При расчетах
теплоэнергетических параметров зданий
при определении площадей и объемов
следует руководствоваться следующими
правилами:
-
Отапливаемую
площадь здания следует определять как
площадь этажей (в том числе и мансардного,
отапливаемого цокольного и подвального)
здания, измеряемую в пределах внутренних
поверхностей наружных стен, включая
площадь, занимаемую перегородками и
внутренними стенами. При этом площадь
лестничных клеток и лифтовых шахт
включается в площадь этажа. Площадь
антресолей, галерей и балконов зрительных
и других залов следует включать в
отапливаемую площадь здания.
В отапливаемую
площадь здания не включаются площади
технических этажей, подвала (подполья),
холодных неотапливаемых веранд, а также
чердака или его частей, не занятых под
мансарду.
-
Площадь
жилых помещений здания подсчитывается
как сумма площадей всех общих комнат
(гостиных) и спален. -
Отапливаемый
объем здания определяется как произведение
площади этажа на внутреннюю высоту,
измеряемую от поверхности пола первого
этажа до поверхности потолка последнего
этажа.
При сложных формах
внутреннего объема здания отапливаемый
объем определяется как объем отапливаемого
пространства, ограниченного внутренними
поверхностями наружных ограждений
(стен, покрытия или чердачного перекрытия,
цокольного перекрытия).
Для определения
объема воздуха, заполняющего здание,
отапливаемый объем умножается на
коэффициент 0,85.
-
Площадь
наружных ограждающих конструкций
определяется по внутренним размерам
здания. Общая площадь наружных стен (с
учетом оконных и дверных проемов)
определяется как произведение периметра
наружных стен по внутренней поверхности
на внутреннюю высоту здания, измеряемую
от поверхности пола первого этажа до
поверхности потолка последнего этажа
с учетом площади оконных и дверных
откосов глубиной от внутренней
поверхности стены до внутренней
поверхности оконного или дверного
блока. Суммарная площадь окон определяется
по размерам проемов в свету. Площадь
наружных стен (непрозрачной части)
определяется как разность общей площади
наружных стен и площади окон и наружных
дверей. -
Площадь
горизонтальных наружных ограждений
(покрытия, чердачного и цокольного
перекрытия) определяется как площадь
этажа здания (в пределах внутренних
поверхностей наружных стен).
При наклонных
поверхностях потолков последнего этажа
площадь покрытия, чердачного перекрытия
определяется как площадь внутренней
поверхности потолка.
1.6. Определение удельного расхода тепловой энергии на отопление здания
Потребность в
тепловой энергии на отопление здания
в течение отопи-тельного периода при
отсутствии автоматического регулирования
теплоотдачи нагревательных приборов
в системе отопления:
Qhy=Qhbh;(5)
где
Qh
– общие теплопотери здания через
наружные ограждающие конструкции, МДж,
определяемые по формуле:
Qh=0,0864
Km
Dd
Aesum;
(6)
где Кm
– общий коэффициент теплопередачи
здания, Вт/(м2×°С),
определяемый по формуле:
Кm=Кmtr+Kminf,
(7)
где Кmtr
– приведенный трансмиссионный коэффициент
теплопередачи здания, Вт/(м2×°С).
Приведенный
трансмиссионный коэффициент теплопередачи
Кmtr,
Вт/(м2×°С),
совокупности ограждающих конструкций
здания следует определять по приведенным
сопротивлениям теплопередаче отдельных
ограждающих конструкций
и их площадям А по формуле:
(8)
где
b
– коэффициент, учитывающий дополнительные
теплопотери, связанные с ориентацией
ограждений по сторонам горизонта, с
ограждениями угловых помещений, с
поступлением холодного воздуха через
входы в здание: для жилых зданий b
= 1,13, для прочих зданий b
= 1,1;
Аw,
АF,
Аed,
Аc,
Аf
– площади соответственно стен, заполнений
светопроемов (окон, фонарей), наружных
дверей и ворот, покрытий (чердачных
перекрытий), цокольных перекрытий, полов
по грунту, м2;
,
,
,
,
– приведенные сопротивления теплопередачи
соответственно стен, заполнений
светопроемов (окон, фонарей), наружных
дверей и ворот, покрытий (чердачных
перекрытий), цокольных перекрытий,
м2×°С/Вт,
определяемые согласно [1];
n
– коэффициент, принимаемый в зависимости
от положения наружной поверхности
ограждающей конструкции по отношению
к наружному воздуху согласно СНиП II-3;
для пространств и помещений, примыкающих
к наружным ограждениям здания, в том
числе теплых чердаков и цокольных
перекрытий подвалов, с внутренней
температурой
.
коэффициент
n
рекомендуется вычислять по формуле:
(9)
– общая площадь внутренней поверхности
всех наружных ограждающих конструкций,
м2,
отапливаемого объема здания;
Кminf
– приведенный инфильтрационный
(условный) коэффициент теплопередачи
здания, Вт/(м2×°С),
определяемый по формуле:
Кminf=0,28
c na
bv
Vh
raht
k/Aesum,
(10)
где с – удельная
теплоемкость воздуха, равная 1 кДж/(кг×°С);
na
– средняя кратность воздухообмена
здания за отопительный период, ч-1,
принимаемая по нормам проектирования
соответствующих зданий: для жилых –
исходя из удельного нормативного расхода
воздуха 3 м3/ч
на 1 м2
жилых помещений и кухонь; для
общеобразовательных учреждений – 16–20
м3/ч
на одного чел.; в дошкольных учреждениях
– 1,5 ч-1,
в больницах – 2 ч-1.
В общественных
зданиях, функционирующих некруглосуточно,
среднесуточная кратность воздухообмена
определяется по формуле:
na=[zwnareq+(24–zw)0,5]/24,
(11)
где
zw
– продолжительность рабочего времени
в учреждении, ч;
nareq
– кратность воздухообмена в рабочее
время, ч-1,
согласно СНиП 2.08.02 для учебных заведений,
поликлиник и других учреждений,
функционирующих в рабочем режиме
неполные сутки, 0,5 ч-1
в нерабочее время;
bv
– коэффициент снижения объема воздуха
в здании, учитывающий долю внутренних
ограждающих конструкций. При отсутствии
данных принимать bv
= 0,85;
Vh
– отапливаемый объем здания, равный
объему, ограниченному внутренними
поверхностями наружных ограждений
здания, м3;
raht
– средняя плотность наружного воздуха
за отопительный период, кг/м3,
raht=353/(273-textav),
(12)
где textav
– средняя температура наружного воздуха
за отопительный период, °С, принимаемая
по СНиП 23-01;
k – коэффициент
учета влияния встречного теплового
потока в конструкциях, равный 0,7 для
стыков панелей стен и окон с тройными
переплетами, 0,8 – для окон и балконных
дверей с двумя раздельными переплетами
и 1,0 – для одинарных окон, окон и балконных
дверей со спаренными переплетами и
открытых проемов;
Dd
– количество градусо-суток отопительного
периода, °С×сут;
bh
– коэффициент, учитывающий дополнительное
теплопотребление системы отопления,
связанное с дискретностью номинального
теплового потока номенклатурного ряда
отопительных приборов и их дополнительными
теплопотерями через зарадиаторные
участки ограждений, теплопотерями
трубопроводов, проходящих через
неотапливаемые помещения: для
многосекционных и других протяженных
зданий bh
= 1,13.
Qint
– бытовые теплопоступления в течение
отопительного периода, МДж, определяемые
по формуле:
Qint=
0,0864 qint
zht
Al,
(13)
где qint
– величина бытовых тепловыделений на
1 м2
площади жилых помещений и кухонь жилого
здания или полезной площади общественного
и административного здания, Вт/м2,
принимаемая по расчету, но не менее
10 Вт/м2
для жилых зданий; для общественных и
административных зданий бытовые
тепловыделения учитываются по проектному
числу людей (90 Вт/чел.), освещения
(по установочной мощности) и оргтехники
(10 Вт/м2)
с учетом рабочих часов в сутках;
zht
– продолжительность отопительного
периода, сут;
Аl
– для жилых зданий – площадь жилых
помещений и кухонь; для общественных и
административных зданий – полезная
площадь здания, м2,
определяемая как сумма площадей всех
помещений, а также балконов и антресолей
в залах, фойе и т.п., за исключением
лестничных клеток, лифтовых шахт,
внутренних открытых лестниц и пандусов.
Qs
–
теплопоступления через окна от солнечной
радиации в течение отопительного
периода, МДж, для четырех фасадов зданий,
ориентированных по четырем направлениям,
определяемые по формуле:
Qs=tFkF(AF1I1+AF2I2+AF3I3+AF4I4)+tscykscyAscyIhor,
(14)
где tF,
tscy
– коэффициенты, учитывающие затенение
светового проема соответственно окон
и зенитных фонарей непрозрачными
элементами заполнения, принимаемые по
проектным данным; при отсутствии данных
следует принимать по прилож. Н;
kF,
kscy
– коэффициенты относительного проникания
солнечной радиации соответственно для
светопропускающих заполнений окон и
зенитных фонарей, принимаемые по
паспортным данным соответствующих
светопропускающих изделий; при отсутствии
данных следует принимать по прилож. Н;
AF1,
AF2,
AF3,
AF4
– площадь светопроемов фасадов здания,
соответственно ориентированных по
четырем направлениям, м2;
Аscy
– площадь светопроемов зенитных фонарей
здания, м2;
I1,
I2,
I3,
I4
– средние за отопительный период
величины солнечной радиации на
вертикальные поверхности при действительных
условиях облачности, соответственно
ориентированные по четырем фасадам
здания, МДж/м2,
принимается по климатическим справочникам.
Примечание:
для промежуточных направлений величину
солнечной радиации следует определять
по интерполяции;
Ihor
– средняя за отопительный период
величина солнечной радиации на
горизонтальную поверхность при
действительных условиях облачности,
МДж/м2,
принимается по климатическим справочникам.
Расчетный удельный
расход тепловой энергии на отопление
зданий за отопительный период.
Qhdes
=
103
Qhy/(Vh/Dd),
кДж/м3С
сутки (15)
где
Vh
– отапливаемый объем здания, равный
объему, ограниченному внутренними
поверхностями наружных ограждений
зданий, м3.
Удельный
расход теплой энергии на отопление
здания qh
должен быть меньше или равен нормируемому
значению qhreg,
т.е.:
qhregqhdes
(16)
Если в результате
расчета, удельный расход тепловой
энергии окажется меньше нормируемого
значения, то допускается уменьшение
сопротивление теплопередачи Rreg
отдельных элементов ограждающих
конструкций здания по сравнению с
нормируемым по табл. 4[1], но не ниже
минимальных величин Rmin,
определяемых по формуле:
Rmin
= 0,63 Rreg
– для стен зданий, указанных в 1 и 2
прилож.Г [1] и по формуле:
Rmin
= 0,8 Rreg
– для остальных ограждающих конструкций.
После
расчета удельного расхода теплоты
устанавливается класс энергетической
эффективности здания в соответствии с
классификацией по прилож. К [1]. Для вновь
возводимых зданий устанавливают классы
А, В.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Содержание
- Расчет отопления по площади помещения — подробный разбор методов
- Простые вычисления по площади
- Рассмотрим метод вычислений для комнат с высокими потолками
- Дополнительные параметры, которые нужно учесть
- Специфика и другие особенности
- Климатические зоны тоже важны
- Расчет количества радиаторов отопления по площади и объему помещения
- Расчет по площади
- Методика расчета по объему помещения
- Корректировка результатов
- Стены и потолок
- Высота потолков
- Климатические условия
- Расчет количества секций радиаторов
- Зависимость от температурного режима системы отопления
- Расчет тепловой нагрузки на отопление здания: формула, примеры
- Тепловая нагрузка: что это?
- Основные факторы
- Особенности существующих методик
- Основные способы расчета
- Три основных
- Один примерный
- Пример простого расчета
- Расчет радиатора отопления по площади
- Усредненный расчет и точный
- Примерный расчет
- Если необходим расчет в гигакалориях
- Обследование тепловизором
Расчет отопления по площади помещения — подробный разбор методов
Если у вас возникла необходимость замены старых, вышедших из строя радиаторов, или же вы собираетесь произвести установку новой системы в строящемся доме, следует знать, как произвести расчет отопления по площади помещения.
Чтобы работа системы была эффективной, следует точно определить количество секций устанавливаемых радиаторов, чтобы теплоотдача и прогревание были оптимальными.
Если секций будет недостаточно, то комната никогда не прогреется должным образом, а большое их количество приведет к неэкономному и чрезмерному расходованию тепла, и соответственно пагубно скажется на ваших финансах и бютжете. Потребности помещений стандартного типа и планировки можно определить с помощью довольно простых расчетов, а чтобы добиться большей точности, необходимо обязательно учитывать и некоторые дополнительные параметры и особенности.
Простые вычисления по площади
Вычислить величину батарей отопления для определенного помещения можно, ориентируясь на его площадь. Это самый простой способ – использовать сантехнические нормы, которые предписывают, что тепловой мощности 100 Вт в час нужно для обогрева 1 кв.м. Надо помнить, что этот метод используется для помещений, у которых потолки стандартной высоты (2,5-2,7 метра), а результат получается несколько завышенным.
К тому же он не учитывает таких особенностей, как:
- число окон и тип стеклопакетов на них;
- количество в комнате наружных стен;
- толщина стен здания и из какого материала они состоят;
- тип и толщина использованного утеплителя;
- диапазон температур в данной климатической зоне.
Тепло, которое для обогрева комнаты должны давать радиаторы: площадь следует умножить на тепловую мощность (100 Вт). К примеру, для комнаты в 18 кв.м требуется такая мощность батареи отопления:
18 кв.м х 100 Вт = 1800 Вт
То есть, в час для обогрева 18-ти квадратных метров необходимо 1,8 кВт мощности. Этот результат надо поделить на количество тепла, которое в час выделяет секция отопительного радиатора. Если данные в его паспорте указывают, что это составляет 170 Вт, то следующий этап вычислений выглядит так:
1800 Вт / 170 Вт = 10,59
Это число надо округлить до целого (обычно округляется в большую сторону) – получится 11. То есть, чтобы в комнате температура в отопительный сезон была оптимальной, необходимо установить радиатор отопления с 11-ю секциями.
Такой метод подходит только для вычисления величины батареи в помещениях с центральным отоплением, где температура теплоносителя не выше 70 градусов Цельсия.
Есть и более простой способ, который можно применять для обычных условий квартир панельных домов. В этом приблизительном расчете учитывается, что для обогрева 1,8 кв.м площади нужна одна секция. Другими словами, площадь помещения надо разделить на 1,8. Например, при площади 25 кв.м необходимо 14 частей:
25 кв.м / 1,8 кв.м = 13,89
Но такой метод расчета неприемлем для радиатора пониженной или повышенной мощности (когда средняя отдача одной секции варьируется в пределах от 120 до 200 Вт).
Рассмотрим метод вычислений для комнат с высокими потолками
Однако расчет отопления по площади не позволяет верно определить количество секций для комнат с потолками выше 3 метров. В этом случае надо применять формулу, учитывающую объем помещения. Для обогрева каждого кубического метра объема по рекомендациям СНИП необходим 41 Вт тепла. Так, для комнаты с потолками высотой 3 м и площадью 24 кв.м, расчет будет следующим:
24 кв.м х 3 м = 72 куб.м (объем комнаты).
72 куб.м х 41 Вт = 2952 Вт (мощность батареи для обогрева помещения).
Теперь следует узнать количество секций. В случае, если в документации радиатора указано, что теплоотдача одной его части в час составляет 180 Вт, надо разделить на это число найденную мощность батареи:
2952 Вт / 180 Вт = 16,4
Это число округляется до целого – получается, 17 секций, чтобы обогреть комнату объемом 72 куб.м.
Путём не сложных вычислений можно с лёгкостью определить нужные вам данные.
Дополнительные параметры, которые нужно учесть
Произведя примерный расчет количества секций радиаторов отопления для своей квартиры, не забудьте его откорректировать, приняв во внимание особенности помещения. Их нужно учитывать следующим образом:
- для угловой комнаты (две стены выходят на улицу) с одним окном мощность радиатора надо увеличить на 20%, а при двух окнах – на 30%;
- если радиатор монтируется в нише под окном, его теплоотдача снизится, это компенсируется увеличением мощности на 5%;
- на 10% следует увеличить, если окна выходят на северную либо северо-восточную сторону;
- экран, для красоты закрывающий радиаторы, «крадет» 15% их теплоотдачи, которые также надо учесть при расчете.
В самом начале следует рассчитать общее значение необходимой для помещения тепловой мощности, учитывая все наличествующие параметры и факторы. И лишь затем разделить это значение на количество тепла, которое выделяет в час одна секция. Результат при дробном значении, как правило, округляется до целого в большую сторону.
Специфика и другие особенности
Также возможна и другая специфика у помещений, для которых делается расчет, не все же они похожи и совершенно одинаковы. Это могут быть такие показатели как:
- температура теплоносителя меньше 70 градусов – число частей соответственно предстоит увеличить;
- отсутствие двери в проеме между двумя помещениями. Тогда требуется подсчитать общую площадь обоих помещений, чтобы вычислить количество радиаторов для оптимального обогрева;
- установленные на окнах стеклопакеты препятствуют потере тепла, следовательно, можно монтировать меньше секций батареи.
При замене старых чугунных батарей. которые обеспечивали нормальную температуру в комнате, на новые алюминиевые или биметаллические, калькуляция весьма проста. Умножитьте теплоотдачу одной чугунной секции (в среднем 150 Вт). Результат разделите на количество тепла одной новой части.
Климатические зоны тоже важны
Не для кого ни секрет, что в разных климатических зонах имеется разная потребность в обогреве, поэтому при проектировании проекта необходимо учитывать и эти показатели.
Климатические зоны также имеют свои коэффициенты:
- средняя полоса России имеет коэффициент 1,00, поэтому он не используется;
- северные и восточные регионы: 1,6;
- южные полосы: 0,7-0,9 (учитываются минимальные и среднегодовые температуры в регионе).
Данный коэффициент необходимо умножить на общую тепловую мощность, а полученный результат разделить на теплоотдачу одной части.
Таким образом, расчет отопления по площади особых трудностей не представляет. Достаточно немного посидеть, разобраться и спокойно посчитать. С его помощью каждый владелец квартиры или дома может легко определить величину радиатора, который следует установить в комнате, кухне, ванной или в любом другом месте.
Если вы сомневаетесь в своих силах и знаниях — доверьте монтаж системы профессионалам. Лучше заплатить один раз профессионалам, чем сделать неправильно, демонтировать и повторно приступить к работе. Или же не сделать ничего вообще.
В продолжение темы: качественные межкомнатные двери www.dveri-tmk.ru помогут сохранить тепло в вашем доме или квартире. И упростить расчёты по площади отопления.
Расчет количества радиаторов отопления по площади и объему помещения
При замене батарей или переходе на индивидуальное отопление в квартире встает вопрос о том, как рассчитать количество радиаторов отопления и число секций приборов. Если мощность батарей окажется недостаточной, в холодное время года в квартире будет прохладно. Избыточное количество секций не только ведет к ненужным переплатам – при системе отопления с однотрубной разводкой жильцы нижних этажей останутся без тепла. Рассчитать оптимальную мощность и количество радиаторов можно, опираясь на площадь или объем комнаты, учитывая при этом особенности помещения и специфику разных видов батарей .
Расчет по площади
Наиболее распространенной и простой методикой является способ расчета мощности приборов, требуемой для обогрева, по площади обогреваемого помещения. Согласно усредненной норме, на отопление 1 кв. метр площади требуется 100 Вт тепловой мощности. В качестве примера рассмотрим комнату, имеющую площадь 15 кв. метров. Согласно данному методу, для ее обогрева потребуется 1500 Вт тепловой энергии.
При использовании данной методики нужно учесть несколько важных моментов:
- норма в 100 Вт на 1 кв. метр площади относится к средней климатической полосе, в южных регионах для обогрева 1 кв. метра помещения требуется меньшая мощность – от 60 до 90 Вт;
- для областей с суровым климатом и очень холодной зимой на обогрев 1 кв. метра требуется от 150 до 200 Вт;
- метод подходит для помещений со стандартной высотой потолков, не превышающей 3 метра;
- способ не учитывает потери тепла, которые будут зависеть от расположения квартиры, количества окон, качества утепления, материала стен.
Методика расчета по объему помещения
Способ расчетов с учетом объема потолка будет более точным: он учитывает высоту потолков в квартире и материал, из которого сделаны наружные стены. Последовательность вычислений будет следующей:
- Определяется объем помещения, для этого площадь комнаты умножается на высоту потолка. Для комнаты площадью 15 кв. м. и высотой потолка 2,7 м он будет равен 40,5 кубометрам.
- В зависимости от материала стен на обогрев одного кубометра воздуха тратится разное количество энергии. По нормам СНиП для квартиры в кирпичном доме этот показатель равен 34 Вт, для панельного дома – 41 Вт. Значит, полученный объем нужно умножить на 34 или на 41 Вт. Тогда для кирпичного здания на обогрев комнаты в 15 квадратов потребуется 1377 Вт (40,5*34), для панельного – 1660, 5 Вт (40,5*41).
Корректировка результатов
Любой из выбранных способов покажет лишь приблизительный результат, если не будут учитываться все факторы, влияющие на уменьшение или увеличение теплопотерь. Для точного расчета необходимо полученное значение мощности радиаторов умножить на приведенные ниже коэффициенты, среди которых нужно выбрать подходящие.
В зависимости от размеров окон и качества утепления через них помещение может терять 15–35% тепла. Значит, для вычислений мы будем использовать два связанных с окнами коэффициента.
Соотношение площади окон и пола в комнате:
- для окна с трехкамерным стеклопакетом или двухкамерным с аргоном – 0,85;
- для окна с обычным двухкамерным стеклопакетом – 1,0;
- для рам с обычным двойным остеклением – 1,27.
Стены и потолок
Потери тепла зависят от количества наружных стен, качества теплоизоляции и от того, какое помещение расположено над квартирой. Для учета этих факторов будет использоваться еще 3 коэффициента.
Число наружных стен:
- нет наружных стен, потери тепла отсутствуют – коэффициент 1,0;
- одна наружная стена – 1,1;
- две – 1,2;
- три – 1,3.
- нормальная теплоизоляция (стена толщиной в 2 кирпича или слой утеплителя) – 1,0;
- высокая степень теплоизоляции – 0,8;
- низкая – 1,27.
Учет типа вышерасположенного помещения:
- отапливаемая квартира – 0,8;
- отапливаемый чердак – 0,9;
- холодный чердак – 1,0.
Высота потолков
Если вы пользовались способом расчета по площади для комнаты с нестандартной высотой стен, то для уточнения результата придется ее учесть. Коэффициент можно узнать следующим образом: имеющуюся высоту потолка разделить на стандартную высоту, которая равна 2,7 метра. Таким образом мы получим следующие цифры:
Климатические условия
Последний коэффициент учитывает температуру воздуха на улице в зимнее время. Отталкиваться будем от средней температуры в наиболее холодную неделю года.
Расчет количества секций радиаторов
После того как нам стала известна мощность, требуемая для обогрева помещения, мы можем произвести расчет батарей отопления.
Для того чтобы рассчитать количество секций радиатора, нужно поделить рассчитанную общую мощность на мощность одной секции прибора. Для проведения вычислений можно пользоваться среднестатистическими показателями для разных типов радиаторов со стандартным осевым расстоянием, равным 50 см:
- для чугунных батарей примерная мощность одной секции составляет 160 Вт;
- для биметаллических – 180 Вт;
- для алюминиевых – 200 Вт.
Справка: осевое расстояние радиатора – это высота между центрами отверстий, через которые подается и отводится теплоноситель.
Для примера определим требуемое число секций биметаллического радиатора для комнаты площадью 15 кв. м. Предположим, что вы считали мощность простейшим способом по площади помещения. Делим требуемые для ее обогрева 1500 Вт мощности на 180 Вт. Полученное число 8,3 округляем – необходимое число секций биметаллического радиатора равно 8.
Важно! Если вы решили выбрать батареи нестандартного размера, узнайте мощность одной секции из паспорта прибора.
Зависимость от температурного режима системы отопления
Мощность радиаторов указывается для системы с высокотемпературным тепловым режимом. Если система отопления вашего дома работает в среднетемпературном или низкотемпературном тепловом режиме, для подбора батарей с нужным количеством секций придется произвести дополнительные расчеты.
Для начала определим тепловой напор системы, который представляет собой разницу между средней температурой воздуха и батарей. За температуру приборов отопления берется среднее арифметическое от значений температуры подачи и отвода теплоносителя.
- Высокотемпературный режим: 90/70/20 (температура подачи — 90 °C, обратки —70 °C, за среднюю температуру в помещении принимается значение 20 °C). Тепловой напор рассчитаем так: (90 + 70) / 2 – 20 = 60 °С;
- Среднетемпературный: 75/65/20, тепловой напор – 50 °С.
- Низкотемпературный: 55/45/20, тепловой напор – 30 °С.
Чтобы узнать, сколько секций батареи вам понадобится для систем с тепловым напором 50 и 30, нужно умножить общую мощность на паспортный напор радиатора, а затем разделить на имеющийся тепловой напор. Для комнаты 15 кв.м. потребуется 15 секций алюминиевых радиаторов, 17 – биметаллических и 19 – чугунных батарей.
Для отопительной системы с низкотемпературным режимом вам потребуется в 2 раза больше секций.
Расчет тепловой нагрузки на отопление здания: формула, примеры
При проектировании системы отопления, будь то промышленное строение или жилое здание, нужно провести грамотные расчеты и составить схему контура отопительной системы. Особое внимание на этом этапе специалисты рекомендуют обращать на расчёт возможной тепловой нагрузки на отопительный контур, а также на объем потребляемого топлива и выделяемого тепла.
Тепловая нагрузка: что это?
Под этим термином понимают количество отдаваемой приборами отопления теплоты. Проведенный предварительный расчет тепловой нагрузки позволить избежать ненужных расходов на приобретение составляющих отопительной системы и на их установку. Также этот расчет поможет правильно распределить количество выделяемого тепла экономно и равномерно по всему зданию.
В эти расчеты заложено множество нюансов. Например, материал, из которого выстроено здание, теплоизоляция, регион и пр. Специалисты стараются принять во внимание как можно больше факторов и характеристик для получения более точного результата.
Расчет тепловой нагрузки с ошибками и неточностями приводит к неэффективной работе отопительной системы. Случается даже, что приходится переделывать участки уже работающей конструкции, что неизбежно влечет к незапланированным тратам. Да и жилищно-коммунальные организации ведут расчет стоимости услуг на базе данных о тепловой нагрузке.
Основные факторы
Идеально рассчитанная и сконструированная система отопления должна поддерживать заданную температуру в помещении и компенсировать возникающие потери тепла. Рассчитывая показатель тепловой нагрузки на систему отопления в здании нужно принимать к сведению:
— Назначение здания: жилое или промышленное.
— Характеристику конструктивных элементов строения. Это окна, стены, двери, крыша и вентиляционная система.
— Размеры жилища. Чем оно больше, тем мощнее должна быть система отопления. Обязательно нужно учитывать площадь оконных проемов, дверей, наружных стен и объем каждого внутреннего помещения.
— Наличие комнат специального назначения (баня, сауна и пр.).
— Степень оснащения техническими приборами. То есть, наличие горячего водоснабжения, системы вентиляции, кондиционирование и тип отопительной системы.
— Температурный режим для отдельно взятого помещения. Например, в комнатах, предназначенных для хранения, не нужно поддерживать комфортную для человека температуру.
— Количество точек с подачей горячей воды. Чем их больше, тем сильнее нагружается система.
— Площадь остекленных поверхностей. Комнаты с французскими окнами теряют значительное количество тепла.
— Дополнительные условия. В жилых зданиях это может быть количество комнат, балконов и лоджий и санузлов. В промышленных – количество рабочих дней в календарном году, смен, технологическая цепочка производственного процесса и пр.
— Климатические условия региона. При расчёте теплопотерь учитываются уличные температуры. Если перепады незначительны, то и на компенсацию будет уходить малое количество энергии. В то время как при -40 о С за окном потребует значительных ее расходов.
Особенности существующих методик
Параметры, включаемые в расчет тепловой нагрузки, находятся в СНиПах и ГОСТах. В них же есть специальные коэффициенты теплопередачи. Из паспортов оборудования, входящего в систему отопления, берутся цифровые характеристики, касаемые определенного радиатора отопления, котла и пр. А также традиционно:
— расход тепла, взятый по максимуму за один час работы системы отопления,
— максимальный поток тепла, исходящий от одного радиатора,
— общие затраты тепла в определенный период (чаще всего – сезон); если необходим почасовой расчет нагрузки на тепловую сеть, то расчет нужно вести с учетом перепада температур в течение суток.
Произведенные расчеты сопоставляют с площадью тепловой отдачи всей системы. Показатель получается достаточно точный. Некоторые отклонения случаются. Например, для промышленных строений нужно будет учитывать снижение потребления тепловой энергии в выходные дни и праздничные, а в жилых помещениях – в ночное время.
Методики для расчета систем отопления имеют несколько степеней точности. Для сведения погрешности к минимуму необходимо использовать довольно сложные вычисления. Менее точные схемы применяются если не стоит цель оптимизировать затраты на отопительную систему.
Основные способы расчета
На сегодняшний день расчет тепловой нагрузки на отопление здания можно провести одним из следующих способов.
Три основных
- Для расчета берутся укрупненные показатели.
- За базу принимаются показатели конструктивных элементов здания. Здесь будет важен и расчет потерь тепла, идущего на прогрев внутреннего объема воздуха.
- Рассчитываются и суммируются все входящие в систему отопления объекты.
Один примерный
Есть и четвертый вариант. Он имеет достаточно большую погрешность, ибо показатели берутся очень усредненные, или их недостаточно. Вот эта формула — Qот = q0 * a * VH * (tЕН – tНРО ), где:
- q0 – удельная тепловая характеристика здания (чаще всего определяется по самому холодному периоду),
- a – поправочный коэффициент (зависит от региона и берется из готовых таблиц),
- VH – объем, рассчитанный по внешним плоскостям.
Пример простого расчета
Для строения со стандартными параметрами (высотой потолков, размерами комнат и хорошими теплоизоляционными характеристиками) можно применить простое соотношение параметров с поправкой на коэффициент, зависящий от региона.
Предположим, что жилой дом находится в Архангельской области, а его площадь — 170 кв. м. Тепловая нагрузка будет равна 17 * 1,6 = 27,2 кВт/ч.
Подобное определение тепловых нагрузок не учитывает многих важных факторов. Например, конструктивных особенностей строения, температуры, число стен, соотношение площадей стен и оконных проёмов и пр. Поэтому подобные расчеты не подходят для серьёзных проектов системы отопления.
Расчет радиатора отопления по площади
Зависит он от материала, из которого они изготовлены. Чаще всего сегодня используются биметаллические, алюминиевые, стальные, значительно реже чугунные радиаторы. Каждый из них имеет свой показатель теплоотдачи (тепловой мощности). Биметаллические радиаторы при расстоянии между осями в 500 мм, в среднем имеют 180 — 190 Вт. Радиаторы из алюминия имеют практически такие же показатели.
Теплоотдача описанных радиаторов рассчитывается на одну секцию. Радиаторы стальные пластинчатые являются неразборными. Поэтому их теплоотдача определяется исходя из размера всего устройства. Например, тепловая мощность двухрядного радиатора шириной 1 100 мм и высотой 200 мм будет 1 010 Вт, а панельного радиатора из стали шириной 500 мм, а высотой 220 мм составит 1 644 Вт.
В расчет радиатора отопления по площади входят следующие базовые параметры:
— высота потолков (стандартная – 2,7 м),
— тепловая мощность (на кв. м – 100 Вт),
— одна внешняя стена.
Эти расчеты показывают, что на каждые 10 кв. м необходимо 1 000 Вт тепловой мощности. Этот результат делится на тепловую отдачу одной секции. Ответом является необходимое количество секций радиатора.
Для южных районов нашей страны, так же как и для северных, разработаны понижающие и повышающие коэффициенты.
Усредненный расчет и точный
Учитывая описанные факторы, усредненный расчет проводится по следующей схеме. Если на 1 кв. м требуется 100 Вт теплового потока, то помещение в 20 кв. м должно получать 2 000 Вт. Радиатор (популярный биметаллический или алюминиевый) из восьми секций выделяет около 150 Вт. Делим 2 000 на 150, получаем 13 секций. Но это довольно укрупненный расчет тепловой нагрузки.
Точный выглядит немного устрашающе. На самом деле ничего сложного. Вот формула:
- q1 – тип остекления (обычное =1.27, двойное = 1.0, тройное = 0.85);
- q2 – стеновая изоляция (слабая, или отсутствующая = 1.27, стена выложенная в 2 кирпича = 1.0, современна, высокая = 0.85);
- q3 – соотношение суммарной площади оконных проемов к площади пола (40% = 1.2, 30% = 1.1, 20% — 0.9, 10% = 0.8);
- q4 – уличная температура (берется минимальное значение: -35 о С = 1.5, -25 о С = 1.3, -20 о С = 1.1, -15 о С = 0.9, -10 о С = 0.7);
- q5 – число наружных стен в комнате (все четыре = 1.4, три = 1.3, угловая комната = 1.2, одна = 1.2);
- q6 – тип расчетного помещения над расчетной комнатой (холодное чердачное = 1.0, теплое чердачное = 0.9, жилое отапливаемое помещение = 0.8);
- q7 – высота потолков (4.5 м = 1.2, 4.0 м = 1.15, 3.5 м = 1.1, 3.0 м = 1.05, 2.5 м = 1.3).
По любому из описанных методов можно провести расчет тепловой нагрузки многоквартирного дома.
Примерный расчет
Условия таковы. Минимальная температура в холодное время года — -20 о С. Комната 25 кв. м с тройным стеклопакетом, двустворчатыми окнами, высотой потолков 3.0 м, стенами в два кирпича и неотапливаемым чердаком. Расчет будет следующий:
Q = 100 Вт/м 2 × 25 м 2 × 0,85 × 1 × 0,8(12%) × 1,1 × 1,2 × 1 × 1,05.
Результат, 2 356.20, делим на 150. В итоге получается, что в комнате с указанными параметрами нужно установить 16 секций.
Если необходим расчет в гигакалориях
В случае отсутствия счетчика тепловой энергии на открытом отопительном контуре расчет тепловой нагрузки на отопление здания рассчитывают по формуле Q = V * (Т1 — Т2 ) / 1000, где:
- V – количество воды, потребляемой системой отопления, исчисляется тоннами или м 3 ,
- Т1 – число, показывающее температуру горячей воды, измеряется в о С и для вычислений берется температура, соответствующая определенному давлению в системе. Показатель этот имеет свое название – энтальпия. Если практическим путем снять температурные показатели нет возможности, прибегают к усредненному показателю. Он находится в пределах 60-65 о С.
- Т2 – температура холодной воды. Ее измерить в системе довольно трудно, поэтому разработаны постоянные показатели, зависящие от температурного режима на улице. К примеру, в одном из регионов, в холодное время года этот показатель принимается равным 5, летом – 15.
- 1 000 – коэффициент для получения результата сразу в гигакалориях.
В случае закрытого контура тепловая нагрузка (гкал/час) рассчитывается иным образом:
- α – коэффициент, призванный корректировать климатические условия. Берется в расчет, если уличная температура отличается от -30 о С;
- V – объем строения по наружным замерам;
- qо – удельный отопительный показатель строения при заданной tн.р = -30 о С, измеряется в ккал/м 3 *С;
- tв – расчетная внутренняя температура в здании;
- tн.р – расчетная уличная температура для составления проекта системы отопления;
- Kн.р – коэффициент инфильтрации. Обусловлен соотношением тепловых потерь расчетного здания с инфильтрацией и теплопередачей через внешние конструктивные элементы при уличной температуре, которая задана в рамках составляемого проекта.
Расчет тепловой нагрузки получается несколько укрупненным, но именно эта формула дается в технической литературе.
Обследование тепловизором
Все чаще, чтобы повысить эффективность работы отопительной системы, прибегают к тепловизионным обследованиям строения.
Работы эти проводят в темное время суток. Для более точного результата нужно соблюдать разницу температур между помещением и улицей: она должна быть не менее в 15 о. Лампы дневного освещения и лампы накаливания выключаются. Желательно убрать ковры и мебель по максимуму, они сбивают прибор, давая некоторую погрешность.
Обследование проводится медленно, данные регистрируются тщательно. Схема проста.
Первый этап работ проходит внутри помещения. Прибор двигают постепенно от дверей к окнам, уделяя особое внимание углам и прочим стыкам.
Второй этап – обследование тепловизором внешних стен строения. Все так же тщательно исследуются стыки, особенно соединение с кровлей.
Третий этап – обработка данных. Сначала это делает прибор, затем показания переносятся в компьютер, где соответствующие программы заканчивают обработку и выдают результат.
Источники: http://otopleniedomov.com/otoplenie/raschet-otopleniya-po-ploshhadi-pomeshheniya-podrobnyjj-razbor-metodov.html, http://mr-build.ru/otoplenie/raschet-otopleniya-po-ploshhadi-pomescheniya.html, http://fb.ru/article/301879/raschet-teplovoy-nagruzki-na-otoplenie-zdaniya-formula-primeryi
Как вам статья?
Корректировка результатов
Любой из выбранных способов покажет лишь приблизительный результат, если не будут учитываться все факторы, влияющие на уменьшение или увеличение теплопотерь. Для точного расчета необходимо полученное значение мощности радиаторов умножить на приведенные ниже коэффициенты, среди которых нужно выбрать подходящие.
В зависимости от размеров окон и качества утепления через них помещение может терять 15–35% тепла. Значит, для вычислений мы будем использовать два связанных с окнами коэффициента.
Соотношение площади окон и пола в комнате:
- для окна с трехкамерным стеклопакетом или двухкамерным с аргоном – 0,85;
- для окна с обычным двухкамерным стеклопакетом – 1,0;
- для рам с обычным двойным остеклением – 1,27.
Стены и потолок
Потери тепла зависят от количества наружных стен, качества теплоизоляции и от того, какое помещение расположено над квартирой. Для учета этих факторов будет использоваться еще 3 коэффициента.
Число наружных стен:
- нет наружных стен, потери тепла отсутствуют – коэффициент 1,0;
- одна наружная стена – 1,1;
- две – 1,2;
- три – 1,3.
- нормальная теплоизоляция (стена толщиной в 2 кирпича или слой утеплителя) – 1,0;
- высокая степень теплоизоляции – 0,8;
- низкая – 1,27.
Учет типа вышерасположенного помещения:
- отапливаемая квартира – 0,8;
- отапливаемый чердак – 0,9;
- холодный чердак – 1,0.
Высота потолков
Если вы пользовались способом расчета по площади для комнаты с нестандартной высотой стен, то для уточнения результата придется ее учесть. Коэффициент можно узнать следующим образом: имеющуюся высоту потолка разделить на стандартную высоту, которая равна 2,7 метра. Таким образом мы получим следующие цифры:
Климатические условия
Последний коэффициент учитывает температуру воздуха на улице в зимнее время. Отталкиваться будем от средней температуры в наиболее холодную неделю года.
Зачем нужно знать этот параметр
Распределение тепловых потерь в доме
Что же представляет собой расчет тепловой нагрузки на отопление? Он определяет оптимальное количество тепловой энергии для каждого помещения и здания в целом. Переменными величинами являются мощность отопительного оборудования – котла, радиаторов и трубопроводов. Также учитываются тепловые потери дома.
В идеале тепловая мощность отопительной системы должна компенсировать все тепловые потери и при этом поддерживать комфортный уровень температуры. Поэтому прежде чем выполнить расчет годовой нагрузки на отопление, нужно определиться с основными факторами, влияющими на нее:
- Характеристика конструктивных элементов дома. Наружные стены, окна, двери, вентиляционная система сказываются на уровне тепловых потерь;
- Размеры дома. Логично предположить, что чем больше помещение – тем интенсивнее должна работать система отопления. Немаловажным фактором при этом является не только общий объем каждой комнаты, но и площадь наружных стен и оконных конструкций;
- Климат в регионе. При относительно небольших снижениях температуры на улице нужно малое количество энергии для компенсации тепловых потерь. Т.е. максимальная часовая нагрузка на отопление напрямую зависит от степени снижения температуры в определенный период времени и среднегодовое значение для отопительного сезона.
Учитывая эти факторы составляется оптимальный тепловой режим работы системы отопления. Резюмируя все вышесказанное можно сказать, что определение тепловой нагрузки на отопление необходимо для уменьшения расхода энергоносителя и соблюдения оптимального уровня нагрева в помещениях дома.
Для расчета оптимальной нагрузки на отопление по укрупненным показателям нужно знать точный объем здания
Важно помнить, что эта методика разрабатывалась для больших сооружений, поэтому погрешность вычислений будет велика
Ответы знатоков
2006-2014:
умножьте 140 на среднюю высоту потолков и получите объем.. . примерно 140*2,5=350 куб м т. е. скорее всего маловат котел
Елена Патрушева:
Каждое строение или пристройка должны быть замерены по своему периметру по цоколю для вычисления застроенной площади и выше цоколя, по телу стен строения, со взятием всех необходимых размеров для вычисления площади строения его частей и пристроек. Примечание: Выступающие части наружных стен (пилястры, раскреповки толщиной до 10 см и шириной до 1 м) не замеряются, и на абрис не наносятся. Все остальные выступы в строениях замеряются, наносятся на абрис и включаются в общую кубатуру строения. При обмере строений по периметру необходимо учитывать выделение отдельных частей строения, зависящие от назначения, от разного материала стен и высот, вследствие чего замеры на плане следует проставлять так, чтобы при оценке не встретилось затруднений в определении кубатуры строения .baurum /_library/?cat=systems_heating&id=1549 .abok /for_spec/articles.php?nid=3272 .gosreg.kg/index.php?option=com_content&view=article&id=221&Itemid=156
александр ионов:
размеры беруться по наружному а не по внутренему
Сергей Дмитриев:
Расчет потребности в тепле На строительной площадке тепло расходуется на отопление строящегося здания, обогрев временных зданий и на технологические нужды. Расход тепла в кДж/ч на отопление строящегося здания и обогрев временных зданий определяют по формулам: Q1 = q*V1*(tв — tн) *а*К1*К2;Q2 = q*V2*(tв — tн) *а*К1*К2, где q — удельная тепловая характеристика зданий, кДж/м3ч. град; для жилых и общественных зданий q принимают равным 2,14; для временных зданий — 3,36; для временных общественных и административных зданий — 2,73 кДж/м3ч. град; V1 — объем отапливаемой части строящегося здания по наружному обмеру, м3; V2 — объем временных зданий по наружному обмеру, м3; tв — расчетная внутренняя температура, град. ; tн — расчетная наружная температура, град. ; а — коэффициент, учитывающий влияние расчетной наружной температуры на q (1,1); К1 — коэффициент, учитывающий потери тепла в сети, принимаемый равным 1,15; К2 — коэффициент, предусматривающий добавку на неучтенные расходы тепла, принимается равным 1,10. Q1 = 2,14 * 8288 * (16 + 22) * 1,1 * 1,15 * 1,1 = 937843 кДж/ч; Q2 = 3,36 * 597,6 * (16 + 22) * 1,1 * 1,15 * 1,1 = 106173 кДж/ч. Расход тепла на технологические нужды определяется каждый раз специальными расчетами, исходя из заданных объемов работ, сроков работ, принятых режимов и др. Источниками временного теплоснабжения является существующая теплосеть котельных. Вся информация есть в нете . Господа студенты научитесь пользоваться нетом. Там даже дипломные работы есть
Определение количества радиаторов для однотрубных систем
Есть еще один очень важный момент: все вышеизложенное справедливо для двухтрубной системы отопления. когда на вход каждого из радиаторов поступает теплоноситель с одинаковой температурой. Однотрубная система считается намного сложнее: там на каждый последующий отопительный прибор вода поступает все более холодная. И если хотите рассчитать количество радиаторов для однотрубной системы, нужно каждый раз пересчитывать температуру, а это сложно и долго. Какой выход? Одна из возможностей — определить мощность радиаторов как для двухтрубной системы, а потом пропорционально падению тепловой мощности добавлять секции для увеличения теплоотдачи батареи в целом.
В однотрубной системе вода на каждый радиатор поступает все более холодная
Поясним на примере. На схеме изображена однотрубная система отопления с шестью радиаторами. Количество батарей определили для двухтрубной разводки. Теперь нужно внести корректировку. Для первого отопительного прибора все остается по-прежнему. На второй поступает уже теплоноситель с меньшей температурой. Определяем % падения мощности и на соответствующее значение увеличиваем количество секций. На картинке получается так: 15кВт-3кВт=12кВт. Находим процентное соотношение: падение температуры составляет 20%. Соответственно для компенсации увеличиваем количество радиаторов: если нужно было 8шт, будет на 20% больше — 9 или 10шт. Вот тут и пригодится вам знание помещения: если это спальня или детская, округлите в большую сторону, если гостиная или другое подобное помещение, округляете в меньшую
Принимаете во внимание и расположение относительно сторон света: в северных округляете в большую, в южных — в меньшую
В однотрубных системах нужно в расположенных дальше по ветке радиаторах добавлять секции
Этот метод явно не идеален: ведь получится, что последняя в ветке батарея должна будет иметь просто огромные размеры: судя по схеме на ее вход подается теплоноситель с удельной теплоемкостью равной ее мощности, а снять все 100% на практике нереально. Потому обычно при определении мощности котла для однотрубных систем берут некоторый запас, ставят запорную арматуру и подключают радиаторы через байпас, чтобы можно было отрегулировать теплоотдачу, и таким образом компенсировать падение температуры теплоносителя. Из всего этого следует одно: количество или/и размеры радиаторов в однотрубной системе нужно увеличивать, и по мере удаления от начала ветки ставить все больше секций.
Приблизительный расчет количества секций радиаторов отопления дело несложное и быстрое. А вот уточнение в зависимости от всех особенностей помещений, размеров, типа подключения и расположения требует внимания и времени. Зато вы точно сможете определиться с количеством отопительных приборов для создания комфортной атмосферы зимой.
Расчет теплопотерь
Основные потери тепла происходят через стены помещения. Для расчета нужно знать коэффициент теплопроводности наружного и внутреннего материала, из которого построен дом, толщину стены здания, также важна средняя температура наружного воздуха. Основная формула:
Q = S х ΔT /R, где
ΔT – разница температуры снаружи и внутреннего оптимального значения;
S – площадь стен;
R – тепловое сопротивление стен, которое, в свою очередь, рассчитывается по формуле:
R = B/K, где B – толщина кирпича, K – коэффициент теплопроводности.
Пример расчета: дом построен из ракушняка, в камень, находится в Самарской области. Теплопроводность ракушняка в среднем составляет 0,5 Вт/м*К, толщина стены – 0,4 м. Учитывая средний диапазон, минимальная температура зимой -30 °C. В доме, согласно СНИП, нормальная температура составляет +25 °C, разница 55°C.
Если комната угловая, то обе ее стены непосредственно контактируют с окружающей средой. Площадь наружных двух стен комнаты 4х5 м и высотой 2,5 м. 4х2,5 + 5х2,5 = 22,5 м 2 .
Далее выводится коэффициент теплопотери, чтобы в заключении сделать расчет системы отопления:
Q = 22,5*55/0,8 = 1546 Вт.
Кроме того, необходимо учитывать утепление стен помещения. При отделке пенопластом наружной площади теплопотери уменьшаются примерно на 30%. Итак, окончательная цифра составит около 1000 Вт.
Расчет количества радиаторов отопления по площади и объему помещения
При замене батарей или переходе на индивидуальное отопление в квартире встает вопрос о том, как рассчитать количество радиаторов отопления и число секций приборов. Если мощность батарей окажется недостаточной, в холодное время года в квартире будет прохладно. Избыточное количество секций не только ведет к ненужным переплатам – при системе отопления с однотрубной разводкой жильцы нижних этажей останутся без тепла. Рассчитать оптимальную мощность и количество радиаторов можно, опираясь на площадь или объем комнаты, учитывая при этом особенности помещения и специфику разных видов батарей .
Как рассчитать количество секций радиаторов
Для расчета количества радиаторов существует несколько методик, но суть их одна: узнать максимальные теплопотери помещения, а затем рассчитать количество отопительных приборов, необходимое для их компенсации.
Методы расчета есть разные. Самые простые дают приблизительные результаты. Тем не менее, их можно использовать, если помещения стандартные или применить коэффициенты, которые позволяют учесть имеющиеся «нестандартные» условия каждого конкретного помещения (угловая комната, выход на балкон, окно во всю стену и т.п.). Есть более сложный расчет по формулам. Но по сути это те же коэффициенты, только собранные в одну формулу.
Есть еще один метод. Он определяет фактические потери. Специальное устройство — тепловизор — определяет реальные потери тепла. И на основании этих данных рассчитывают сколько нужно радиаторов для их компенсации. Чем еще хорош этот метод, так это тем, что на снимке тепловизора точно видно, где тепло уходит активнее всего. Это может быть брак в работе или в строительных материалах, трещина и т.д. Так что заодно можно выправить положение.
Расчет радиаторов зависит от потерь тепла помещением и номинальной тепловой мощности секций
Расчет радиатора отопления по площади
Зависит он от материала, из которого они изготовлены. Чаще всего сегодня используются биметаллические, алюминиевые, стальные, значительно реже чугунные радиаторы. Каждый из них имеет свой показатель теплоотдачи (тепловой мощности). Биметаллические радиаторы при расстоянии между осями в 500 мм, в среднем имеют 180 — 190 Вт. Радиаторы из алюминия имеют практически такие же показатели.
Теплоотдача описанных радиаторов рассчитывается на одну секцию. Радиаторы стальные пластинчатые являются неразборными. Поэтому их теплоотдача определяется исходя из размера всего устройства. Например, тепловая мощность двухрядного радиатора шириной 1 100 мм и высотой 200 мм будет 1 010 Вт, а панельного радиатора из стали шириной 500 мм, а высотой 220 мм составит 1 644 Вт.
В расчет радиатора отопления по площади входят следующие базовые параметры:
— высота потолков (стандартная – 2,7 м),
— тепловая мощность (на кв. м – 100 Вт),
— одна внешняя стена.
Эти расчеты показывают, что на каждые 10 кв. м необходимо 1 000 Вт тепловой мощности. Этот результат делится на тепловую отдачу одной секции. Ответом является необходимое количество секций радиатора.
Для южных районов нашей страны, так же как и для северных, разработаны понижающие и повышающие коэффициенты.
Права покупателей
Делая покупку жилья в новостройке, при детальном изучении чертежей и проекта квартиры, встает закономерный вопрос, что за коэффициенты и что они скрывают?
Для этого разберем пример:
Покупатель, подписал договор с застройщиком по долевому участию, с расчетом купить квартиру в 77 кв. м. С включением сюда площади лоджии. Однако в договоре, отсутствовали ссылки на используемые в расчётах коэффициенты и выкопировка поэтажного плана строения.
Квартира была введена в эксплуатацию, получен технический паспорт. И тут случилось, оно! Фактическая площадь квартиры составила 72,5 кв. м. В нее внесли площадь всех комнат — 68 кв. м. И лоджию 4,5 кв. м. С применением коэффициента 0,5. и выходит, что за 4,5 кв. м
. Вы переплатили. Далее суд. И все аргументы застройщика не были приняты и его обязали вернуть вам деньги за данный метраж.
В отношении рынка вторичного жилья, то часты перепланировки, особенно хозяевами квартир, расположенных этажах зданий. И как итог, лоджии делают отапливаемыми как бы продолжением комнаты. И вот тут, если ранее ее не нужно было включать в общую площадь, то сейчас однозначно — да.
И когда вам приходит счет за теплосеть, обычно в ней идет расчет ориентированный на общую площадь вашей квартиры, без учета балконов, лоджий и т. п. Но когда ваша лоджия стала теплой, ее обязательно внесут в общую площадь
. Что, соответственно, повысить ваши расходы на оплату услуг теплосети. Все помещения, которые ранее были «холодными», а сейчас имеет радиаторы, работающие от сети центрального отопления, будут включены в общую площадь жилья.
Как считают объем и площадь здания
А. Объем и площадь здания жилого при проектировании
(из СП 54.13330.2011 Здания жилые многоквартирные)
Б. Объем и площадь здания жилого для потребительской характеристики
(из СП 54.13330.2011 Здания жилые многоквартирные)
В. Объем и площадь здания общественного
(из СП 118.13330.2012 Для общественных зданий)
- Общая площадь здания определяется как сумма площадей всех этажей (включая технический, мансардный, цокольный и подвальный).
- В общую площадь здания включается площадь антресолей, галерей и балконов зрительных и других залов, веранд, наружных застекленных лоджий и галерей, а также переходов в другие здания.
- В общей площади здания отдельно указывается площадь открытых неотапливаемых планировочных элементов здания (включая площадь эксплуатируемой кровли, открытых наружных галерей, открытых лоджий и т.п.).
- Площадь многосветных помещений, а также пространство между лестничными маршами более ширины марша и проемы в перекрытиях более 36кв. м следует включать в общую площадь здания в пределах только одного этажа.
- Площадь этажа следует измерять на уровне пола в пределах внутренних поверхностей (с чистой отделкой) наружных стен. Площадь этажа при наклонных наружных стенах измеряется на уровне пола. Площадь мансардного этажа измеряется в пределах внутренних поверхностей наружных стен и стен мансарды, смежных с пазухами чердака с учетом Г.5.
- Полезная площадь здания определяется как сумма площадей всех размещаемых в нем помещений, а также балконов и антресолей в залах, фойе и т.п., за исключением лестничных клеток, лифтовых шахт, внутренних открытых лестниц и пандусов.
- Расчетная площадь здания определяется как сумма площадей входящих в него помещений, за исключением:
- коридоров, тамбуров, переходов, лестничных клеток, внутренних открытых лестниц и пандусов;
- лифтовых шахт;
- помещений, предназначенных для размещения инженерного оборудования и инженерных сетей.
- В общую, полезную и расчетную площади здания не включаются площади подполья для проветривания здания на вечномерзлых грунтах, чердака, технического подполья (технического чердака) при высоте от пола до низа выступающих конструкций менее 1,8 м, а также наружных тамбуров, наружных балконов, портиков, крылец, наружных открытых лестниц и пандусов.
- Площадь помещений здания определяется по их размерам, измеряемым между отделанными поверхностями стен и перегородок на уровне пола (без учета плинтусов). Площадь помещения мансардного этажа учитывается с понижающим коэффициентом 0,7 на участке в пределах высоты наклонного потолка (стены) при наклоне 30° — до 1,5 м, при 45° — до 1,1 м, при 60° и более — до 0,5 м.
- Строительный объем здания определяется как сумма строительного объема выше отметки 0.00 (надземная часть) и ниже этой отметки (подземная часть).
- Строительный объем надземной и подземной частей здания определяется в пределах ограничивающих поверхностей с включением ограждающих конструкций, световых фонарей, куполов и др., начиная с отметки чистого пола каждой из частей здания, без учета выступающих архитектурных деталей и конструктивных элементов, подпольных каналов, портиков, террас, балконов, объема проездов и пространства под зданием на опорах (в чистоте), а также проветриваемых подполий под зданиями на вечномерзлых грунтах и подпольных каналов.
- Площадь застройки здания определяется как площадь горизонтального сечения по внешнему обводу здания по цоколю, включая выступающие части (входные площадки и ступени, веранды, террасы, приямки, входы в подвал). Площадь под зданием, расположенным на столбах, проезды под зданием, а также выступающие части здания, консольно выступающие за плоскость стены на высоте менее 4,5 м включаются в площадь застройки. Дополнительно указывается площадь застройки подземной автостоянки, выходящая за абрис проекции здания.
- Торговая площадь магазина определяется как сумма площадей торговых залов, помещений приема и выдачи заказов, зала кафетерия, площадей для дополнительных услуг покупателям.
Вы смотрели статью «Как считают объем и площадь здания»
Зависимость мощности радиаторов от подключения и места расположения
Кроме всех описанных выше параметров теплоотдача радиатора изменяется в зависимости от типа подключения. Оптимальным считается диагональное подключение с подачей сверху, в таком случае потерь тепловой мощности нет. Самые большие потери наблюдаются при боковом подключении — 22%. Все остальные — средние по эффективности. Приблизительно величины потерь в процентах указаны на рисунке.
Потери тепла на радиаторах в зависимости от подключения
Уменьшается фактическая мощность радиатора и при наличии заграждающих элементов. Например, если сверху нависает подоконник, теплоотдача падает на 7-8%, если он не полностью перекрывает радиатор, то потери 3-5%. При установке сетчатого экрана, который не доходит до пола, потери примерно такие же, как и в случае с нависающим подоконником: 7-8%. А вот если экран закрывает полностью весь отопительный прибор, его теплоотдача уменьшается на 20-25%.
Количество тепла зависит и от установки
Количество тепла зависит и от места установки
Расчет отопления по количеству радиаторов простая формула
До начала проектирования теплоснабжения стоит решить, какие именно радиаторы будут устанавливаться. Материал, из которого изготавливаются батареи обогрева:
Оптимальным вариантом считаются алюминиевые и биметаллические радиаторы. Самая высокая тепловая отдача у биметаллических устройств. Чугунные батареи долго нагреваются, но после отключения отопления температура в помещении держится довольно долго.
Простая формула для проектирования количества секции в радиаторе обогрева:
S – площадь помещения;
R – мощность секции.
Если рассматривать на примере с данными: комната 4 х 5 м, биметаллический радиатор, мощность 180 Вт. Расчет будет выглядеть так:
K = 20*(100/180) = 11,11. Итак, для комнаты площадью 20 м 2 необходимой для установки является батарея с минимум 11-ю секциями. Или, например, 2 радиатора по 5 и 6 ребер. Формула используется для помещений с высотой потолка до 2,5 м в стандартном здании советской постройки.
Однако такой расчет системы отопления не учитывает теплопотери здания, также не берется в расчет температура наружного воздуха дома и количество оконных блоков
Поэтому следует также брать во внимание эти коэффициенты, для окончательного уточнения количества ребер
Вычисления для панельных радиаторов
В случае когда предполагается установка батареи с панелью вместо ребер, используется следующая формула по объему:
W = 41хV, где W – мощность батареи, V – объем комнаты. Число 41 – норма средней годовой мощности обогрева 1 м 2 жилого помещения.
В качестве примера можно взять помещение площадью 20 м 2 и высотой 2,5 м. Значение мощности радиатора по объему помещения в 50 м 3 будет равно 2050 Вт, или 2 кВт.
Как посчитать секции радиатора по объему помещения
При таком расчете учитывается не только площадь, но и высота потолков, ведь нагревать нужно весь воздух в помещении. Так что такой подход оправдан. И в этом случае методика аналогична. Определяем объем помещения, а затем по нормам узнаем, сколько нужно тепла на его обогрев:
- в панельном доме на обогрев кубометра воздуха требуется 41Вт;
- в кирпичном доме на м 3 — 34Вт.
Обогревать нужно весь объем воздуха в помещении потому правильнее считать количество радиаторов по объему
Рассчитаем все для того же помещения площадью 16м 2 и сравним результаты. Пусть высота потолков 2,7м. Объем: 16*2,7=43,2м 3 .
Дальше посчитаем для вариантов в панельном и кирпичном доме:
- В панельном доме. Требуемое на отопление тепло 43,2м 3 *41В=1771,2Вт. Если брать все те же секции мощностью 170Вт, получаем: 1771Вт/170Вт=10,418шт (11шт).
- В кирпичном доме. Тепла нужно 43,2м 3 *34Вт=1468,8Вт. Считаем радиаторы: 1468,8Вт/170Вт=8,64шт (9шт).
Как видно, разница получается довольно большая: 11шт и 9шт. Причем при расчете по площади получили среднее значение (если округлять в ту же сторону) — 10шт.
Выбор методики расчета
Санитарно-эпидемиологические требования для жилых домов
Перед тем, как выполнить расчет нагрузки на отопление по укрупненным показателям или с более высокой точностью необходимо узнать рекомендуемые температурные режимы для жилого здания.
Во время расчета характеристик отопления нужно руководствоваться нормами СанПиН 2.1.2.2645-10. Исходя из данных таблицы, в каждой комнате дома необходимо обеспечить оптимальный температурный режим работы отопления.
Методики, по которым осуществляется расчет часовой нагрузки на отопление, могут иметь различную степень точности. В некоторых случаях рекомендуется использовать достаточно сложные вычисления, в результате чего погрешность будет минимальна. Если же оптимизация затрат на энергоносители не является приоритетной задачей при проектировании отопления – можно применять менее точные схемы.
Во время расчета почасовой нагрузки на отопление нужно учитывать суточную смену уличной температуры. Для улучшения точности вычисления нужно знать технические характеристики здания.
Обследование тепловизором
Все чаще, чтобы повысить эффективность работы отопительной системы, прибегают к тепловизионным обследованиям строения.
Работы эти проводят в темное время суток. Для более точного результата нужно соблюдать разницу температур между помещением и улицей: она должна быть не менее в 15 о. Лампы дневного освещения и лампы накаливания выключаются. Желательно убрать ковры и мебель по максимуму, они сбивают прибор, давая некоторую погрешность.
Обследование проводится медленно, данные регистрируются тщательно. Схема проста.
Первый этап работ проходит внутри помещения
Прибор двигают постепенно от дверей к окнам, уделяя особое внимание углам и прочим стыкам
Второй этап – обследование тепловизором внешних стен строения. Все так же тщательно исследуются стыки, особенно соединение с кровлей.
Третий этап – обработка данных. Сначала это делает прибор, затем показания переносятся в компьютер, где соответствующие программы заканчивают обработку и выдают результат.
Если обследование проводила лицензированная организация, то она по итогу работ выдаст отчет с обязательными рекомендациями. Если работы велись лично, то полагаться нужно на свои знания и, возможно, помощь интернета.
Непростительные ошибки в фильмах, которых вы, вероятно, никогда не замечали Наверное, найдется очень мало людей, которые бы не любили смотреть фильмы. Однако даже в лучшем кино встречаются ошибки, которые могут заметить зрител.
9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.
Наперекор всем стереотипам: девушка с редким генетическим расстройством покоряет мир моды Эту девушку зовут Мелани Гайдос, и она ворвалась в мир моды стремительно, эпатируя, воодушевляя и разрушая глупые стереотипы.
Никогда не делайте этого в церкви! Если вы не уверены относительно того, правильно ведете себя в церкви или нет, то, вероятно, поступаете все же не так, как положено. Вот список ужасных.
Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.
13 признаков, что у вас самый лучший муж Мужья – это воистину великие люди. Как жаль, что хорошие супруги не растут на деревьях. Если ваша вторая половинка делает эти 13 вещей, то вы можете с.
Расчет по площади помещения
Предварительный расчет можно сделать, ориентируясь на площадь помещения, для которого покупаются радиаторы. Это очень простое вычисление, которое подходит для комнат с низкими потолками (2,40-2,60 м). Согласно строительным нормам для обогрева понадобится 100 Вт тепловой мощности на каждый квадратный метр помещения.
Вычисляем количество тепла, которое понадобится для всей комнаты. Для этого площадь умножаем на 100 Вт, т. е. для комнаты в 20 кв. м. расчетная тепловая мощность составит 2000 Вт (20 кв.м Х 100 Вт) или 2 кВт.
Этот результат нужно разделить на теплоотдачу одной секции, указанную производителем. Например, если она равна 170 Вт, то в нашем случае необходимое количество секций радиатора будет составлять:
2000 Вт / 170 Вт = 11,76, т. е. 12, поскольку результат следует округлить до целого числа. Округление обычно осуществляется в сторону увеличения, однако для помещений, в которых теплопотери ниже среднего, например, для кухни, можно округлять в меньшую сторону.
Обязательно следует учесть возможные теплопотери в зависимости от конкретной ситуации. Разумеется, комната с балконом или расположенная в углу здания теряет тепло быстрее. В этом случае следует увеличить значение расчетной тепловой мощности для комнаты на 20%. Примерно на 15-20% стоит повысить расчеты, если планируется скрыть радиаторы за экраном или монтировать их в нишу.
А чтобы вам было удобнее считать, мы сделали для вас этот калькулятор:
Климатические зоны тоже важны
Не для кого ни секрет, что в разных климатических зонах имеется разная потребность в обогреве, поэтому при проектировании проекта необходимо учитывать и эти показатели.
Климатические зоны также имеют свои коэффициенты:
- средняя полоса России имеет коэффициент 1,00, поэтому он не используется;
- северные и восточные регионы: 1,6;
- южные полосы: 0,7-0,9 (учитываются минимальные и среднегодовые температуры в регионе).
Данный коэффициент необходимо умножить на общую тепловую мощность, а полученный результат разделить на теплоотдачу одной части.
Таким образом, расчет отопления по площади особых трудностей не представляет. Достаточно немного посидеть, разобраться и спокойно посчитать. С его помощью каждый владелец квартиры или дома может легко определить величину радиатора, который следует установить в комнате, кухне, ванной или в любом другом месте.
Если вы сомневаетесь в своих силах и знаниях — доверьте монтаж системы профессионалам. Лучше заплатить один раз профессионалам, чем сделать неправильно, демонтировать и повторно приступить к работе. Или же не сделать ничего вообще.
Порядок и правила определения строительного объема здания без чердачного пространства. тЗиС.
Строительный
объем наземной части здания без
чердачного перекрытия следует определять
умножением площади вертикального
поперечного сечения на длину здания,
измеренную между наружными поверхностями
торцовых стен в направлении,
перпендикулярном площади сечения на
уровне первого этажа выше цоколя.
Площадь
вертикального поперечного сечения
следует определять по обводу наружной
поверхности стен, по верхнему очертанию
кровли и по уровню чистого пола этажа.
При изменении площади поперечного
сечения выступающие на поверхности
стен архитектурные детали, а также ниши
учитывать не следует.
Основные факторы
Идеально рассчитанная и сконструированная система отопления должна поддерживать заданную температуру в помещении и компенсировать возникающие потери тепла. Рассчитывая показатель тепловой нагрузки на систему отопления в здании нужно принимать к сведению:
— Назначение здания: жилое или промышленное.
— Характеристику конструктивных элементов строения. Это окна, стены, двери, крыша и вентиляционная система.
— Размеры жилища. Чем оно больше, тем мощнее должна быть система отопления. Обязательно нужно учитывать площадь оконных проемов, дверей, наружных стен и объем каждого внутреннего помещения.
— Наличие комнат специального назначения (баня, сауна и пр.).
— Степень оснащения техническими приборами. То есть, наличие горячего водоснабжения, системы вентиляции, кондиционирование и тип отопительной системы.
— Температурный режим для отдельно взятого помещения. Например, в комнатах, предназначенных для хранения, не нужно поддерживать комфортную для человека температуру.
— Количество точек с подачей горячей воды. Чем их больше, тем сильнее нагружается система.
— Площадь остекленных поверхностей. Комнаты с французскими окнами теряют значительное количество тепла.
— Дополнительные условия. В жилых зданиях это может быть количество комнат, балконов и лоджий и санузлов. В промышленных – количество рабочих дней в календарном году, смен, технологическая цепочка производственного процесса и пр.
— Климатические условия региона. При расчёте теплопотерь учитываются уличные температуры. Если перепады незначительны, то и на компенсацию будет уходить малое количество энергии. В то время как при -40 о С за окном потребует значительных ее расходов.
Пример простого расчета
Для строения со стандартными параметрами (высотой потолков, размерами комнат и хорошими теплоизоляционными характеристиками) можно применить простое соотношение параметров с поправкой на коэффициент, зависящий от региона.
Предположим, что жилой дом находится в Архангельской области, а его площадь — 170 кв. м. Тепловая нагрузка будет равна 17 * 1,6 = 27,2 кВт/ч.
Подобное определение тепловых нагрузок не учитывает многих важных факторов. Например, конструктивных особенностей строения, температуры, число стен, соотношение площадей стен и оконных проёмов и пр. Поэтому подобные расчеты не подходят для серьёзных проектов системы отопления.
Зависимость от температурного режима системы отопления
Мощность радиаторов указывается для системы с высокотемпературным тепловым режимом. Если система отопления вашего дома работает в среднетемпературном или низкотемпературном тепловом режиме, для подбора батарей с нужным количеством секций придется произвести дополнительные расчеты.
Для начала определим тепловой напор системы, который представляет собой разницу между средней температурой воздуха и батарей. За температуру приборов отопления берется среднее арифметическое от значений температуры подачи и отвода теплоносителя.
- Высокотемпературный режим: 90/70/20 (температура подачи — 90 °C, обратки —70 °C, за среднюю температуру в помещении принимается значение 20 °C). Тепловой напор рассчитаем так: (90 + 70) / 2 – 20 = 60 °С;
- Среднетемпературный: 75/65/20, тепловой напор – 50 °С.
- Низкотемпературный: 55/45/20, тепловой напор – 30 °С.
Чтобы узнать, сколько секций батареи вам понадобится для систем с тепловым напором 50 и 30, нужно умножить общую мощность на паспортный напор радиатора, а затем разделить на имеющийся тепловой напор. Для комнаты 15 кв.м. потребуется 15 секций алюминиевых радиаторов, 17 – биметаллических и 19 – чугунных батарей.
Для отопительной системы с низкотемпературным режимом вам потребуется в 2 раза больше секций.
Расчет по площади
Наиболее распространенной и простой методикой является способ расчета мощности приборов, требуемой для обогрева, по площади обогреваемого помещения. Согласно усредненной норме, на отопление 1 кв. метр площади требуется 100 Вт тепловой мощности. В качестве примера рассмотрим комнату, имеющую площадь 15 кв. метров. Согласно данному методу, для ее обогрева потребуется 1500 Вт тепловой энергии.
При использовании данной методики нужно учесть несколько важных моментов:
- норма в 100 Вт на 1 кв. метр площади относится к средней климатической полосе, в южных регионах для обогрева 1 кв. метра помещения требуется меньшая мощность – от 60 до 90 Вт;
- для областей с суровым климатом и очень холодной зимой на обогрев 1 кв. метра требуется от 150 до 200 Вт;
- метод подходит для помещений со стандартной высотой потолков, не превышающей 3 метра;
- способ не учитывает потери тепла, которые будут зависеть от расположения квартиры, количества окон, качества утепления, материала стен.
Подсчет отапливаемого объема здания: как выполнить правильно
Современная система отопления в частном доме – обязательное условие для комфортного проживания в помещении в течение всего года. Сегодня можно без труда выбрать любую технику и комплектующие, позволяющие сформировать надежную, экономичную, эффективную систему отопления для зданий и сооружений любой площади. Обязательное условие создания комфортного микроклимата в доме – правильно выполненные расчеты системы отопления. Для них потребуется не только знание мощности оборудования, планируемого для установки, но и площади помещения, которое нужно отапливать. Как же считается отапливаемый объем здания правильно, и можно ли выполнить эти расчеты самостоятельно?
При составлении проекта здания относительно будущего сооружения используются четыре понятия:
- Площадь помещения. Представляет собой размеры помещения, которые определяются по расстоянию между противоположными стенами без учета плинтусов. Если в доме есть печь или камин, их размеры нужно исключить из рассчитываемого показателя.
- Общая площадь здания. Что входит в общую площадь дома – один из важных вопросов, характеризующих помещение. Такой показатель включает все помещения жилого и нежилого сектора, и даже встроенные шкафы.
- Жилая площадь. Состоит из суммы величин всех жилых комнат – гостиная, спальни, детские комнаты и рабочие кабинеты, гардероб. Вопреки ошибочному мнению многих жильцов, кухня входит в жилую площадь дома.
- Полезная площадь. Рассчитывается как суммарный показатель размеров всех помещений за исключением лестниц, пандусов, лестничных клеток.
Один из основных вопросов при сборе информации, что входит в общую площадь жилого дома – к какой из категорий рассчитываемых показателей относятся веранда и терраса? По аналогии с балконами и лоджиями в многоквартирных домах, эти участки учитываются при определении общей площади жилого помещения.
Отапливаемое помещение: понятие и особенности
Отапливаемый объем здания – часть помещения, где установлены отопительные приборы и их элементы, предназначенные для поддержания необходимого температурного режима в течение отопительного сезона. Как определить объем помещения, требующий поддержания установленного температурного режима?
Согласно действующей нормативной документации, отапливаемая величина дома состоит из общей площади помещений дома. Правильный расчет отапливаемого объема здания важен при планировании системы отопления и для предстоящей замены радиаторов обогрева вне зависимости от разновидности системы (водяная, газовая, электрическая, твердотопливная). Эффективность работы и долговечность системы напрямую связаны с несколькими параметрами:
- правильность расчетов отапливаемой площади;
- качество используемого оборудования;
- мощность котлов;
- тип оборудования;
- правильность монтажа.
Отапливаемая площадь здания – это один из ключевых параметров для предстоящих расчетов. Именно с ним связано правильное определение мощности котла и количества секций устанавливаемых радиаторов. Почему это важно? Неверный расчет необходимого числа батарей отопления приведет к одному из двух негативных последствий:
- плохое прогревание воздуха в комнатах;
- неэкономное, чрезмерное расходование тепла (неоправданная трата средств).
Поскольку отапливаемая часть дома включает все комнаты, важно не только правильно понять, что входит в понятие жилая площадь дома, но и учесть все без исключения подсобные помещения. Простейший способ определения необходимого количества батарей отопления в процессе планирования системы – подсчет количества окон в доме. Традиционно радиаторы устанавливаются под окнами или вблизи от них, а в целом система расчета теплопотребления для комнат стандартного типа не представляет сложности, однако общие расчеты по всему дому должны включать дополнительные параметры и особенности конструкции здания.
Разобраться, что входит в жилую площадь частного дома, недостаточно для правильного определения объема отапливаемого помещения и подсчета мощности, количества необходимого оборудования.
Дополнительно нужно учитывать особенности конструкции:
- в угловой комнате с одним окном расчетную мощность радиатора нужно увеличить на 20 %, с двумя – на 30 %;
- при монтаже батареи в специальную нишу вблизи окна потери теплоотдачи компенсирует дополнительное прибавление 5% к мощности радиатора;
- под окнами, выходящими на север или северо-восток, нужно установить радиатор с мощностью, увеличенной на 10% от стандартного расчетного показателя;
- наличие стеклопакетов позволяет уменьшать расчетную мощность батарей на 10-15%;
- при отсутствии двери между двумя смежными комнатами нужно брать общий размер этих помещений.
Разобравшись, что считается жилой площадью в частном доме, какие помещения дополнительно требуют постоянного поддержания фиксированной температуры в течение отопительного сезона, можно производить расчет отапливаемого объема.
Как посчитать отапливаемый объем здания?
Как считать отапливаемую площадь здания, чтобы функционирование системы отопления обеспечивало оптимальную температуру в помещениях? Отапливаемый объем здания рассчитывается по формуле: площадь этажа * внутреннюю высоту, где внутренняя высота определяется как величина от поверхности пола первого этажа до поверхности потолка последнего этажа. В одноэтажных зданиях за внутреннюю высоту принимается величина замера от пола до потолка.
В отапливаемую площадь здания не включают размеры теплых чердаков и подвалов, холодных неотапливаемых веранд, холодных чердаков. Если конструкция здания слишком сложная, произведение необходимых замеров существенно усложняется. В таком случае допускается упрощенная система расчета отапливаемого объема здания: необходимо измерить объем пространства, ограниченного внутренней частью наружного ограждения и принять полученные расчеты за требуемую величину.
Загрузка…
Если вам нужно заменить старый, вышедший из строя радиатор или вы планируете установить новую систему в доме, который строите, вы должны знать, как рассчитать отапливаемый объем здания.
Чтобы система работала эффективно, необходимо точно определить какое количество секций радиатора потребуется установить, чтобы добиться оптимальной теплопередачи и обогрева.
Без достаточного количества порций помещение никогда не нагреется должным образом, а большие порции приводят к перерасходу и чрезмерному потреблению тепла, что отрицательно сказывается на бюджете. Потребность в помещениях типовых конфигураций и планировок можно определить с помощью достаточно простых расчетов. При этом стоит отметить, чтобы расчеты были высокой точности, то рекомендуется взять во внимание дополнительные значенияи особенности.
Содержание
- Куда уходит тепло?
- Простой расчет площади
- Расчеты для помещений с высокими потолками
- Другие варианты
- Специфичность и другие характеристики
- Климатическая зона
- Расчет по площади
- Метод расчета по объему помещения
- Корректировка результата
- Стены и потолки
- Высота потолка
- Погодные условия
- Расчет секций радиатора
- Зависимость от температурного состояния системы отопления
Куда уходит тепло?
Для определения мощности котла калькулятор должен сначала рассчитать норму теплопотерь, для чего необходимо учесть все «слабые места», которые в совокупности «воруют» около 90% ценной энергии «отопления улицы». Окна, наружные стены, потолки, полы являются виновниками утечки тепла в вашем доме, поэтому вам нужны ответы.
Они сосредоточены на:
- Окна (качество стеклопакетов, количество комнат);
- отношение площади оконного проема к полу;
- Стеновые материалы, их утепление (или нет);
- Какая температура достигается в самый холодный месяц в вашем регионе;
- Высота потолков и общая квадратура полов в доме.
Если в строящихся зданиях планируется использовать качественную теплоизоляцию, то для отопления уже требуется маломощное оборудование.
Простой расчет площади
Рассчитать размер батареи системы отопления можно исходя из площади этого помещения. В этом случае стоит отметить, что для одного 1 м2 требуется мощность 100Вт/ч. Нужно иметь в виду, что этот метод можно применять только для помещений, у которых высота потолков составляет 2,5-2,7 м, и результаты несколько завышены.
Кроме того, он не учитывает следующее:
- количество окон и тип стеклопакетов;
- количество внешних стен помещения;
- толщина стен здания и их материал;
- тип и толщина используемого изоляционного материала;
- диапазон температур для региона.
Количество тепла, которое радиатор должен отдать для обогрева помещения: площадь следует умножить на тепловую мощность (100 Вт). К примеру, для комнаты площадью 18 кв2 необходимо установить батарей мощностью:
18 кв2 х 100Вт = 1800Вт
То есть для обогрева 18 квадратных метров требуется 1,8 кВт мощности в час. Этот результат необходимо разделить на тепло, рассеиваемое нагретой секцией радиатора в час. Если данные в его паспорте говорят, что это 170 Вт, следующий шаг расчета выглядит так:
1800 Вт / 170 Вт = 10,59
Число должно быть округлено до целого числа (обычно округляется), в результате чего получается 11. То есть для оптимизации температуры в помещении в отопительный сезон необходимо установить радиаторную секцию с 11.
Существует еще один простой способ – это приблизительный расчет для квартир в панельных домах учитывает, что одна секция необходима для обогрева площади 1,8м2. Иными словами площадь комнаты необходимо разделить на 1,8. К примеру, если площадь помещения составляет 25 кв2, то для радиатора требуется 14 частей:
25 квадратных метров / 1,8 квадратных метра = 13,89
Расчеты для помещений с высокими потолками
Произвести точный расчет отопления по площади в помещениях, где потолки превышают высоту 3м. В этом случае следует воспользоваться формулой, которая учитывает полный объем помещения. В соответствии со СНиП, на обогрев каждого м3 объема требуется 41 Вт тепла. Следовательно:
- Для расчета объема помещения: 24 м2 х 3 м = 72 м3.
- Для расчета мощности радиатора: 72 м3 x 41 Вт = 2952 Вт.
Если в документации на радиатор системы отопления указано, что некоторые из них имеют теплоотдачу 180Вт в час, нужно мощность батареи поделить на это значение, то есть:
2952 Вт / 180 Вт = 16,4 – полученное значение округляется до целого числа – таким образом, 17 секций могут обогреть помещение объемом 72 кубометра.
С помощью несложных расчетов вы легко сможете определить нужные вам данные.
Другие варианты
Сделав примерный расчет количества секций радиаторов в вашей квартире, не забудьте его скорректировать с учетом особенностей помещения. Необходимо учитывать следующие факторы:
- Для угловых комнат с одним окном (двумя стенами, выходящими на улицу) мощность радиатора необходимо увеличить на 20 %, для комнат с двумя окнами – на 30 %;
- Если радиатор отопительной системы установить в нише под окном, его теплоотдача снизится, что можно компенсировать увеличением мощности на 5%;
- Если окно выходит на север или северо-восток, его следует увеличить на 10%;
- Экран, закрывающий радиатор для эстетики, «ворует» 15% теплоотдачи, и это тоже надо учитывать в расчетах.
В первую очередь следует рассчитать суммарное значение мощности обогрева, необходимой для помещения, с учетом всех имеющихся параметров и факторов. Только потом делите это значение на тепло, отдаваемое секцией в час. Обычно результаты для дробных значений округляются до ближайшего целого числа.
Специфичность и другие характеристики
Это могут быть показатели:
- Температура охлаждающей жидкости ниже 70 градусов – соответственно необходимо увеличить количество деталей;
- В проеме между двумя комнатами нет двери. Затем нужно рассчитать общую площадь обеих комнат;
- При замене старых чугунных батарей. Он обеспечивает нормальную температуру в помещении, а на новых алюминиевых или биметаллических материалах расчет элементарный. Для этого нужно умножить на мощность чугунной секции (в среднем 150 Вт). Разделить полученное значение на мощность новой детали.
Климатическая зона
Общеизвестно, что разные климатические зоны имеют разную потребность в отоплении, поэтому эти показатели также необходимо учитывать при разработке проекта.
Климатические зоны также имеют свои коэффициенты:
- Коэффициент средней полосы России равен 1,00, поэтому не используется;
- Север и Восток: 1,6;
- Южная зона: 0,7-0,9 (с учетом минимальной и среднегодовой температуры воздуха в этом районе).
Этот коэффициент необходимо умножить на общую тепловую мощность и результат разделить на теплопередачу детали.
Поэтому расчет отопления по площади достаточно легкий. Посидите спокойно какое-то время, ясно подумайте и спокойно подсчитайте.
Если вы не уверены, что сможете выполнить монтаж системы отопления, то лучше обратитесь в специализированную компанию, где мастера выполнят работы качественно и быстро. Согласитесь, что лучше один раз довериться мастерам и заплатить им за работу, чем ошибиться и начать работу после того, как все снесут.
Расчет по площади
Метод расчета исходя из площади отапливаемого помещения – самый элементарный.
При использовании этой техники следует помнить о некоторых важных моментах:
- Стандарт составляет 100 Вт на 1 м2 площади относится к средней климатической зоне, отопление 1 м2 в южных регионах. Комнатные счетчики требуют меньшей мощности – от 60 до 90 Вт;
- Для обогрева 1 м2 в районах с суровым климатом и очень холодными зимами. Для счетчика требуется от 150 до 200 Вт;
- Если высота потолков не более 3м, то данный способ подойдет для расчета;
- Стоит учесть, что данный расчет не подразумевает учет теплопотерь, которые определяются в зависимости от количества окон, качества произведенного утепления, а также материала, из которых выполнены стены.
Метод расчета по объему помещения
Метод расчета, который учитывает объем потолка, будет более точным: он учитывает высоту потолка квартиры и материал наружных стен. Порядок расчета следующий:
- Объем комнаты можно определить посредством перемножения площади комнаты и высоты потолка. Для комнаты 15 кв. м при высоте потолков 2,7 м равняется 40,5 куб.
- В зависимости от материала стен различается энергия, затрачиваемая на нагрев кубометра воздуха. Согласно нормам правил данное значение для многоквартирных домов из кирпича равно 34 Вт, для панельных – 41 Вт. Следовательно, полученный объем нужно умножить на это значение (34 или 41 Вт). Тогда для кирпичного дома, обогревающего помещение площадью 15 м², потребуется 1377 Вт (40,5*34), для панельного – 1660,5 Вт (40,5*41).
Корректировка результата
Любой выбранный метод будет давать лишь приблизительные результаты, если не будут учтены все факторы, влияющие на снижение или увеличение теплопотерь. Для точного расчета значение мощности радиатора требуется умножить на поправочные коэффициенты.
В зависимости от того, какой имеется размер окон и качество утепления, помещение может терять 15-35% тепла. Поэтому для расчета будем использовать два коэффициента, относящиеся к окну.
Отношение площади окна к площади пола:
- Для окон с тройным стеклопакетом или стеклопакетом с аргоном – 0,85;
- Для окон с обычным стеклопакетом – 1,0;
- Для рам с традиционным стеклопакетом – 1,27.
Стены и потолки
В зависимости от количества стен, качества теплоизоляции и комнат в квартире или доме определяется количество теплопотерь. Для учета этого нужно взять во внимание три коэффициента.
Количество наружных стен:
- Наружных стен нет, теплопотерь нет – коэффициент 1,0;
- Одна наружная стена – 1,1;
- два – 1,2;
- Три – 1,3.
- Нормальное утепление (стены толщиной в 2 кирпича или утеплитель) – 1,0;
- Высокая теплоизоляция – 0,8;
- Низкий – 1,27.
Учет типа комнаты наверху:
- Отапливаемые квартиры – 0,8;
- Отапливаемый чердак – 0,9;
- Холодный чердак – 1,0.
Высота потолка
Если вы используете метод расчета площади для помещений с нестандартной высотой стен, это необходимо учитывать для уточнения результатов. Коэффициент можно найти, разделив существующую высоту потолка на стандартную высоту, которая составляет 2,7 метра. Таким образом, мы получаем следующие цифры:
Погодные условия
Последний фактор учитывает температуру воздуха на улице зимой. Начнем со средних температур самой холодной недели года.
Расчет секций радиатора
Зная мощность, необходимую для обогрева помещения, можно рассчитать батарею отопления.
Чтобы рассчитать количество секций радиатора, нужно вычисленную общую мощность разделить на мощность одной секции устройства. Для расчета можно использовать среднюю статистику для разных типов радиаторов со стандартным осевым расстоянием 50 см:
- Чугунный аккумулятор, мощность одного аккумулятора около 160Вт;
- Для биметалла – 180 Вт;
- Алюминий – 200 Вт.
Зависимость от температурного состояния системы отопления
Мощность радиатора подходит для систем с высокотемпературным тепловым режимом. Если система отопления вашего дома работает в умеренном или слабом нагреве, необходимо произвести дополнительные расчеты для подбора батареи с необходимым количеством ячеек.
Для начала определим термоголовку системы, разницу между средней температурой воздуха и батареи. За температуру отопительного прибора принимают среднее арифметическое температуры теплоносителя на подаче и температуры нагнетания.
- Высокотемпературный режим: 90/70/20 (температура подачи -90°С, температура обратки -70°С, температура помещения 20°С). Рассчитываем тепловой напор следующим образом: (90 + 70) / 2 – 20 = 60 °С;
- Температура среды: 75/65/20, термоголовка – 50°С.
- Низкотемпературный: 55/45/20, термоголовка – 30°С.
Чтобы узнать, сколько батарейных секций необходимо для систем с 50 и 30 термоголовками, умножьте общую емкость на головки с паспортной табличкой радиатора и разделите на имеющиеся термоголовки. Для комнаты 15 кв. Требуется 15 алюминиевых радиаторов, 17 биметаллических батарей и 19 чугунных батарей.
Для систем отопления с криогеникой вам понадобится в несколько раза больше деталей.