, равны 90°.
  4. У куба четыре диагонали, которые пересекаются в центре куба и делятся пополам.
  5. Диагонали куба равны.
  6. Диагональ куба в √3 раз больше его ребра.
  7. Диагональ грани куба в √2 раза больше длины ребра.

Помимо основных свойств, куб характеризуется умением вписывать в себя тетраэдр и правильный шестиугольник.

Формулы куба:

  • Объем куба через длину ребра a
    V = a3
  • Площадь поверхности куба
    S = 6a2
  • Периметр куба
    P = 12a

Решение задач

Чтобы считать тему прямоугольного параллелепипеда раскрытой, стоит потренироваться в решении задач. 10 класс — время настоящей геометрии для взрослых. Поэтому, чем больше практики, тем лучше. Разберем несколько примеров.

Задачка 1. Дан прямоугольный параллелепипед. Нужно найти сумму длин всех ребер параллелепипеда и площадь его поверхности.

Для наглядного решения обозначим измерения прямоугольного параллелепипеда: a — длина, b — ширина, c — высота. Тогда a = 10, b = 5, c = 8.

Так как в прямоугольном параллелепипеде всего по 4 — высота, ширина и длина, и все измерения равны между собой, то:
1) 4 * 10 = 40 (см) — сумма длин параллелепипеда;
2) 4 * 5 = 20 (см) — суммарное значение ширины параллелепипеда;
3) 4 * 8 = 32 (см) — сумма высот параллелепипеда;
4) 40 + 20 + 32 = 92 (см) — сумма длин всех ребер прямоугольного параллелепипеда.

Отсюда можно вывести формулу по нахождению суммы длин всех сторон ПП:
X = 4a + 4b + 4c (где X — сумма длин ребер).

Формула нахождения площади поверхности параллелепипеда Sп.п = 2(ab+bc+ac).
Тогда: S = (5*8 + 8*10 + 5*10) * 2 = 340 см2.

Задачка 2. Дан прямоугольный параллелепипед АВСDA1B1C1D1.

Нужно найти длину ребра A1B1.

В фокусе внимания треугольник BDD1.
Угол D = 90°.

По теореме Пифагора:
BD1 2 = DD1 2 + BD 2
BD 2 = BD1 2 – DD1 2
BD 2 = 26 – 9 = 17
BD = √17
В треугольнике ADB угол А = 90°.
BD 2 = AD 2 + AB 2
AB 2 = BD 2 — AD 2 = (√17)2 — 4 2 = 1
A1B1 = AB = 1.

Задачка 3. Дан прямоугольный параллелепипед АВСDA1B1C1D1.

AB = 4
AD = 6
AA1= 5
Нужно найти отрезок BD1.

В треугольнике ADB угол A = 90°.

По теореме Пифагора:
BD 2 = AB 2 +AD 2
BD 2 = 4 2 + 6 2 = 16 + 36 = 52
В треугольнике BDD1 угол D = 90°.
BD1 2 = 52 + 25 = 77
BD1 = √77.

Самопроверка

Теперь потренируйтесь самостоятельно — мы верим, что все получится!

Задачка 1. Дан прямоугольный параллелепипед. Измерения (длина, ширина, высота) = 8, 10, 20. Найдите диагональ параллелепипеда.

Подсказка: если нужно выяснить, чему равна диагональ прямоугольного параллелепипеда, вспоминайте теорему.

Задачка 2. Дан прямоугольный параллелепипед АВСDA1B1C1D1.

Вычислите длину ребра AA1.

Как видите, самое страшное в параллелепипеде — 14 букв в названии. Чтобы не перепутать прямой параллелепипед с прямоугольным, а ребро параллелепипеда с длиной диагонали параллелепипеда, вот список основных понятий:

  • прямой параллелепипед — это параллелепипед, у которого боковые ребра перпендикулярны основанию;
  • параллелепипед называется прямоугольным, когда его боковые ребра перпендикулярны к основанию;
  • основание прямоугольного параллелепипеда — прямоугольник;
  • три измерения прямоугольного параллелепипеда: длина, ширина, высота;
  • диагональ параллелепипеда равна сумме квадратов его измерений.

Параллелепипед. Свойства граней и диагоналей параллелепипеда

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы дадим определение параллелепипеда, обсудим его строение и его элементы (диагонали параллелепипеда, стороны параллелепипеда и их свойства). А также рассмотрим свойства граней и диагоналей параллелограмма. Далее решим типовую задачу на построение сечения в параллелепипеде.

10 класс. Геометрия. Параллельные плоскости.

10 класс. Геометрия. Параллельные плоскости.

  • Оглавление
  • Занятия
  • Обсуждение
  • О курсе

Вопросы

Поделись с друзьями

Комментарии преподавателя

1. Тема урока

На этом уроке мы дадим определение параллелепипеда, обсудим его строение, свойства и его элементы (стороны, диагонали).

2. Параллелепипед

Параллелепипед образован с помощью двух равных параллелограммов АВСD и А1B1C1D1, которые находятся в параллельных плоскостях. Обозначение: АВСDА1B1C1D1 или АD1 (рис. 1.).

Рис. 1. Параллелепипед

3. Свойства параллелепипеда

1) Все грани параллелепипеда – параллелограммы.

Так как плоскости АВС и А1B1C1 параллельны, а плоскость АА1В1 пересекает их соответственно по прямым АВ и А1В1, то из свойств параллельных плоскостей следует, что прямые АВ и А1B1 параллельны. А так как и прямые АА1 и ВВ1 параллельны по условию, то АВВ1А1 параллелограмм. Аналогично, можно рассмотреть и другие грани.

2) Ребра АА1, ВВ1, СС1, DD1 равны.

Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны. Значит, отрезки параллельных прямых АА1, ВВ1, СС1, DD1, которые заключены между параллельными плоскостями АВС и А1B1C1, равны.

3) Имеются три четверки равных и параллельных ребер: 1 – АВ, А1В1, D1C1, DC, 2 — AD, A1D1, B1C1, BC, 3 — АА1, ВВ1, СС1, DD1.

4) Имеются равные углы (с сонаправленными сторонами). Например, углы А1АВ и D1DC.

4. Свойство 1 (Грани параллелепипеда)

Противоположные грани параллелепипеда параллельны и равны.

Например, плоскости параллелограммов АА1В1В и DD1C1C параллельны, так как пересекающиеся прямые АВ и АА1 плоскости АА1В1 соответственно параллельны двум пересекающимся прямым DC и DD1 плоскости DD1C1. Параллелограммы АА1В1В и DD1C1C равны (т. е. их можно совместить наложением), так как равны стороны АВ и DС, АА1 и DD1, и равны углы А1АВ и D1DC.

5. Свойство 2 (Ребра параллелепипеда)

Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.

Рис. 2. Диагонали параллелепипеда

Рассмотрим диагонали параллелепипеда А1C и D1B (рис. 2). Они также являются диагоналями четырехугольника A1D1CB. В этом четырехугольнике стороны A1D1 и BC параллельны и равны, а значит, A1D1CB – параллелограмм (по признаку параллелограмма). А в параллелограмме диагонали А1C и D1B пересекаются в одной точке О и делятся этой точкой пополам.

Рассмотрим теперь четырехугольник АВС1D1 (рис. 3). В этом четырехугольнике стороны С1D1 и АВ параллельны и равны, а значит, АВС1D1 – параллелограмм (по признаку параллелограмма). А в параллелограмме диагонали С1А и D1В пересекаются в одной точке и делятся этой точкой пополам. Эти диагонали также пересекаются в точке О, так как мы уже выяснили, что середина диагонали D1В – это точка О. Следовательно, все диагонали параллелепипеда А1C, С1А и D1В, DВ1 пересекаются в одной точке и делятся этой точкой пополам.

6. Задача 1

В параллелепипеде АВСDА1B1C1D1 постройте сечение плоскостью AD1M, где М – середина ребра ВС. Определите вид полученного сечения.

Соединим точки А и D1. Точки А и D1 лежат и в плоскости сечения и в плоскости АА1D1. Значит, АD1– линия пересечения этих плоскостей.

Проведем прямую МN параллельно прямой АD1. Плоскости АА1D1 и ВСС1 параллельны, значит, плоскость АМN рассекает их по параллельным прямым МN и АD1. Итак, АМND1 – искомое сечение.

Четырехугольник АМND1 — трапеция с основаниями АD1 и МN, так как АD1 и МN лежат на параллельных прямых.

Заметим, что средняя линия М1N1 в треугольнике АDD1 равна отрезку МN. Этот факт понадобится нам дальше для решения задач на нахождения периметра.

7. Итоги урока по теме «Параллелепипед», «Стороны параллелепипеда, диагонали», свойства

Итак, мы рассмотрели параллелепипед и его свойства. На следующих уроках мы продолжим рассмотрение тетраэдра и параллелепипеда.

источники:

http://interneturok.ru/lesson/geometry/10-klass/parallelnost-pryamyh-i-ploskostej/parallelepiped-svoystva-graney-i-diagonaley-parallelepipeda

http://www.kursoteka.ru/course/2222/lesson/7162/unit/18692

Вопросы занятия:

·    
рассмотрим
понятие параллельных прямых в пространстве;

·    
дадим
определение параллельных прямых в пространстве;

·    
докажем
теорему единственности прямой, параллельной данной.

Материал урока.

Ранее в планиметрии мы с вами уже рассматривали взаимное расположение
двух прямых на плоскости.
Напомню, что возможны три случая:

Первый случай. Прямые параллельны, т.е. две прямые не имеют
общих точек.

Второй случай. Прямые пересекаются, т.е. две прямые имеют одну
общую точку.

И третий случай. Прямые совпадают, т.е. имеют более чем одну
общую точку.

Теперь перейдем к стереометрии. Напомню, что стереометрия изучает
свойства фигур в пространстве.

Рассмотрим прямоугольный параллелепипед ABCDA1B1C1D1. Как вы уже знаете, параллелепипед – это
пространственное тело.

Прямые, на которых лежат его ребра, например, A1B1, D1C1 и DC – параллельны.
Прямые, через которые проходят диагонали его грани, например, D1C1 и DC – пересекаются. А
вот прямые, на которых лежат диагональ параллелепипеда A1C и ребро B1C1 называются скрещивающимися.

Сделаем вывод: две прямые в пространстве могут пересекаться,
быть параллельными или скрещиваться.

Пересекающиеся и параллельные прямые задают некоторую плоскость. Скрещивающиеся
прямые
– это прямые, через которые нельзя провести плоскость.

Давайте подробно остановимся на случае с параллельными прямыми в
пространстве.

Определение. Две прямые в пространстве называются параллельными,
если они лежат в одной плоскости и не пересекаются.

Обратите внимание, что оговорка «если они лежат в одной плоскости» в
определении очень важна. Так как в стереометрии мы с вами рассматриваем
трехмерное пространство и, если две прямые лежат в разных плоскостях, то нельзя
говорить про их параллельность. Параллельными прямые могут быть только если
лежат в одной плоскости.

Если прямые а и b параллельны,
то это обозначают следующим образом . Читают «прямая а параллельна прямой b».

Посмотрим внимательно на рисунок.

Здесь прямые а и b параллельны. А вот прямые а и c, b и d– не
параллельны.

Приведем несколько примеров параллельных прямых в пространстве.
Знакомые каждому железнодорожные рельсы.

На ровной местности их можно рассматривать, как параллельные прямые.

А посмотрите внимательно на свою тетрадь. Обратите внимание,
противоположные края тетрадного листа также лежат на параллельных прямых.

Прямые, по которым плоскость стены комнаты пересекает плоскости потолка и
пола. Они также являются параллельными.

Запишем определения. Два отрезка (луча) называются параллельными,
если они лежат на параллельных прямых.

Отрезок (луч) называется параллельным данной прямой, если он лежит
на прямой, параллельной данной.

Справедлива теорема о параллельности прямых. Через любую точку
пространства, не лежащую на данной прямой, проходит прямая, параллельная
данной, и притом только одна.

Докажем эту теорему.

Рассмотрим прямую а и точку М, не лежащую на этой прямой. Через прямую и
не лежащую на ней точку проходит плоскость, и притом только одна. Тогда через
нашу прямую а и точку М проходит единственная плоскость. Давайте обозначим эту
плоскость буквой α. Прямая, проходящая через точку М параллельно прямой а,
должна лежать в одной плоскости с точкой М и прямой а. Т.е. должна лежать в
плоскости α. Из курса планиметрии вы помните, что через каждую точку
плоскости, не лежащую на данной прямой, можно провести только одну прямую,
параллельную данной прямой. Следовательно, в плоскости α через точку М
проходит прямая, параллельная прямой а, и притом только одна. На рисунке эта
прямая обозначена буквой b.

Докажем единственность прямой b. Предположим, что
существует еще одна прямая, например, b1,
которая проходит через точку М и параллельна прямой а. Тогда эта прямая b1 должна лежать в одной плоскости с точкой М и
прямой а. Т.е. в плоскости α. А из курса планиметрии вы знаете, что в
плоскости α через точку М проходит единственная прямая, параллельная
прямой а. Значит, прямая b1 совпадает с
прямой b.

Таким образом, прямая b –
это единственная прямая, проходящая через точку М параллельно прямой а. Теорема
доказана.

Замечание. Если прямые в пространстве параллельны, то на чертеже
они обязательно изображаются параллельными прямыми.

А вот если прямые на чертеже изображены параллельными прямыми, то в
пространстве эти прямые не обязательно параллельны.

Задание. Дан куб .
Параллельны ли прямые: а)  и ;     
б)  и ;     
в)  и ;     
г)  и ?

Решение. Рассмотрим куб ABCDA1B1C1D1. Напомню, что куб – это прямоугольный
параллелепипед, все грани которого – равные квадраты.

Рассмотрим прямые AB и DC.
Они лежат в одной плоскости ABC и не пересекаются.
Следовательно, прямые AB и DC
параллельны.

Аналогично и прямые BB1 и CC1. Они лежат в одной плоскости BB1C1 и не пересекаются. Следовательно, параллельны.

Теперь рассмотрим прямые AB и BB1.
Хоть они и лежат в одной плоскости ABB1, но
пересекаются в точке B. Значит, прямые AB и BB1 не параллельны.

Осталось рассмотреть прямые AB и
CC1. Они не пересекаются, но и не лежат в
одной плоскости. Значит, они не параллельны.

Ответ: а) ;     
б) ;     
в) ;     
г) .

Подведем итоги урока. На этом уроке мы рассмотрели понятие
параллельных прямых в пространстве. Узнали, что две прямые в пространстве
называются параллельными, если они лежат в одной плоскости и не пересекаются. А
также доказали теорему о том, что через любую точку пространства можно провести
только одну прямую, параллельную данной.

Содержание:

Параллельность в пространстве

В этом параграфе вы ознакомитесь с основными понятиями стереометрии, аксиомами стереометрии и следствиями из них. Расширите свои представления о многогранниках. Вы узнаете о взаимном расположении двух прямых, прямой и плоскости, двух плоскостей в пространстве. Ознакомитесь с правилами, по которым изображают пространственные фигуры на плоскости.

Основные понятия стереометрии. Аксиомы стереометрии

Изучая математику, вы со многими понятиями ознакомились с помощью определений. Так, из курса планиметрии вам хорошо знакомы определения четырехугольника, трапеции, окружности и др.

Определение любого понятия основано на других понятиях, содержание которых вам уже известно. Например, рассмотрим определение трапеции: «Трапецией называют четырехугольник, у которого две стороны параллельны, а две другие не параллельны». Видим, что определение трапеции основано на таких уже введенных понятиях, как четырехугольник, сторона четырехугольника, параллельные и непараллельные стороны и др. Итак, определения вводятся по принципу «новое основано на старом». Тогда ясно, что должны существовать первоначальные понятия, которым определений не дают. Их называют основными понятиями (рис. 27.1).

Параллельность в пространстве с примерами решения

В изученном вами курсе планиметрии определения не давали таким фигурам, как точка и прямая. В стереометрии, кроме них, к основным понятиям отнесем еще одну фигуру — плоскость.

Наглядное представление о плоскости дают поверхность водоема в безветренную погоду, поверхность зеркала, поверхность полированного стола, мысленно продолженные во всех направлениях.

Используя понятие плоскости, можно считать, что в планиметрии мы рассматривали только одну плоскость, и все изучаемые фигуры принадлежали этой плоскости. В стереометрии же рассматривают бесконечно много плоскостей, расположенных в пространстве.

Как правило, плоскости обозначают строчными греческими буквами Параллельность в пространстве с примерами решения

Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения

Плоскость, так же как и прямая, состоит из точек, то есть плоскость — это множество точек.

Существует несколько случаев взаимного расположения точек, прямых и плоскостей в пространстве. Приведем примеры.

На рисунке 27.4 изображена точка А, принадлежащая плоскости Параллельность в пространстве с примерами решения. Также говорят, что точка А лежит в плоскости Параллельность в пространстве с примерами решения или плоскость Параллельность в пространстве с примерами решения проходит через точку А. Кратко это можно записать так: Параллельность в пространстве с примерами решения.

На рисунке 27.5 изображена точка В, не принадлежащая плоскости Параллельность в пространстве с примерами решения. Кратко это можно записать так: Параллельность в пространстве с примерами решения.

На рисунке 27.6 изображена прямая Параллельность в пространстве с примерами решения, принадлежащая плоско­сти Параллельность в пространстве с примерами решения. Также говорят, что прямая Параллельность в пространстве с примерами решения лежит в плоскости Параллельность в пространстве с примерами решения или плоскость Параллельность в пространстве с примерами решения проходит через прямую Параллельность в пространстве с примерами решения. Кратко это можно записать так: Параллельность в пространстве с примерами решения

Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения

Если прямая и плоскость имеют только одну общую точку, то говорят, что прямая пересекает плоскость. На рисунке 27.7 изображена прямая Параллельность в пространстве с примерами решения, пересекающая плоскость Параллельность в пространстве с примерами решения в точке А. Записывают: Параллельность в пространстве с примерами решения

Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения

В дальнейшем, говоря «две точки», «три точки», «две плоскости» и т.п., будем иметь в виду, что это разные точки, разные прямые и разные плоскости. Если две плоскости имеют общую точку, то говорят, что эти плоскости пересекаются.

На рисунке 27.8 изображены плоскости Параллельность в пространстве с примерами решения, пересекающиеся по прямой Параллельность в пространстве с примерами решения. Записывают: Параллельность в пространстве с примерами решения

На начальном этапе изучения стереометрии невозможно доказывать теоремы, опираясь на другие утверждения, поскольку этих утверждений еще нет. Поэтому первые свойства, касающиеся точек, прямых и плоскостей в пространстве, принимают без доказательства и называют аксиомами. Отметим, что ряд аксиом стереометрии по формулировкам до­словно совпадают со знакомыми вам аксиомами планиметрии.

Например:

  • какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей;
  • через любые две точки можно провести прямую, и притом только одну.

Мы не будем знакомиться со строгим аксиоматическим построением стереометрии. Рассмотрим лишь некоторые утверждения, выражающие основные свойства плоскостей пространства, основываясь на которых обычно строят курс стереометрии в школе.

Аксиома А1. В любой плоскости пространства выполняются все аксиомы планиметрии.

Если в любой плоскости пространства выполняются аксиомы планиметрии, то выполняются и следствия из этих аксиом, то есть теоремы планиметрии. Следовательно, в стереометрии можно поль­зоваться всеми известными нам свойствами плоских фигур.

Аксиома А2. Через любые три точки пространства, не лежащие на одной прямой, проходит плоскость, и притом только одна.

Рисунки 27.9-27.11 иллюстрируют эту аксиому.

Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения

Из этой аксиомы следует, что три точки пространства, не лежащие на одной прямой, определяют единственную плоскость, про­ ходящую через эти точки. Поэтому для обозначения плоскости можно указать любые три ее точки, не лежащие на одной прямой.

Например, на рисунке 27.12 изображена плоскость АВС. Запись Параллельность в пространстве с примерами решения означает, что точка М принадлежит плоскости АВС. Запись Параллельность в пространстве с примерами решения означает, что прямая MN принадлежит плоскости АВС (рис. 27.12).

Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения

Аксиома АЗ. Если две точки прямой принадлежат плоскости, то и вся прямая принадлежит этой плоскости.

Например, на рисунке 27.13 точки А, В и С принадлежат плоскости АВС. Тогда можно записать: Параллельность в пространстве с примерами решения Из этой аксиомы следует, что если прямая не принадлежит плоскости, то она имеет с данной плоскостью не более одной общей точки.

Утверждение, сформулированное в аксиоме АЗ, часто используют на практике, когда хотят проверить, является ли данная поверхность ровной (плоской). Для этого к поверхности в разных местах прикладывают ровную рейку и проверяют, есть ли зазор между рейкой и поверхностью (рис. 27.14).

Аксиома А4. Если две плоскости имеют общую точку, то они пересекаются по прямой.

Эту аксиому можно проиллюстрировать с помощью согнутого листа бумаги или с помощью вашего учебника (рис. 27.15).

Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения

Пример:

Докажите, что если две плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.

Решение:

Пусть точка А является общей для двух плоскостей Параллельность в пространстве с примерами решения, то есть Параллельность в пространстве с примерами решения(рис. 27.16). По аксиоме А4 плоскости Параллельность в пространстве с примерами решения пересекаются по прямой. Пусть Параллельность в пространстве с примерами решения Тогда все общие точки плоскостей Параллельность в пространстве с примерами решения принадлежат прямой Параллельность в пространстве с примерами решения. Точка А является общей для плоскостей Параллельность в пространстве с примерами решения. Следовательно, Параллельность в пространстве с примерами решения Кроме аксиом, есть и другие свойства, описывающие взаимное расположение точек, прямых и плоскостей в пространстве. Опираясь на аксиомы, можно доказать, например, следующие утверждения (следствия из аксиом стереометрии).

Параллельность в пространстве с примерами решения

Теорема 27.1. Через прямую и не принадлежащую ей точку проходит плоскость, и притом только одна (рис. 27.17).

Теорема 27.2. Через две пересекающиеся прямые проходит плоскость, и притом только одна (рис. 27.18).

Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения

Из аксиомы А2 и теорем 27.1 и 27.2 следует, что плоскость однозначно определяется:

  1. тремя точками, не лежащими на одной прямой;
  2. прямой и точкой, не принадлежащей этой прямой;
  3. двумя пересекающимися прямыми.

Таким образом, мы указали три способа задания плоскости.

Пространственные фигуры

Начальные сведения о многогранниках. В стереометрии, кроме точек, прямых и плоскостей, рассматривают пространственные фигуры, то есть фигуры, не все точки ко­торых лежат в одной плоскости. Некоторые из пространственных фигур вам уже знакомы. Так, на рисунке 28.1 изображены цилиндр, конус и шар. Подробно эти фигуры вы будете изучать в 11 классе.

Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения

На рисунке 28.2 изображена еще одна знакомая вам пространственная фигура — пирамида. Эта фигура является частным видом многогранника. Примеры многогранников показаны на рисунке 28.3.

Параллельность в пространстве с примерами решения

Поверхность многогранника состоит из многоугольников. Их называют гранями многогранника. Стороны многоугольников называют ребрами многогранника, а вершины — вершинами много­гранника (рис. 28.4).

Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения

На рисунке 28.5 изображена пятиугольная пирамида FABCDE.

Поверхность этого многогранника состоит из пяти треугольников, которые называют боковыми гранями пирамиды, и одного пятиугольника, который называют основанием пирамиды. Вершину F, общую для всех боковых граней, называют вершиной пирамиды.

Ребра FA, FB, FC, FD и FE называют боковыми ребрами пирамиды, а ребра А В, ВС, CD, DE и ЕАребрами основания пирамиды.

На рисунке 28.6 изображена треугольная пирамида DABC. Треугольную пирамиду называют также тетраэдром.

Еще одним частным видом многогранника является призма. На рисунке 28.7 изображена треугольная призма Параллельность в пространстве с примерами решения. Этот многогранник имеет пять граней, две из которых — равные треугольники АВС и Параллельность в пространстве с примерами решения Их называют основаниями призмы.

Остальные грани призмы — параллелограммы. Их называют боковыми гранями призмы. Ребра Параллельность в пространстве с примерами решения называют боковыми ребрами призмы.

Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения

На рисунке 28.8 изображена четырехугольная призма Параллельность в пространстве с примерами решения. Ее поверхность состоит из двух равных четырехугольников ABCD и Параллельность в пространстве с примерами решения (основания призмы) и четырех параллелограммов (боковые грани призмы).

Вы знакомы также с частным видом четырехугольной призмы — прямоугольным параллелепипедом. На рисунке 28.9 изображен прямоугольный параллелепипед Параллельность в пространстве с примерами решения. Все грани прямоугольного параллелепипеда являются прямоугольниками.

Параллельность в пространстве с примерами решенияПараллельность в пространстве с примерами решения

В свою очередь, частным видом прямоугольного параллелепипеда является куб. Все грани куба — равные квадраты (рис. 28.10).

Четырехугольную призму, основанием которой является параллелограмм, называют параллелепипедом.

В курсе геометрии 11 класса вы более подробно ознакомитесь с многогранниками и их частными видами.

Пример:

На ребрах Параллельность в пространстве с примерами решенияи Параллельность в пространстве с примерами решения куба Параллельность в пространстве с примерами решения отметили соответственно точки М и N так, что Параллельность в пространстве с примерами решения (рис. 28.11). Постройте точку пересечения прямой MN с плоскостью АВС.

Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения

Решение:

Точки М и N принадлежат плоскости Параллельность в пространстве с примерами решения . Тогда по аксиоме АЗ прямая MN принадлежит этой плоскости. Аналогично прямая AD также принадлежит плоскости Параллельность в пространстве с примерами решения . Из планиметрии известно, что прямые, лежащие в одной плоскости, или параллельны, или пересекаются. Поскольку Параллельность в пространстве с примерами решения , то прямые AD и MN пересекаются. Пусть X — точка их пересечения (рис. 28.12). Точки А и D принадлежат плоскости АВС. Тогда по аксиоме АЗ прямая AD принадлежит этой же плоскости. Точка X принадлежит прямой AD. Следовательно, точка X принадлежит плоскости АВС. Поскольку точка X также принадлежит прямой MN, то прямая MN пересекает плоскость АВС в точке X.

Взаимное расположение двух прямых в пространстве

Из курса планиметрии вы знаете, что две прямые называют пересекающимися, если они имеют только одну общую точку. Такое же определение пересекающихся прямых дают и в стереометрии. Вам также известно, что две прямые называют параллельными, если они не пересекаются. Можно ли это определение перенести в стереометрию?

Параллельность в пространстве с примерами решения

Обратимся к рисунку 29.1, на котором изображен куб Параллельность в пространстве с примерами решения . Каждая из прямых АВ и Параллельность в пространстве с примерами решенияне имеет с прямой DC общих точек. При этом прямые АВ и DC лежат в одной плоскости — в плоскости АВС, а прямые Параллельность в пространстве с примерами решения и DC не лежат в одной плоскости, то есть не существует плоскости, которая проходила бы через эти прямые. Этот пример показывает, что в стереометрии для двух прямых, не имеющих общих точек, возможны два случая взаимного расположения: прямые лежат в одной плоскости и прямые не лежат в одной плоскости. Для каждого из этих случаев дадим соответствующее определение.

Определение. Две прямые в пространстве называют параллельным и, если они лежат в одной плоскости и не пересека­ются. Если прямые Параллельность в пространстве с примерами решения параллельны, то записывают: Параллельность в пространстве с примерами решения

Определение. Две прямые в пространстве называют скрещивающимися, если они не лежат в одной плоскости. Например, на рисунке 29.1 прямые АВ и DC — параллельные, а прямые Параллельность в пространстве с примерами решения и DC — скрещивающиеся.

Параллельность в пространстве с примерами решения

Наглядное представление о параллельных прямых дают колонны здания, корабельный лес, бревна сруба (рис. 29.2).

Параллельность в пространстве с примерами решения

Наглядное представление о скрещивающихся прямых дают провода линий электропередачи, различные элементы строительных конструкций (рис. 29.3). Итак, существуют три возможных случая взаимного расположения двух прямых в пространстве (рис. 29.4):

  1. прямые пересекаются;
  2. прямые параллельны;
  3. прямые скрещиваются.

Параллельность в пространстве с примерами решения

Два отрезка называют параллельными (скрещивающимися), если они лежат на параллельных (скрещивающихся) прямых. Например, ребра Параллельность в пространстве с примерами решения и Параллельность в пространстве с примерами решения треугольной призмы Параллельность в пространстве с примерами решения (рис. 29.5) являются параллельными, а ребра АС и Параллельность в пространстве с примерами решения — скрещивающимися.

Параллельность в пространстве с примерами решения

Теорема 29.1. Через две параллельные прямые проходит плоскость, и притом только одна.

Доказательство. Пусть даны параллельные прямые Параллельность в пространстве с примерами решения Докажем, что существует единственная плоскость Параллельность в пространстве с примерами решения такая, что Параллельность в пространстве с примерами решения

Существование плоскости Параллельность в пространстве с примерами решения, проходящей через прямые Параллельность в пространстве с примерами решения, следует из определения параллельных прямых.

Если предположить, что существует еще одна плоскость, проходящая через прямые Параллельность в пространстве с примерами решения, то через прямую а и некоторую точку прямой Параллельность в пространстве с примерами решения будут проходить две различные плоскости, что проти­воречит теореме 27.1.

Существует три способа задания плоскости. Теорему 29.1 можно рассматривать как еще один способ задания пло­скости — с помощью двух параллельных прямых.

Установить параллельность двух прямых, лежащих в одной плоскости, можно с помощью известных вам из курса планиметрии признаков параллельности двух прямых. А как установить, являются ли две прямые скрещивающимися? Ответить на этот вопрос позволяет следующая теорема.

Теорема 29.2 (признак скрещивающихся прямых). Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой, то данные прямые — скрещивающиеся (рис. 29.6).

Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения

На рисунке 29.7 ребра АВ и DC тетраэдра DABC являются скрещивающимися. Действительно, прямая DC пересекает плоскость АВС в точке С, не принадлежащей прямой АВ. Следовательно, по признаку скрещивающихся прямых прямые АВ и DC являются скрещивающимися.

Параллельность прямой и плоскости

Вам уже известны два возможных случая взаимного расположения прямой и плоскости:

  1. прямая принадлежит плоскости, то есть все точки прямой принадлежат плоскости;
  2. прямая пересекает плоскость, то есть прямая имеет с плоскостью только одну об­щую точку.

Понятно, что возможен и третий случай, когда прямая и плоскость не имеют общих точек. Например, прямая, содержащая ребро Параллельность в пространстве с примерами решениякуба Параллельность в пространстве с примерами решения , не имеет общих точек с плоскостью АВС (рис. 30.1).

Параллельность в пространстве с примерами решения

Определение. Прямую и плоскость называют параллель­ными, если они не имеют общих точек.

Если прямая Параллельность в пространстве с примерами решенияи плоскость Параллельность в пространстве с примерами решения параллельны, то записывают: Параллельность в пространстве с примерами решения Также принято говорить, что прямая Параллельность в пространстве с примерами решения параллельна плоскости Параллельность в пространстве с примерами решения, а плоскость Параллельность в пространстве с примерами решения параллельна прямой Параллельность в пространстве с примерами решения.

Наглядное представление о прямой, параллельной плоскости, дают некоторые спортивные снаряды. Например, брусья параллельны плоскости пола (рис. 30.2). Другой пример — водосточная труба: она параллельна плоскости стены (рис. 30.3).

Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения

Выяснять, параллельны ли данные прямая и плоскость, с помощью определения затруднительно. Гораздо эффективнее пользоваться следующей теоремой.

Теорема 30.1 (признак параллельности прямой и плоскости). Если прямая, не принадлежащая данной плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то данная прямая параллельна самой плоскости.

Например, на рисунке 30.1 прямые Параллельность в пространстве с примерами решения и Параллельность в пространстве с примерами решения содержат противолежащие стороны квадрата Параллельность в пространстве с примерами решения . Эти прямые параллельны.

Поскольку Параллельность в пространстве с примерами решения, то по признаку параллельности прямой и плоскости Параллельность в пространстве с примерами решения

Отрезок называют параллельным плоскости, если он принадлежит прямой, параллельной этой плоскости. Например, ребро АВ куба параллельно плоскости Параллельность в пространстве с примерами решения (рис. 30.1).

Вы умеете устанавливать параллельность двух прямых с помощью теорем-признаков, известных из планиметрии. Рассмотрим теоремы, описывающие достаточные условия параллельности двух прямых в пространстве.

Теорема 30.2. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то прямая пересечения плоскостей параллельна данной прямой.

На рисунке 30.4 прямая Параллельность в пространстве с примерами решения параллельна плоскости Параллельность в пространстве с примерами решения. Плоскость Параллельность в пространстве с примерами решения проходит через прямую Параллельность в пространстве с примерами решения и пересекает плоскость Параллельность в пространстве с примерами решения по прямой Параллельность в пространстве с примерами решения. Тогда Параллельность в пространстве с примерами решения

Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения

Теорема 30.3. Если через каждую из двух параллельных прямых проведена плоскость, причем эти плоскости пересекаются по прямой, отличной от двух данных, то эта прямая параллельна каждой из двух данных прямых.

На рисунке 30.5 прямые Параллельность в пространстве с примерами решения параллельны, плоскость Параллельность в пространстве с примерами решения проходит через прямую Параллельность в пространстве с примерами решения, а плоскость Параллельность в пространстве с примерами решения — через прямую Параллельность в пространстве с примерами решения Тогда Параллельность в пространстве с примерами решения

Теорема 30.4. Две прямые, параллельные третьей прямой, параллельны между собой.

Пример:

Докажите, что если прямая параллельна каждой из двух пересекающихся плоскостей, то она параллельна прямой их пересечения.

Решение:

Пусть даны прямая Параллельность в пространстве с примерами решения и плоскости Параллельность в пространстве с примерами решения такие, что Параллельность в пространстве с примерами решения (рис. 30.6). Докажем, что Параллельность в пространстве с примерами решения В плоскостях Параллельность в пространстве с примерами решения найдутся соответственно такие прямые Параллельность в пространстве с примерами решения , что Параллельность в пространстве с примерами решения Если хотя бы одна из прямых Параллельность в пространстве с примерами решения совпадает с пря­мой Параллельность в пространстве с примерами решения, то утверждение задачи доказано. Если же каждая из прямых Параллельность в пространстве с примерами решения отлична от прямой Параллельность в пространстве с примерами решения, то по теореме 30.4 Параллельность в пространстве с примерами решения Воспользовавшись теоремой 30.3, приходим к выводу, что Параллельность в пространстве с примерами решения. Но Параллельность в пространстве с примерами решения, следовательно, Параллельность в пространстве с примерами решения

Параллельность в пространстве с примерами решения

  • Заказать решение задач по высшей математике

Параллельность плоскостей

Рассмотрим варианты возможного взаимного расположения двух плоскостей. Вы знаете, что две плоскости могут иметь общие точки, то есть пересекаться. Понятно, что две плоскости могут и не иметь общих точек. Например, плоскости АВС и Параллельность в пространстве с примерами решения , содержащие основания призмы, не имеют общих точек (рис. 31.1).

Параллельность в пространстве с примерами решения

Определение. Две плоскости называют параллельны ми, если они не имеют общих точек.

Если плоскости Параллельность в пространстве с примерами решения параллельны, то записывают: Параллельность в пространстве с примерами решения Также принято говорить, что плоскость Параллельность в пространстве с примерами решения параллельна плоскости Параллельность в пространстве с примерами решения или плоскость Параллельность в пространстве с примерами решения параллельна плоскости Параллельность в пространстве с примерами решения

Наглядное представление о параллельных плоскостях дают потолок и пол комнаты; поверхность воды, налитой в аквариум, и его дно (рис. 31.2).

Параллельность в пространстве с примерами решения

Из определения параллельных плоскостей следует, что любая прямая, лежащая в одной из двух параллельных плоскостей, параллельна другой плоскости.

В тех случаях, когда надо выяснить, являются ли две плоскости параллельными, удобно пользоваться следующей теоремой.

Теорема 31.1 (признак параллельности двух плоско­стей). Если две пересекающиеся прямые одной плоскости параллельны соответственно двум прямым другой плоскости, то эти плоскости параллельны.

Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения

Например, на рисунке 31.3 изображен прямоугольный параллелепипед Параллельность в пространстве с примерами решения. Имеем: Параллельность в пространстве с примерами решения и Параллельность в пространстве с примерами решения. Тогда по признаку параллельности двух плоскостей Параллельность в пространстве с примерами решения.

Будем говорить, что два многоугольника параллельны, если они лежат в параллельных плоскостях. Например, грани Параллельность в пространстве с примерами решения и Параллельность в пространстве с примерами решения прямоугольного параллелепипеда Параллельность в пространстве с примерами решения параллельны (рис. 31.3). Рассмотрим некоторые свойства параллельных плоскостей.

Теорема 31.2. Через точку в пространстве, не принадлежа­щую данной плоскости, проходит плоскость, параллельная данной плоскости, и притом только одна (рис. 31.4).

Теорема 31.3. Прямые пересечения двух параллельных плоскостей третьей плоскостью параллельны (рис. 31.5).

Пример:

Докажите, что отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.

Решение:

Пусть даны параллельные плоскости Параллельность в пространстве с примерами решения и параллельные прямые АВ и Параллельность в пространстве с примерами решения такие, что Параллельность в пространстве с примерами решения (рис. 31.6). Докажем, что Параллельность в пространстве с примерами решения. Параллельные прямые АВ и Параллельность в пространстве с примерами решения задают некоторую плоскость Параллельность в пространстве с примерами решения причем Параллельность в пространстве с примерами решения

По теореме 31.3 получаем: Параллельность в пространстве с примерами решения. Следовательно, четырехугольник Параллельность в пространстве с примерами решения — параллелограмм. Отсюда Параллельность в пространстве с примерами решения.

Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения

Параллельное проектирование

Многие явления и процессы, наблюдаемые нами в повседневной жизни, служат примерами преобразований, при которых образом пространственной фигуры является плоская фигура. Увидеть одно из таких явлений можно в солнечную погоду, когда предмет отбрасывает тень на плоскую поверхность (рис. 32.1). Этот пример иллюстрирует преобразование фигуры, которое называют параллельным проектированием. С помощью этого преобразования на плоскости создают изображения пространственных фигур.

Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения

Многие рисунки настоящего учебника, на которых изображены пространственные фигуры, можно рассматривать как тени, отбрасываемые на плоскость страницы предметами, освещенными па­раллельными лучами. Ознакомимся подробнее с параллельным проектированием.

Пусть даны плоскость Параллельность в пространстве с примерами решения прямая Параллельность в пространстве с примерами решения пересекающая эту плоскость, и фигура F (рис. 32.2). Через каждую точку фигуры F проведем прямую, параллельную прямой Параллельность в пространстве с примерами решения (если точка фигуры F принадлежит прямой Параллельность в пространстве с примерами решения то будем рассматривать саму прямую Параллельность в пространстве с примерами решения). Точки пересечения всех проведенных прямых с плоскостью Параллельность в пространстве с примерами решения образуют некоторую фигуру Параллельность в пространстве с примерами решения. Описанное преобразование фигуры F называют параллельным проектированием. Фигуру Параллельность в пространстве с примерами решения называют параллельной проекцией фигуры F на плоскость Параллельность в пространстве с примерами решения в направлении прямой Параллельность в пространстве с примерами решения Также фигуру Параллельность в пространстве с примерами решения называют изображением фигуры Параллельность в пространстве с примерами решения на плоскости Параллельность в пространстве с примерами решения в направлении прямой Параллельность в пространстве с примерами решения

Выбирая выгодные положения плоскости Параллельность в пространстве с примерами решения и прямой Параллельность в пространстве с примерами решения можно получить наглядное изображение данной фигуры F. Это связано с тем, что параллельное проектирование обладает рядом замечательных свойств (см. теоремы 32.1-32.3). Благодаря этим свойствам изображение фигуры похоже на саму фигуру.

Параллельность в пространстве с примерами решения

Пусть даны плоскость Параллельность в пространстве с примерами решения и прямая Параллельность в пространстве с примерами решения пересекающая эту плоскость. Если прямая параллельна прямой Параллельность в пространстве с примерами решения то ее проекцией на плоскость Параллельность в пространстве с примерами решения является точ­ка (рис. 32.3). Проекцией прямой Параллельность в пространстве с примерами решения также является точка. Если отрезок параллелен прямой Параллельность в пространстве с примерами решения или лежит на прямой Параллельность в пространстве с примерами решения, то его проекцией на плоскость Параллельность в пространстве с примерами решения является точка (рис. 32.3).

В следующих теоремах будем рассматривать прямые и отрезки, не параллельные прямой Параллельность в пространстве с примерами решения и не лежащие на ней.

Теорема 32.1. Параллельной проекцией прямой является прямая; параллельной проекцией отрезка является отрезок (рис. 32.4).

Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения

Теорема 32.2. Параллельной проекцией двух параллельных прямых являются или прямая (рис. 32.5), или две параллельные прямые (рис. 32.6). Параллельные проекции двух параллельных отрезков лежат на одной прямой или на параллельных прямых (рис. 32.6).

Теорема 32.3. Отношение параллельных проекций отрезков, лежащих на одной прямой или на параллельных прямых, равно отношению самих отрезков (рис. 32.7).

Параллельность в пространстве с примерами решения

Рассмотрим изображения некоторых многоугольников на плоскости Параллельность в пространстве с примерами решения в на­правлении прямой Параллельность в пространстве с примерами решения

Если прямая Параллельность в пространстве с примерами решения параллельна плоскости многоугольника или принадлежит этой плоскости, то изображением многоугольника является отрезок. Теперь рассмотрим случай, когда прямая Параллельность в пространстве с примерами решения пересекает плоскость много­угольника.

Из свойств параллельного проектирования следует, что параллельной проекцией треугольника является треугольник (рис. 32.8).

Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения Параллельность в пространстве с примерами решения

Поскольку при параллельном проектировании сохраняется параллельность отрезков, то изображением параллелограмма (в частности, прямоугольника, ромба, квадрата) является параллелограмм (рис. 32.9).

Также из свойств параллельного проектирования следует, что изображением трапеции является трапеция.

Параллельной проекцией окружности является фигура, которую называют эллипсом (рис. 32.10).

Изображения объектов с помощью параллельного проектирования широко используют в самых разных областях промышленности, например в автомобилестроении (рис. 32.11).

Параллельность в пространстве с примерами решения

Параллельность в пространстве с примерами решения ГЛАВНОЕ В ПАРАГРАФЕ 4

Основные аксиомы стереометрии

  • А1. В любой плоскости пространства выполняются все аксиомы планиметрии.
  • А2. Через любые три точки пространства, не лежащие на одной прямой, проходит плоскость, и притом только одна.
  • АЗ. Если две точки прямой принадлежат плоскости, то и вся прямая принадлежит этой плоскости.
  • А4. Если две плоскости имеют общую точку, то они пересекаются по прямой.

Плоскость однозначно определяется:

  1. тремя точками, не лежащими на одной прямой;
  2. прямой и точкой, не принадлежащей этой прямой;
  3. двумя пересекающимися прямыми;
  4. двумя параллельными прямыми.

Взаимное расположение двух прямых в пространстве

  • Две прямые называют пересекающимися, если они имеют только одну общую точку.
  • Две прямые в пространстве называют параллельными, если они лежат в одной плоскости и не пересекаются.
  • Две прямые в пространстве называют скрещивающимися, если они не лежат в одной плоскости.

Свойство параллельных прямых

Через две параллельные прямые проходит плоскость, и притом только одна.

Признак скрещивающихся прямых

Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой, то данные прямые — скрещивающиеся.

Параллельность в пространстве

Прямую и плоскость называют параллельными, если они не имеют общих точек. Две плоскости называют параллельными, если они не имеют общих точек.

Признак параллельности прямой и плоскости

Если прямая, не принадлежащая данной плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то данная прямая параллельна самой плоскости.

Условия параллельности двух прямых в пространстве

  • Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то прямая пересечения плоскостей параллельна данной прямой.
  • Если через каждую из двух параллельных прямых проведена плоскость, причем эти плоскости пересекаются по прямой, от­ личной от двух данных, то эта прямая параллельна каждой из двух данных прямых.
  • Две прямые, параллельные третьей прямой, параллельны между собой.

Признак параллельности двух плоскостей

Если две пересекающиеся прямые одной плоскости параллельны соответственно двум прямым другой плоскости, то эти плоскости параллельны.

Свойства параллельных плоскостей

Через точку в пространстве, не принадлежащую данной плоско­сти, проходит плоскость, параллельная данной плоскости, и притом только одна.

Прямые пересечения двух параллельных плоскостей третьей плоскостью параллельны.

Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.

  • Перпендикулярность в пространстве
  • Векторы и координаты в пространстве
  • Множества
  • Рациональные уравнения
  • Числовые последовательности
  • Предел числовой последовательности
  • Предел и непрерывность числовой функции одной переменной
  • Функции, их свойства и графики

Тетраэдр. Виды тетраэдров

Tetraedr2.jpg

Тетраэдр (четырёхгранник) — многогранник, гранями которого являются четыре треугольника (от греческого tetra — четыре и hedra — грань).

Tetraedrs_nereg.png

Рис. 1

У тетраэдра (4) грани, (4) вершины и (6) рёбер (Рис. 1).

Один из треугольников называется основанием тетраэдра, а три остальные — боковыми гранями тетраэдра.

В зависимости от видов треугольников и их расположения выделяют разные виды тетраэдров.

В школьном курсе чаще говорят о следующих видах тетраэдра:

равногранный  тетраэдр, у которого все грани — равные между собой треугольники;

правильная  треугольная  пирамида — основание — равносторонний треугольник, все боковые грани — одинаковые равнобедренные треугольники (Рис. 3);

правильный  тетраэдр, у которого все четыре грани — равносторонние треугольники (Рис. 2).

   

Tetraedrs_reg.png         Tetraedrs_trijst_piram.png

    Рис. 2                                                             Рис. 3

Свойство правильного тетраэдра:

из определения правильного многогранника следует, что все рёбра тетраэдра имеют равную длину, а грани — равную площадь.

Параллелепипед. Виды параллелепипедов

VIEPD.png   oblique_rhombic_prism.gif

Параллелепипедом называется многогранник, у которого (6) граней — параллелограммы.

Psk_slips1.png

Рис. 4

У параллелепипеда, как отмечено, (6) граней, (8) вершин и (12) рёбер (Рис. 4).

Две грани параллелепипеда, имеющие общее ребро, называются смежными, а не имеющие общих рёбер — противоположными.

Обычно выделяют какие-нибудь две противоположные грани и называют их основаниями, а остальные грани — боковыми гранями параллелепипеда.

Рёбра параллелепипеда, не принадлежащие основаниям, называют боковыми рёбрами.

Отрезок, соединяющий две вершины, не принадлежащие одной грани, называется диагональю параллелепипеда (Рис. 5).

Psk_taisns.png

Рис. 5

В зависимости от видов параллелограммов и их расположения выделяют разные виды параллелепипедов:

параллелепипеды могут быть прямые и наклонные.

У прямых параллелепипедов боковые грани — прямоугольники (Рис. 5),

у наклонных — параллелограммы (Рис. 4).

Прямой параллелепипед, у которого основанием тоже является прямоугольник, называется прямоугольным параллелепипедом.

Psk_taisns_dimensijas.png

Рис. 6

Длины непараллельных рёбер прямоугольного параллелепипеда называются его линейными размерами (измерениями).

У прямоугольного параллелепипеда — три линейных размера:

DA

,

DC

,

DD1

 (Рис. 6). 
 

Свойства параллелепипеда:
— противоположные грани параллелепипеда равны и параллельны.

— Все четыре диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.

— Боковые грани прямого параллелепипеда — прямоугольники.

Построение сечения тетраэдра и параллелепипеда

Плоскостью сечения многогранника можно назвать любую плоскость, по обе стороны которой находятся точки многогранника.

Секущая плоскость пересекает грани многогранников по отрезкам.

Многоугольник, сторонами которого являются эти отрезки, называется сечением многогранника.

Так как у тетраэдра (4) грани, то сечением тетраэдра может быть треугольник (Рис. 7) или

четырёхугольник (Рис. 8).

Tetr_sk_3.png           Новый.png

Рис. 7                                                                  Рис. 8

У параллелепипеда (6) граней, поэтому сечением этого многогранника может быть треугольник (Рис. 9), четырёхугольник ( Рис. 10), пятиугольник (Рис. 11) или шестиугольник (Рис. 12).

При построении сечения надо вспомнить следующие знания из предыдущих тем:

1. если две точки прямой принадлежат плоскости, то прямая находится в этой плоскости.

2. Если две плоскости имеют общую точку, то эти плоскости пересекаются по прямой.

3. Если плоскость пересекает две параллельные плоскости, то линии пересечения параллельны.

Пример:

Задача

Построить сечение параллелепипеда плоскостью, которая проходит через точки (K), (M) и (N).

Uzd_paraugs.png

1. Проводим (MK), так как обе точки находятся в одной плоскости;

2.

MK∩CC1=X

 — непараллельные прямые в одной плоскости пересекаются;

Uzd_paraugs1.png

3. проводим (XN), так как обе точки находятся в одной плоскости;

Uzd_paraugs2.png

5. проводим (MP), так как обе точки находятся в одной плоскости;

6. через точку (N) в плоскости основания

NL∥MP

, так как линии пересечения параллельных плоскостей с третьей плоскостью должны быть параллельны;

Uzd_paraugs3.png

7. соединяем (N) и (L) и получаем сечение (MPNLK).

Uzd_paraugs4.png

Геометрия, 10 класс

Урок №7. Тетраэдр и параллелепипед

Перечень вопросов, рассматриваемых в теме

  1. понятие тетраэдра;
  2. понятие параллелепипеда;
  3. свойства ребер, граней, диагоналей параллелепипеда;
  4. определение сечения в фигуре;
  5. метод следа.

Глоссарий по теме

Тетраэдр – это многогранник, состоящий из плоскости треугольника и точки не лежащий в этой плоскости, трех отрезков соединяющих эту точку с вершинами основания треугольника.

Четырёхугольник, у которого противоположные стороны попарно параллельны, называется параллелограммом.

Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда.

Сечением поверхности геометрических тел называется – плоская фигура, полученная в результате пересечения тела плоскостью и содержащая точки, принадлежащие как поверхности тела, так и секущей плоскости.

Основная литература:

Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Учебник   Геометрия 10-11 кл.– М.: Просвещение, 2014.

Дополнительная литература:

Зив Б.Г. Дидактические материалы Геометрия 10 кл.– М.: Просвещение, 2014.

Глазков Ю.А., Юдина И.И., Бутузов В.Ф. Рабочая тетрадь Геометрия 10 кл.-М.: Просвещение, 2013.

Открытый электронный ресурс:

Решу ЕГЭ. Открытый образовательный портал. https://ege.sdamgia.ru

Теоретический материал для самостоятельного изучения

В дельнейшем несколько уроков нашего курса будет посвящены многогранникам- поверхностям геометрических тел, составленным из многоугольников. Но до более подробного изучения многогранников мы познакомимся с двумя из них- тетраэдром и параллелепипедом. Нам данные тела дадут возможность проиллюстрировать понятия, связанные со взаимным расположением прямых и плоскостей.

Давайте вспомним, что мы понимали под многоугольником в планиметрии. Многоугольник мы рассматривали либо как замкнутую линию без самопересечений, либо как часть плоскости, ограниченную этой линией, включая ее саму.

Мы будем использовать второе толкование многоугольника при рассмотрении поверхностей и тел в пространстве. При таком толковании любой многоугольник в пространстве представляет собой плоскую поверхность.

Давайте рассмотрим изображенную фигуру и ответим на несколько вопросов.

Итак, поверхность данной фигуры состоит из четырёх треугольников DАВ, DВС, DАС и АВС.

Тетраэдр состоит:

  1. из вершин- их у него 4- А, B, C, D;
  2. из ребер- их у него 6- AB, BC, AC, AD, BD, CD;
  3. из граней- их у него 4- треугольники ∆АВС, ∆DАС, ∆DВС, ∆DАВ.

Мы с вами выяснили из элементов состоит наша фигура тетраэдр. Теперь сформулируем определение.

Определение. Тетраэдр – это многогранник, состоящий из плоскости треугольника и точки не лежащий в этой плоскости, трех отрезков соединяющих эту точку с вершинами основания треугольника.

Говорят, что рёбра АD и ВС, АВ и CD, и т.д.- противоположные.

Считается АВС — основание, остальные грани — боковые.

Изображается тетраэдр обычно так (рис. 1).

Рисунок 1 – изображение тетраэдра.

Математика, в частности геометрия, является мощнейшим инструментом в познании мира. Различные геометрические формы находят свое практическое приспособление в различных областях знания: архитектуре, скульптуре, живописи. И тетраэдр тому доказательство. Так же мы можем наблюдать тетраэдр в повседневной жизни (рис. 2).

Форма пакета молока

Архитектурные решения

Солнечные панели

Рисунок 2 — тетраэдр в повседневной жизни

Параллелепипед.

Прежде чем начать изучать параллелепипед вспомним определение параллелограмма и его свойства.

Определение. Четырёхугольник, у которого противоположные стороны попарно параллельны, называется параллелограммом (рис. 3).

Рисунок 3 – параллелограмм

Свойства параллелограмма

1. Противоположные стороны параллелограмма равны:

AB=DC,  BC=AD

2. Противоположные углы параллелограмма равны:

∟A=∟C, ∟B=∟D

3. Диагонали параллелограмма точкой пересечения делятся пополам:

BO=OD, AO=OC

  1. Диагональ делит параллелограмм на два равных треугольника:

треугольники ABC и CDA равны.

  1. Сумма углов, прилежащих к одной стороне параллелограмма, равна 180⁰: ∟A+∟D=180°

6. Накрест лежащие углы при диагонали равны:

∟BAC=∟ACD, ∟BCA=∟CAD

А теперь перейдем к параллелепипеду.

Рассмотрим два равных параллелограмма ABCD и A1B1C1D1, расположенных в параллельных плоскостях так, что отрезки AA1, BB1, CC1 и DD1 параллельны.

АВСDА1В1С1D1 — параллелепипед.

Давайте рассмотрим изображенную фигуру (рис. 4).

Рисунок 4 – параллелепипед и его диагонали

АВСDA1B1C1D1: поверхность, составленная из двух равных параллелограммов АВСD и A1B1C1D1, лежащих в параллельных плоскостях и четырёх параллелограммов.

Все параллелограммы — грани, их стороны — рёбра, их вершины — вершины параллелепипеда.

Считается: АВСD и A1B1C1D1 — основания, остальные грани — боковые.

Определение. Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда:
A1C, D1B, AC1, DB1.

Параллелепипед – слово греческого происхождения, параллел – идущий рядом, епипед – плоскость.

Определение.Параллелепипед- этошестигранник с параллельными и равными противоположными гранями.

Следует отметить, что многоугольник в пространстве представляет собой плоскую поверхность, а тетраэдр и параллелепипед – поверхности, составленные из плоских поверхностей (соответственно треугольников и параллелограммов).

Способы изображения параллелепипеда

Параллелепипед, в основании которого лежит ромб

Параллелепипед, в основании которого лежит квадрат

Параллелепипед,в основании которого лежит прямоугольник или параллелограмм

Параллелепипед, у которого все грани — равные квадраты

Можно сделать вывод, что параллелепипеды делятся на (рис. 5)

Рисунок 5 – виды параллелепипедов

Свойства параллелепипеда

  1. Противоположные грани параллелепипеда параллельны и равны.
  2. Все четыре диагонали пересекаются в одной точке и делятся в ней пополам.

Доказательство 1

В параллелепипеде ABCDA1B1C1D1грани ВВ1С1С и AA1D1D параллельны (рис. 6), потому что две пересекающиеся прямые ВВ1 и В1С1 одной грани параллельны двум пересекающимся прямым АА1 и A1D1 другой; эти грани и равны, так как В1С1 = A1D1, В1В= А1А (как противоположные стороны параллелограммов) и ∟ ВВ1С1= ∟АA1D1.

Рисунок 6 – чертеж к доказательству свойства 1

Доказательство 2

Возьмём какие-нибудь две диагонали, например АС1 и ВD1, и проведём вспомогательные прямые АD1 и ВС1 (рис. 7).

Так как рёбра АВ и D1С1 соответственно равны и параллельны ребру DС, то они равны и параллельны между собой; вследствие этого фигура АD1С1В есть параллелограмм, в котором прямые С1А и ВD1 —диагонали, а в параллелограмме диагонали делятся в точке пересечения пополам.

Возьмём теперь одну из этих диагоналей, например АС1, с третьей диагональю, положим, с В1D. Совершенно так же мы можем доказать, что они делятся в точке пересечения пополам. Следовательно, диагонали B1D и АС1 и диагонали АС1 и BD1(которые мы раньше брали) пересекаются в одной и той же точке, именно в середине диагонали 
АС1. Наконец, взяв эту же диагональ АС1 с четвёртой диагональю А1С, мы также докажем, что они делятся пополам. Значит, точка пересечения и этой пары диагоналей лежит в середине диагонали АС1. Таким образом, все четыре диагонали параллелепипеда пересекаются в одной и той же точке и делятся этой точкой пополам.

Рисунок 7 – чертеж к доказательству свойства 2

Задачи на построение сечений.

Определение. Сечением поверхности геометрических тел называется — плоская фигура, полученная в результате пересечения тела плоскостью и содержащая точки, принадлежащие как поверхности тела, так и секущей плоскости.

Взаимное расположение многогранника и секущей плоскости:

  1. Многогранник и плоскость не имеют общих точек.
  2. Многогранник и плоскость имеют одну общую точку-вершину многогранника.
  3. Многогранник и плоскость имеют общую грань.
  4. Многогранник и плоскость имеют общий отрезок-ребро многогранника.

Виды сечений:

  • сечение параллельное плоскости основания,
  • диагональное сечение,
  • сечение, параллельное плоскости грани,
  • произвольное сечение.

Фигуры, которые получаются в результате сечения:

    1. треугольник;
    2. четырехугольник;
    3. пятиугольник;
    4. шестиугольник.

Один из методов построения сечений, который мы рассмотрим- метод следа.

Рассмотрим метод следов, применяемый при построении сечений многогранников, а именно при построении сечения куба плоскостью.

Что такое метод следов? При построении сечений многогранников в качестве вспомогательной прямой часто используется след секущей плоскости (в плоскости грани, удобной для рассмотрения). Такой метод построения сечений называется методом следа.

Задача №1.

Построить сечение параллелепипеда ABCDA1B1C1D1 плоскостью, проходящей через точки P, Q, R (рис. 8).

Решение.

Рисунок 8 –чертеж к задаче №1

  1. Построим след секущей плоскости на плоскость нижнего основания параллелепипеда. Рассмотрим грань АА1В1В. В этой грани лежат точки сечения P и Q. Проведем прямую PQ.
  2. Продолжим прямую PQ, которая принадлежит сечению, до пересечения с прямой АВ. Получим точку S1, принадлежащую следу.
  3. Аналогично получаем точку S2 пересечением прямых QR и BC.
  4. Прямая S1S2 — след секущей плоскости на плоскость нижнего основания параллелепипеда.
  5. Прямая S1S2 пересекает сторону AD в точке U, сторону CD в точке Т. Соединим точки P и U, так как они лежат в одной плоскости грани АА1D1D. Аналогично получаем TU и RT.
  6. PQRTU – искомое сечение.

  Основные правила построения сечений методом следа:

  • Если даны (или уже построены) две точки плоскости сечения на одной грани многогранника, то след сечения этой плоскости – прямая, проходящая через эти три точки.
  • Если дана (или уже построена) прямая пересечения плоскости сечения с основанием многогранника (след на основании) и есть точка, принадлежащая определенной боковой грани, то нужно определить точку пересечения данного следа с этой боковой гранью ( точка пересечения данного следа с общей прямой основания и данной боковой грани)
  • Точку пересечения плоскости сечения с основанием можно определить как точку пересечения какой-либо прямой в плоскости сечения с ее проекцией на плоскость основания.

То есть, суть метода заключается в построении вспомогательной прямой, являющейся изображением линии пересечения секущей плоскости с плоскостью какой-либо грани фигуры. Удобнее всего строить изображение линии пересечения секущей плоскости с плоскостью нижнего основания. Используя след, легко построить изображения точек секущей плоскости, находящихся на боковых ребрах или гранях фигуры. 

Задача №2.

Дан тетраэдр АВСD. Точка М – точка внутренняя, точка грани тетраэдра АВD. N – внутренняя точка отрезка DС. Построить точку пересечения прямой NM и плоскости АВС.

Рисунок 9 – чертеж к задаче №2

Решение:
Для решения построим вспомогательную плоскость DМN (рис. 10). Пусть прямая DМ пересекает прямую АВ в точке К. Тогда, СКD – это сечение плоскости DМN и тетраэдра. В плоскости DМN лежит и прямая NM, и полученная прямая СК. Значит, если NM не параллельна СК, то они пересекутся в некоторой точке Р. Точка Р и будет искомая точка пересечения прямой NM и плоскости АВС.

Примеры и разбор решения заданий тренировочного модуля

Пример 1.

Дан тетраэдр АВСD. М – внутренняя точка грани АВD. Р – внутренняя точка грани АВС. N – внутренняя точка ребра DС. Построить сечение тетраэдра плоскостью, проходящей через точки М, N и Р. 

Решение:
Рассмотрим первый случай, когда прямая MN не параллельна плоскости АВС (рис. 11). В прошлой задаче мы нашли точку пересечения прямой MN и плоскости АВС. Это точка К, она получена с помощью вспомогательной плоскости DМN, т.е. мы проводим DМ и получаем точку F. Проводим СF и на пересечении MN получаем точку К.

Проведем прямую КР. Прямая КР лежит и в плоскости сечения, и в плоскости АВС. Получаем точки Р1 и Р2. Соединяем Р1 и М и на продолжении получаем точку М1. Соединяем точку Р2 и N. В результате получаем искомое сечение Р1Р2NМ1. Задача в первом случае решена.

Рисунок 10 – чертеж к примеру 1 (первый случай)

Рассмотрим второй случай, когда прямая MN параллельна плоскости АВС (рис. 12). Плоскость МNР проходит через прямую МN параллельную плоскости АВС и пересекает плоскость АВС по некоторой прямой Р1Р2, тогда прямая Р1Р2 параллельна данной прямой MN.

Теперь проведем прямую Р1М и получим точку М1. Р1Р21 – искомое сечение.

Рисунок 11 – чертеж к примеру 1 (второй случай)

Пример 2.

Через середины ребер АВ и ВС тетраэдра SABC проведена плоскость параллельно ребру SB. Докажите, что эта плоскость пересекает грани SAB и SBC по параллельным прямым.

Доказательство

Плоскость SBC и плоскость, проходящая через прямую MN параллельно ребру SB, пересекаются по прямой, проходящей через точку N (рис. 13).
По теореме (о параллельных прямых) линия пересечения параллельна SB.
В плоскость SBC через т. N проходит NQ||SB.
Плоскость SAB и плоскость MNQ пересекаются по прямой, проходящей через т. M (прямая MP). По теореме (о параллельных прямых) линия пересечения параллельна SB.

следовательно, PM||NQ.Утверждение доказано. 

Рисунок 12 — чертеж к примеру 2

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как составить проблемный вопрос для урока
  • Как найти человека после разблокировки
  • Как составить название сложных веществ по их формулам
  • Как найти энергию катушки конденсатора
  • Как составить проект по кубановедению

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии