Загрузить PDF
Загрузить PDF
Точка пересечения с осью Y – это точка, в которой график функции пересекает ось ординат. Найти такую точку можно несколькими способами, в зависимости от начальной информации.
-
1
Запишите значение углового коэффициента и координаты точки. Угловой коэффициент характеризует угол наклона графика по отношению к оси X. Координаты точки, лежащей на графике, записываются в виде (х,у). Если вам не даны координаты и угловой коэффициент, воспользуйтесь другим методом.
- Пример 1. Дана прямая, на которой лежит точка А (3,4) и угловой коэффициент которой равен 2. Найдите точку пересечения этой прямой с осью Y.
-
2
Запишите линейную функцию. Ее график представляет собой прямую. Линейная функция имеет вид у = kх + b, где k – угловой коэффициент, b – координата «у» точки пересечения с осью Y.
-
3
В функцию подставьте значение углового коэффициента. Подставьте данное значение вместо k.
-
Пример 1. y = kx + b
k = 2
y = 2x + b
-
Пример 1. y = kx + b
-
4
Вместо «х» и «у» подставьте данные координаты точки. Если даны координаты точки, лежащей на прямой, подставьте их в функцию вместо х и у.
-
Пример 1. Точка А (3,4) лежит на прямой. То есть х = 3, у = 4.
Подставьте эти значения в y = 2x + b
4 = 2*3 + b
-
Пример 1. Точка А (3,4) лежит на прямой. То есть х = 3, у = 4.
-
5
Найдите значение b. Напомним, что b – это координата «у» точки пересечения с осью Y. В уравнении b является единственной переменной, которую нужно обособить и найти ее значение.
-
Пример 1. 4 = 2*3 + b
4 = 6 + b
4 — 6 = b
-2 = b
Координата «у» точки пересечения с осью Y равна -2 (у = -2).
-
Пример 1. 4 = 2*3 + b
-
6
Ответ запишите в виде пары координат точки пересечения прямой с осью Y. Точка лежит на пересечении прямой и оси Y; координата «х» любой точки, лежащей на оси Y, равна 0, поэтому координата «х» точки пересечения всегда равна 0 (х = 0).
- Пример 1. Точка пересечения прямой с осью Y имеет координаты (0,-2).
Реклама
-
1
Запишите координаты двух точек, лежащих на прямой. Если координаты обеих точек не даны, воспользуйтесь другим методом. Координаты каждой точки записываются в виде (х,у).
-
2
Пример 2. Прямая проходит через точки А(1,2) и В(3,-4). Найдите точку пересечения этой прямой с осью Y.
-
3
Найдите вертикальное и горизонтальное расстояние между двумя точками. Угловой коэффициент равен тангенсу угла наклона прямой, образуемого с осью Х, и вычисляется как отношение вертикального расстояния между двумя точками к горизонтальному расстоянию между двумя точками.
- Вертикальное расстояние – это разность координат «у» двух точек.
- Горизонтальное расстояние – это разность координат «х» двух точек.
-
Пример 2. Координаты «у» двух точек: 2 и -4, поэтому вертикальное расстояние: -4 — 2 = -6.
Координаты «х» двух точек (в том же порядке): 1 и 3, поэтому вертикальное расстояние: 3 — 1 = 2.
-
4
Разделите вертикальное расстояние на горизонтальное, чтобы найти угловой коэффициент. Найденные значение подставьте в формулу: угловой коэффициент = вертикальное расстояние / горизонтальное расстояние.
- Пример 2. k = -6/2 = -3.
-
5
Запишите линейную функцию. Ее график представляет собой прямую. Линейная функция имеет вид у = kх + b, где k – угловой коэффициент, b – координата «у» точки пересечения с осью Y. Подставьте известное значение углового коэффициента k и координаты точки (х,у), чтобы найти b.
-
6
В функцию подставьте значение углового коэффициента и координаты точки. Вычисленное значение углового коэффициента подставьте вместо k. Координаты любой из данных точек подставьте вместо «х» и «у».
-
Пример 2. y= kх + b
k = -3, поэтому у = -3x + b
На прямой лежит точка А (1,2), поэтому 2 = -3*1 + b.
-
Пример 2. y= kх + b
-
7
Найдите значение b. В уравнении b является единственной переменной, которую нужно обособить и найти ее значение. Напомним, что координата «х» точки пересечения всегда равна 0.
-
Пример 2. 2 = -3*1 + b
2 = -3 + b
5 = b
Координаты точки пересечения прямой с осью Y равны (0,5).
Реклама
-
Пример 2. 2 = -3*1 + b
-
1
Запишите уравнение прямой. Если дано уравнение, описывающее прямую, можно найти точку ее пересечения с осью Y.
- Пример 3. Найти точку пересечения прямой, которая задана уравнением х + 4y = 16, с осью Y.
- Примечание: уравнение, приведенное в примере 3, описывает прямую. В конце этого раздела приведен пример квадратного уравнения (в котором переменная возводится в квадрат).
-
2
Вместо «х» подставьте 0. Напомним, что точка пересечения лежит на пересечении прямой и оси Y; координата «х» любой точки, лежащей на оси Y, равна 0, поэтому координата «х» точки пересечения всегда равна 0 (х = 0). Подставьте х = 0 в уравнение прямой.
-
Пример 3. x + 4y = 16
х = 0
0 + 4y = 16
4y = 16
-
Пример 3. x + 4y = 16
-
3
Найдите «у». Так вы вычислите координату «у» точки пересечения с осью Y.
-
Пример 3. 4y = 16
у = 4
Координаты точки пересечения прямой с осью Y равны (0,4).
-
Пример 3. 4y = 16
-
4
Проверьте ответ, построив график (если хотите). График постройте как можно более точно. Точка, в которой прямая пересекает ось Y, является точкой пересечения.
-
5
Найдите точку пересечения в случае квадратного уравнения. Переменная (в большинстве случаев «х») в квадратном уравнении возводится в квадрат. В квадратное уравнение также подставляется х = 0, но имейте в виду, что квадратное уравнение описывает параболу, которая может пересекать ось Y в одной или двух точках или вообще не пересекать ось ординат. Это значит, что задача будет иметь 1 или 2 решения или вообще не иметь решений.
Реклама
Советы
- В случае более сложного уравнения постарайтесь обособить члены с переменной «у» на одной стороне уравнения.
- В некоторых странах в уравнении y = kx + b переменные k и b обозначаются по-другому.[1]
Это не меняет значения линейной функции. - Вычисляя угловой коэффициент, вычитайте координаты «х» и координаты «у» в любом порядке, но если какая-то точка считается первой, то и ее координаты должны считаться первыми.[2]
Например, даны координаты двух точек: (1,12) и (3, 7). Угловой коэффициент вычисляется двумя способами:
Реклама
Похожие статьи
Об этой статье
Эту страницу просматривали 50 696 раз.
Была ли эта статья полезной?
Точки пересечения графика осями
Как найти точки пересечения графика функции с осями координат?
С осью абсцисс график функции может иметь любое количество общих точек (или ни одной). С осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).
Чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).
Чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
1) Найти точки пересечения графика линейной функции y=kx+b с осями координат.
В точке пересечения графика функции с осью Ox y=0:
kx+b=0, => x= -b/k. Таким образом, линейная функция пересекает ось абсцисс в точке ( -b/k ; 0).
В точке пересечения с осью Oy x=0:
y=k∙0+b=b. Отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).
Например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.
2x-10=0; x=5. С Ox график пересекается в точке (5; 0).
y=2∙0-10=-10. С Oy график пересекается в точке (0; -10).
2) Найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.
В точке пересечения графика с осью абсцисс y=0. Значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью Ox, надо решить квадратное уравнение ax²+bx+c=0.
В зависимости от дискриминанта, парабола пресекает ось абсцисс в одной точке или в двух точках либо не пересекает Ox.
В точке пересечения графика с осью Oy x=0.
y=a ∙ 0²+b ∙ 0+c=с. Следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.
Например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.
x1=4; x2=5. График пересекает ось абсцисс в точках (4; 0) и (5; 0).
y=0²-9∙0+20=20. Отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.
Точки пересечения графика функции с осями координат
В алгебре и начале анализа можно встретить множество задач на поиск точек пересечения графиков функций с помощью их построения или другими методами. Благодаря определенному алгоритму действий, найти ответ достаточно просто. В большинстве случаев решение заключается в определении корней различного вида уравнений.
График функции (y = f(x)) является множеством точек ((x; y)) , координаты которых связаны соотношением (y = f(x).)
Равенство (y = f(x)) называют уравнением данного графика. Таким образом, график функции представляет собой множество точек (x; y), где x — является аргументом, а y — определяется как значение функции, соответствующее данному аргументу.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
В том случае, когда графики пересекаются в какой-то точке, можно сделать вывод о существовании общего решения системы уравнений. Определить координаты точки можно с помощью графического или аналитического метода. В первом случае требуется построить график уравнения с переменной. Аналитический метод поиска координат точек, в которых графики функций пересекаются, подразумевает решение уравнения, а найденные корни и являются искомыми точками.
Как найти координаты, примеры решения
Существует несколько способов решения подобных задач:
- Поиск точек пересечения графиков функций заключается в приравнивании обеих функций друг к другу. При этом все члены с х переносят в левую сторону, а оставшиеся – в правую. Затем остается найти корни уравнения, которое получилось после преобразований.
- Второй метод состоит в записи системы уравнения для ее последующего решения с помощью подстановки одной функции в другую.
- Третий способ подразумевает построение графиков функций, чтобы определить точки их пересечения визуально.
В качестве примера можно рассмотреть две линейные функции:
Данные функции являются прямыми. Их можно графически изобразить, если принять какие-либо два значения (x_1) и (x_2) и найти (f(x_1)) и ((x_2)) . Далее действия необходимо повторить с функцией (g(x)) . Затем достаточно легко определить визуально координаты точки пересечения рассматриваемых функций.
Важно отметить, что для линейных функций характерна лишь одна точка пересечения только в том случае, когда (k_1 neq k_2) . В противном случае (k_1=k_2) , а функции будут параллельными друг другу, в связи с тем, что k является коэффициентом угла наклона. При ( k_1 neq k_2) и (m_1=m_2) точка пересечения будет соответствовать (M(0;m)) . Данная закономерность упрощает решение многих подобных задач.
Имеются функции: (f(x) = 2x-5)
Требуется определить координаты точки, в которой пересекаются графики рассматриваемых функций.
В первую очередь стоит отметить, что функции являются линейными. Важно обратить внимание на коэффициент угла наклона рассматриваемых функций:
По этой причине имеется лишь одна точка пересечения графиков функций. Определить ее можно путем решения уравнения:
Необходимо перенести члены с x в левую часть, а остальные — в правую:
В результате удалось найти x=8, что соответствует абсциссе точки пересечения графиков. Требуется определить ординату y с помощью подстановки x = 8 в любое из уравнений – в (f(x)) , либо в (g(x)) :
(f(8) = 2cdot 8 — 5 = 16 — 5 = 11)
Таким образом, M (8;11) – представляет собой точку, в которой пересекаются графики пары линейных функций.
Записаны две функции: (f(x)=2x-1)
Необходимо определить точки, в которых графики рассматриваемых функций пересекаются.
Таким образом, линейные функции параллельны между собой, что объясняет отсутствие точек пересечения их графиков.
Ответ: графики функций параллельны, точки пересечения отсутствуют.
Требуется определить координаты точки, в которой пересекаются графики следующих функций: (f(x)=x^2-2x+1)
В данном случае функции являются нелинейными. Поэтому алгоритм решения задачи будет несколько отличаться от предыдущих примеров. В первую очередь следует приравнять уравнения:
Далее необходимо разнести в разные стороны уравнения члены с x и без него:
Таким образом, будет определена абсцисса искомой точки. Затем необходимо найти ординату у. Для этого нужно подставить (x = 0) в какое-либо из двух начальных уравнений. К примеру:
(f(0)=0^2-2cdot 0 + 1 = 1)
M (0;1) является точкой, в которой пересекаются графики функций.
Приравнивание функций друг к другу и нахождение корней
Выяснить, имеют ли точки пересечения графики функций, можно путем сравнения соответствующих тождеств и решения уравнения. Однако при этом допускается получение различных равенств с неизвестными. Тогда целесообразно воспользоваться специальными методиками.
Когда уравнение относится к первой степени или является линейным, решение получить достаточно просто. Метод заключается в переносе переменных величин в одну часть уравнения, а известных – в другую. Алгоритм действий:
- раскрытие скобок, приведение подобных коэффициентов;
- перенос членов с неизвестными в одну сторону, а с известными – в другую;
- математические преобразования;
- определение корня.
Квадратные уравнения решают с помощью одного из способов:
- разложение на множители;
- выделение полного квадрата;
- поиск дискриминанта;
- теорема Виета.
В первом случае представляется возможным понизить степень при неизвестной величине. Второй метод заключается в выделении квадрата по одной из формул сокращенного умножения. Каждая из этих методик реализуема при наличии знаний соответствующих тождеств, в том числе правил разложения на множители.
Третий способ состоит в поиске корней через дискриминант (Д), который является дополнительным параметром, позволяющим сразу решить задачу. Дискриминант определяется с помощью формулы:
В том случае, когда Д>0, переменная может иметь пару значений, которые превращают равенство в справедливое тождество. Если Д=0, то корень является единственным. Когда Д<0, искомое тождество с неизвестными не имеет решений.
Квадратные уравнения решают таким образом:
- выполнение необходимых алгебраических преобразований, в том числе раскрытие скобок и приведение подобных слагаемых;
- выбор наиболее оптимального способа решения и его реализация;
- проверка корней с помощью их подстановки в начальное выражение.
Распространенной ошибкой является пренебрежение проверкой результатов решения. Некорректные действия могут привести к образованию ложных корней.
Существует несколько методик решения тождеств кубического и биквадратного типов:
- понижение степени, то есть разложение на множители;
- замена переменной.
Первый вариант решения подразумевает выполнение преобразований для последующего применения одной из формул сокращенного умножения. Такой способ применяют нечасто. Второй способ состоит в том, что при решении необходимо ввести переменную с более низкой степенью, которая упрощает выражение. Порядок действий при этом следующий:
- выполнение математических преобразований;
- выражение переменной через другую;
- решение квадратного или линейного уравнения;
- подстановка промежуточных корней, которые получилось найти на третьем шаге, во второй;
- вычисление искомых корней;
- проверка;
- исключение ложных решений;
- запись ответа.
Путем составления системы уравнений
Данный метод определения точек пересечения графиков функций предполагает запись системы уравнения. К примеру:
Решение системы уравнений представляет собой пару чисел (х, у), являющуюся одновременно решением для первого и второго уравнения системы. Решить систему уравнений – значит, отыскать все ее решения, либо установить их отсутствие.
Порядок действий при решении системы уравнений можно рассмотреть на примере:
Решение будет иметь следующий вид:
Данные уравнения являются линейными, поэтому график каждого из них представляет собой прямую. График первого уравнения проходит через точки (0; 1) и (-1; 0). График второго уравнения проходит через точки (0; -1) и (-1; 0). Прямые пересекаются в точке (-1; 0), это и является решением системы уравнений.
Решение системы представляет сбой единственную пару чисел:
Если подставить данные числа в любое из уравнений, то получится справедливое равенство. Таким образом, имеется единственное решение линейной системы. Можно записать отчет: (-1;0).
В процессе решения линейной системы можно столкнуться с разными ситуациями:
- система обладает единственным решением, прямые пересекаются;
- решения системы отсутствуют. прямые параллельны;
- система обладает бесчисленным множеством решений, прямые совпадают.
При рассмотрении частного случая системы p(x; y) и q(x; y) являются линейными выражениями от x и y.
В задачах нередко требуется решить нелинейную систему уравнений. К примеру, необходимо решить следующую систему:
Решение имеет следующий вид:
График первого уравнения будет иметь вид прямой, а второго – являться окружностью. Можно построить первый график по точкам:
Центр окружности в точке О(0; 0), радиус равен 1.
Графики пересекаются в точке А(0; 1) и в точке В(-1; 0).
Можно решить систему графическим способом:
В первую очередь необходимо построить график первого уравнения, который будет представлять собой окружность с центром в точке О (0; 0) и радиусом 2. График второго уравнения является параболой, которая смещена относительно начала координат на 2 вверх, то есть ее вершина – точка (0; 2).
Графики обладают одной общей точкой А(0; 2). Данная точка является решением системы. Если подставить два числа в уравнение, можно проверить корректность ответа и записать его. Ответ: (0; 2).
В качестве еще одного примера можно решить следующую систему:
Первым шагом является построение графика первого уравнения, который будет представлять собой окружность с центром в точке О (0; 0) и радиусом 1.
Далее необходимо построить график функции:
График будет являться ломанной:
Далее следует сместить ее на 1 вниз по оси oy. В результате получится график функции:
При помещении обоих графиков в одну систему координат получится следующая ситуация:
Таким образом, получились три точки пересечения: А(1; 0), т. В(-1; 0), т. С(0; -1)
Нахождение через графическое построений функций
Любой определенный график задают с помощью соответствующей функции. Найти точки, в которых пересекаются графики, можно путем решения уравнения, имеющего вид:
Решение данного уравнения будет являться искомой точкой.
Построить график можно с помощью бумаги и ручки. В процессе необходимо обратить внимание на то, что количество точек пересечения пары графиков определяется видом функции. Линейные функции обладают лишь одной точкой пересечения, линейная и квадратная – двумя, квадратные – двумя, либо четырьмя.
В общем случае двух линейных функций можно предположить, что:
Для поиска точки пересечения графиков необходимо решить уравнение:
(y1=y2 или k1x+b1=k2x+b2)
После преобразований получится, что:
Далее нужно выразить x:
При известной координате точки по оси абсцисс следует определить координату по оси ординат. Таким образом, можно найти координаты точки пересечения графиков:
График функции y = f (х) представляет собой множество точек плоскости, координаты (х, у) которых соответствуют выражению y = f(x). График функции наглядно иллюстрирует поведение и свойства функции. Для построения графика определяют несколько значений довода х и для них рассчитывают соответствующие значения функции y=f(x). Для больше точного и наглядного построения графика следует обнаружить его точки пересечения с осями координат.
С целью определить точку пересечения графика функции с осью y, нужно определить значение функции при х=0, то есть обнаружить f(0). В качестве примера можно рассмотреть график линейной функции, изображенной на рисунке:
В данном случае при х=0 ((y=a*0+b)) функция равна b. Таким образом, график пересекает ось ординат (ось Y) в точке (0,b). Когда пересекается ось абсцисс (ось Х) функция равна 0, то есть (y=f(x)=0) . Для того чтобы определить х, следует решить уравнение (f(x)=0) . В случае линейной функции получаем уравнение (ax+b=0) , откуда и находим (x=-b/a) . В результате можно сделать вывод, что ось Х пересекается в точке ((-b/a,0).)
При наличии квадратичной зависимости y от х, уравнение (f(x)=0) обладает двумя корнями. Таким образом, ось абсцисс пересекается два раза. В случае периодической зависимости y от х, например, (y=sin(x)) , график функции обладает бесконечным количеством точек пересечения с осью Х. Проверить корректность расчета координат точек, в которых пересекаются графики функций, можно с помощью подстановки найденных значений х в выражение f(x). Значение выражения при любом из вычисленных х должно быть равно 0.
Квадратичная функция и её график
Парабола является графиком квадратичной функции, которая задается формулой y = ax 2 + bx + c.
Нарисовать параболу можно, используя таблицу значений, в которой мы выбираем произвольный х и находим у. Но не всегда этот способ является самым рациональным.
Начнем, как всегда, с простого)
Стандартная парабола.
Рассмотрим функцию y = ax 2 . Она также является квадратичной, просто b = c = 0.
При а = 1, мы получим функцию y = x 2 . Ее график назовем стандартной параболой, или классической (можешь называть как угодно). Начертить её можно с помощью таблицы значений:
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
y | 9 | 4 | 1 | 0 | 1 | 4 | 9 |
На координатной плоскости отмечаем эти точки и чертим параболу.
Вершина этой параболы находится в точке (0; 0). И не забудь про то, что ветви параболы бесконечно поднимаются ввысь и не ограничены точками с координатами (3; 9) и (3; -9).
Еще одна стандартная парабола задается функцией y = —x 2 (в этом случае а = -1). Для этого графика я тоже напишу табличку:
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
y | -9 | -4 | -1 | 0 | -1 | -4 | -9 |
Начало координат тоже является вершиной этой параболы, как и в предыдущем случае, но ветви уже будут направлены вниз:
Сразу напрашивается вывод: если перед х 2 стоит положительное число, то ветви параболы направлены вверх, если отрицательное — то вниз.
Если у тебя черный пояс по рисованию стандартных парабол, то следующий раздел пройдет у тебя «на ура».
Параболы со смещенной вершиной.
Зачем я начала статью со стандартной параболы? Ответ прост. Графиком любой квадратичной функции y = ±x 2 + bx + c (обязательно коэффициент перед х 2 должен равняться ±1) является стандартной параболой, только вот вершины этих парабол не будут находится в начале координат.
Чтобы начертить подобные параболы нужно сначала узнать, где находится вершина.
Пусть вершиной параболы будет точка О с координатами (x1; y1). Тогда найти эти координаты можно по формулам:
Кстати, можно найти координаты вершины и другим способом.
Координату хО находим по той же формуле, а координату уО можно найти подстановкой координаты хО в функцию.
Без примера не обойтись)
Дана функция y = x 2 — 4x + 4. Найдите вершину параболы и постройте график.
Найдем сначала вершину параболы двумя способами, чтобы убедится, что оба способа рабочие.
1 способ: по формулам.
2 способ: подстановкой.
Одну координаты мы уже нашли по формуле. Подставляем ее в исходную функцию.
Итак, получили, что О(2; 0) — вершина параболы. Отмечаем ее на координатной плоскости.
Перед х 2 стоит положительное число, значит ветви параболы направлены вверх. Наша задача: нарисовать стандартную параболу, представив, что точка О — начало координат. Если тебе это сложно сделать, то необходимо начертить таблицу значений и уже по ней рисовать параболу.
Параболы-стройняшки и параболы-пухляшки.
Удивительно, но числовой коэффициент перед х 2 оказывается влияет на стройность и полноту парабол.
Если числовой коэффициент лежит в промежутке (-1; 0) ∪ (0; 1), то парабола будет более обширно смотреться на координатной плоскости.
А если числовой коэффициент лежит в промежутке (-∞; -1) ∪ (1; +∞), то парабола будет прижиматься к оси Оу и занимать меньше места на плоскости.
Не веришь? Давай проверим! Для примера возьмем две функции:
К сожалению, здесь схитрить не получится: обе параболы нестандартные и для обеих необходимо создать таблицы значений. Но перед эти определимся с их вершинами.
Пусть вершиной первой параболы будет точка А(хА; уА), а вершиной второй параболы — точка B(хB; уB). Вершины буду находить по второму способу (см. выше).
Переходим к таблицам значений.
x | 0 | 2 | 4 | 6 | 8 |
y | 3 | 6 | 7 | 6 | 3 |
x | -1,5 | -1 | -0,25 | 0 | 1 |
y | -3 | 1 | 4,5 | 3 | -3 |
Чертим обе параболы по получившимся координатам.
Вот о чем я и говорила) Перед тобой парабола-стройняшка и парабола-пухляшка во всей красе.
А ты заметил, что свободный член в уравнении функции — это точка пересечения графика с осью Оу? В обеих функциях свободный член равен 3 и графики пересекают ось Оу в точке с координатами (0; 3).
Практикум по параболам.
Теорию о параболах можно еще писать и дальше, но тебя, скорее всего, интересует практика по графикам.
Поскольку речь идет о параболах, то с параболами мы и будем сейчас возиться.
Задание 1. На рисунке изображены графики функций вида y = ax 2 + bx + c. Установите соответствие между графиками функций и знаками коэффициентов a и c.
Решение. Коэффициент а, стоящий перед х 2 , отвечает за направление ветвей параболы, а свободный член с — за пересечение графика с осью Оу.
А) Если коэффициент а положителен, то ветви направлены вверх; если коэффициент с отрицателен, то график пересекает ось Оу ниже нуля. Подходит график 1.
Б) Если коэффициент а отрицателен, то ветви направлены вниз; если коэффициент с положителен, то график пересекает ось Оу выше нуля. Подходит график 3.
В) Если коэффициент а положителен, то ветви направлены вверх; если коэффициент с положителен, то график пересекает ось Оу выше нуля. Подходит график 2.
Задание 2 (наоборот). На рисунке изображены графики функций вида y = ax 2 + bx + c. Установите соответствие между графиками функций и знаками коэффициентов a и c.
А) Ветви направлены вверх, значит а > 0; график пересекает ось Оу выше нуля, значит и с > 0. Подходит вариант под номером 3.
Б) Ветви направлены вверх, значит а > 0; график пересекает ось Оу ниже нуля, значит и с < 0. Подходит вариант под номером 1.
В) Ветви направлены вниз, значит а < 0; график пересекает ось Оу выше нуля, значит и с > 0. Подходит вариант под номером 2.
Задание 3. Установите соответствие между графиками и их функциями.
График В отличается от остальных тем, что его ветви направлены вниз. За направление ветвей отвечает коэффициент перед х 2 — он отрицательный. Отрицательный коэффициент только в функции под номером 3. Значит В-3.
Дальше рекомендую отработанную годами технику. Она минимизирует твои ошибки, если ты, конечно, умеешь считать)
Итак, рассматриваем график А и выбираем на нем точку с красивыми координатами (красивые значит не дробные). Мне нравится тут вершина. Ее координаты (4; -3). Даже не спрашивайте почему не прорисованы оси; эти задания взяты с сайта ФИПИ)
Теперь эти координаты подставляем в оставшиеся функции: вместо у подставляем -3, а вместо х подставляем 4.
Подставляем в первую функцию: -3 = 2 · 4 2 — 16 · 4 + 29; -3 = -3 — верно. Значит, А-1.
Задание 4 (наоборот, но принципе тот же). Установите соответствие между функциями и их графиками.
Очевидно, что В-2.
На графике 1 выбираем точку. Вершина снова четкая, но для разнообразия давайте возьмем другую точку, например, точку с координатами (-4; 1). Будь внимателен и смотри, чтобы точно такой же точки не было на третьем графике!
Подставляем в функцию А: 1 = (-4) 2 + 4 · (-4) + 1; 1 = 1 — верно. Значит, А-1.
Если ты считаешь, что чего-то не хватает или у тебя есть ещё задания из первой части, связанные с параболами, — напиши мне в VK)
В этой статье мы рассмотрим линейную функцию, график линейной функции и его свойства. И, как обычно, решим несколько задач на эту тему.
Линейной функцией называется функция вида
В уравнении функции число , которое мы умножаем на
называется коэффициентом наклона.
Например, в уравнении функции
;
в уравнении функции
;
в уравнении функции
;
в уравнении функции
.
Графиком линейной функции является прямая линия.
1. Чтобы построить график функции, нам нужны координаты двух точек, принадлежащих графику функции. Чтобы их найти, нужно взять два значения х, подставить их в уравнение функции, и по ним вычислить соответствующие значения y.
Например, чтобы построить график функции , удобно взять
и
, тогда ординаты эти точек будут равны
и
.
Получим точки А(0;2) и В(3;3). Соединим их и получим график функции :
2. В уравнении функции коэффициент
отвечает за наклон графика функции:
Коэффициент отвечает за сдвиг графика вдоль оси
:
На рисунке ниже изображены графики функций ;
;
Заметим, что во всех этих функциях коэффициент больше нуля, и все графики функций наклонены вправо. Причем, чем больше значение
, тем круче идет прямая.
Во всех функциях — и мы видим, что все графики пересекают ось OY в точке (0;3)
Теперь рассмотрим графики функций ;
;
На этот раз во всех функциях коэффициент меньше нуля, и все графики функций наклонены влево.
Заметим, что чем больше |k|, тем круче идет прямая. Коэффициент b тот же, b=3, и графики также как в предыдущем случае пересекают ось OY в точке (0;3)
Рассмотрим графики функций ;
;
Теперь во всех уравнениях функций коэффициенты равны. И мы получили три параллельные прямые.
Но коэффициенты b различны, и эти графики пересекают ось OY в различных точках:
График функции (b=3) пересекает ось OY в точке (0;3)
График функции (b=0) пересекает ось OY в точке (0;0) — начале координат.
График функции (b=-2) пересекает ось OY в точке (0;-2)
Итак, если мы знаем знаки коэффициентов k и b, то можем сразу представить, как выглядит график функции .
Если k<0 и b>0, то график функции имеет вид:
Если k>0 и b>0, то график функции имеет вид:
Если k>0 и b<0, то график функции имеет вид:
Если k<0 и b<0, то график функции имеет вид:
Если k=0 , то функция превращается в функцию
и ее график имеет вид:
Ординаты всех точек графика функции равны
Если b=0, то график функции проходит через начало координат:
Это график прямой пропорциональности.
3. Отдельно отмечу график уравнения . График этого уравнения представляет собой прямую линию, параллельую оси
все точки которой имеют абсциссу
.
Например, график уравнения выглядит так:
Внимание! Уравнение не является функцией, так как различным значениям функции соответствует одно и то же значение аргумента, что не соответствует определению функции.
4. Условие параллельности двух прямых:
График функции параллелен графику функции
, если
5. Условие перпендикулярности двух прямых:
График функции перпендикулярен графику функции
, если
или
6. Точки пересечения графика функции с осями координат.
С осью ОY. Абсцисса любой точки, принадлежащей оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY нужно в уравнение функции вместо х подставить ноль. Получим y=b. То есть точка пересечения с осью OY имеет координаты (0;b).
С осью ОХ: Ордината любой точки, принадлежащей оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ нужно в уравнение функции вместо y подставить ноль. Получим 0=kx+b. Отсюда . То есть точка пересечения с осью OX имеет координаты (
;0):
Рассмотрим решение задач.
1. Постройте график функции , если известно, что он проходит через точку А(-3;2) и параллелен прямой y=-4x.
В уравнении функции два неизвестных параметра: k и b. Поэтому в тексте задачи должны быть два условия, характеризующих график функции.
а) Из того, что график функции параллелен прямой y=-4x, следует, что k=-4. То есть уравнение функции имеет вид
б) Нам осталось найти b. Известно, что график функции проходит через точку А(-3;2). Если точка принадлежит графику функции, то при подстановке ее координат в уравнение функции, мы получим верное равенство:
отсюда b=-10
Таким образом, нам надо построить график функции
Точка А(-3;2) нам известна, возьмем точку B(0;-10)
Поставим эти точки в координатной плоскости и соединим их прямой:
2. Написать уравнение прямой, проходящей через точки A(1;1); B(2;4).
Если прямая проходит через точки с заданными координатами, следовательно, координаты точек удовлетворяют уравнению прямой . То есть если мы координаты точек подставим в уравнение прямой, то получим верное равенство.
Подставим координаты каждой точки в уравнение и получим систему линейных уравнений.
Вычтем из второго уравнения системы первое, и получим . Подставим значение k в первое уравнение системы, и получим b=-2.
Итак, уравнение прямой .
3. Постройте график уравнения
Чтобы найти, при каких значениях неизвестного произведение нескольких множителей равно нулю, нужно каждый множитель приравнять к нулю и учесть ОДЗ каждого множителя.
Это уравнение не имеет ограничений на ОДЗ. Разложим на множители вторую скобку и приравняем каждый множитель к нулю. Получим совокупность уравнений:
Построим графики всех уравнений совокупности в одной коорднатной плоскости. Это и есть график уравнения :
4. Постройте график функции
, если он перпендикулярен прямой
и проходит через точку М(-1;2)
Мы не будем строить график, только найдем уравнение прямой.
а) Так как график функции , если он перпендикулярен прямой
, следовательно
, отсюда
. То есть уравнение функции имеет вид
б) Мы знаем, что график функции проходит через точку М(-1;2). Подставим ее координаты в уравнение функции. Получим:
, отсюда
.
Следовательно, наша функция имеет вид: .
5. Постройте график функции
Упростим выражение, стоящее в правой части уравнения функции.
Важно! Прежде чем упрощать выражение, найдем его ОДЗ.
Знаменатель дроби не может быть равен нулю, поэтому ,
.
Тогда наша функция принимает вид:
То есть нам надо построить график функции и выколоть на нем две точки: с абсциссами x=1 и x=-1:
И.В. Фельдман, репетитор по математике.
Наш онлайн калькулятор, построенный на основе системы Wolfram Alpha, предназначен для решения задачи нахождения точек
пересечения графика функции с осями координат.
При проведении исследования функции, возникает задача нахождения точек пересечения этой функции с осями координат. Рассмотрим на конкретном примере алгоритм решения такой задачи. Для простоты будем работать с функцией одной переменной:
График данной функции представлен на рисунке:
Как следует из рисунка, наша функция пересекает ось
в двух точках, а ось
— в одной.
Сначала найдём точки пересечения функции
с осью
. Сразу отметим, что в этих точках координата
. Поэтому для их поиска, нам нужно
решить уравнение:
Это
квадратное уравнение
имеет два корня:
Таким образом, мы нашли две точки пересечения нашей функции с осью абсцисс:
и
. Стоит отметить, что задача поиска пересечений функции с осью
эквивалентна задаче нахождения
нулей функции.
Теперь найдём точку пересечения с осью ординат. В этой точке координата
. Поэтому для их поиска, просто подставляем значение
в нашу функцию:
Таким образом, мы нашли точку пересечения нашей функции с осью ординат
.
В предыдущем уроке мы подробно разобрали,
как построить параболу.
В этом уроке мы разберем, как решать типовые задачи на квадратичную функцию.
Как найти нули квадратичной функции
Запомните!
Чтобы найти координаты точек нулей функции, нужно
в исходную функцию подставить вместо «y» число
ноль.
Рассмотрим задачу.
Найти нули квадратичной
функции «y = x2 − 3».
Подставим в исходную функцию вместо «y» ноль и решим полученное
квадратное уравнение.
0 = x2 − 3
x2 − 3 = 0
x1;2 =
0 ± √02 − 4 · 1 · (−3) |
2 · 1 |
x1;2 =
x1;2 =
x1;2 =
x1;2 = ±√3
Ответ: нули функции «y = x2 − 3» :
x1 = √3;
x2 = −√3 .
Как найти при каких значениях
«x» квадратичная функция принимает заданное
числовое значение
Запомните!
Чтобы найти при каких значениях «x» квадратичная функция принимает заданное числовое значение,
нужно:
- вместо «y» подставить в функцию заданное числовое значение;
- решить полученное квадратное уравнение относительно «x».
Рассмотрим задачу.
При каких значениях «x» функция
«y = x2 − x − 3» принимает значение
«−3».
Подставим в исходную функцию
«y = x2 − x − 3» вместо «y = −3» и
найдем «x».
y = x2 − x − 3
−3 = x2 − x − 3
x2 − x − 3 = −3
x2 − x − 3 + 3 = 0
x2 − x = 0
x1;2 =
1 ± √12 − 4 · 1 · 0 |
2 · 1 |
x1;2 =
x1;2 =
x1 = | x2 = |
x1 = | x2 = |
x1 = 1 | x2 = 0 |
Ответ: при «x = 0» и
«x = 1» функция «y = x2 − x − 3»
принимает значение «y = −3».
Как найти координаты точек пересечения параболы и прямой
Запомните!
Чтобы найти точки пересечения параболы с прямой нужно:
- приравнять правые части функций (те части функций, в которых содержатся «x»);
- решить полученное уравнение относительно «x»;
- подставить полученные числовые значения «x»
в любую из функций и найти координаты точек по оси «Оy».
Рассмотрим задачу.
Найти координаты точек пересечения параболы «y = x2»
и прямой «y = 3 − 2x».
Приравняем правые части функций и решим
полученное уравнение относительно «x».
x2 = 3 − 2x
x2 − 3 + 2x = 0
x2 + 2x − 3 = 0
x1;2 =
−2 ± √22 − 4 · 1 · (−3) |
2 · 1 |
x1;2 =
x1;2 =
x1;2 =
x1 = | x2 = |
x1 = | x2 = |
x1 = 1 | x2 = −3 |
Теперь подставим в любую из заданных функций (например, в
«y = 3 − 2x») полученные
числовые значения «x», чтобы найти координаты
«y» точек пересечения.
1) x = −3
y = 3 − 2x
y(−3) = 3 − 2 · (−3) = 3 − (−6) = 3 + 6 = 9
(·) A (−3; 9) — первая точка пересечения.
2) x = 1
y = 3 − 2x
y(1) = 3 − 2 · 1 = 3 − 2 = 1
(·) B (1; 1) — вторая точка пересечения.
Запишем полученные точки пересечения с их координатами в ответ.
Ответ: точки пересечения параболы
«y = x2»
и прямой «y = 3 − 2x»:
(·) A (−3; 9) и
(·) B (1; 1).
Как определить, принадлежит ли точка графику функции параболы
Запомните!
Чтобы проверить принадлежность точки параболе нет необходимости строить график функции.
Достаточно подставить координаты точки в формулу функции (координату по оси
«Ox» вместо
«x», а координату по оси
«Oy» вместо «y») и выполнить арифметические расчеты.
- Если получится верное равенство, значит, точка принадлежит графику функции.
- Если получится неверное равенство, значит, точка
не принадлежит графику функции.
Рассмотрим задачу:
Не строя графика функции «y = x2», определить, какие точки принадлежат ему:
(·) А(2; 6),
(·) B(−1; 1).
Подставим в функцию
«y = x2»
координаты точки (·) А(2; 6).
y = x2
6 = 22
6 = 4
(неверно)
Значит, точка (·) А(2; 6)
не принадлежит графику функции
«y = x2».
Подставим в функцию
«y = x2»
координаты точки (·) B(−1; 1).
y = x2
1 = (−)12
1 = 1
(верно)
Значит, точка (·) B(−1; 1)
принадлежит графику функции
«y = x2».
Как найти точки пересечения параболы с осями координат
Рассмотрим задачу
Найти координаты точек пересечения параболы
«y = x2 −3x + 2» с осями координат.
Сначала определим точки пересечения функции с осью «Ox».
На графике функции эти точки выглядят так:
Как видно на рисунке выше, координата «y» точек пересечения с осью «Ox»
равна нулю, поэтому подставим «y = 0» в
исходную функцию «y = x2 −3x + 2»
и найдем их координаты по оси «Ox».
0 = x2 −3x + 2
x2 −3x + 2 = 0
x1;2 =
3 ± √32 − 4 · 1 · 2 |
2 · 1 |
x1;2 =
x1;2 =
x1;2 =
x1 = | x2 = |
x1 = | x2 = |
x1 = 2 | x2 = 1 |
Запишем координаты точек пересечения графика с осью «Ox»:
(·) A (2; 0) и
(·) B (1; 0).
Теперь найдем координаты точки пересечения с осью «Oy».
Как видно на рисунке выше, координата «x»
точки пересечения с осью «Oy» равна нулю.
Подставим «x = 0»
в исходную функцию
«y = x2 −3x + 2»
и найдем координату точки по оси
«Oy».
y(0) = 02 − 3 · 0 + 2 = 2
Выпишем координаты полученной точки: (·) C (0; 2)
Запишем в ответ все координаты точек пересечения параболы с осями.
Ответ: точки пересечения с осью «Ox»:
(·) A (2; 0) и
(·) B (1; 0).
С осью «Oy»: (·)C (0; 2).
Как определить при каких значениях x функция принимает
положительные или
отрицательные значения
Напоминаем, что когда в задании говорится «функция принимает
значения» — речь идет о
значениях«y».
Другими словами, необходимо ответить на вопрос: при каких значениях
«x», координата
«y» положительна или отрицательна.
Запомните!
Чтобы по графику функции определить, где функция принимает положительные или отрицательные значения нужно:
- провести прямые через точки в местах, где график пересекает ось «Ox»;
- определить положительные или отрицательные значения принимает функция на промежутках между проведенными прямыми;
- записать ответ для каждого промежутка относительно «x».
Рассмотрим задачу.
С помощью графика квадратичной функции, изображенного на рисунке, ответить:
При каких значениях «x» функция принимает 1) положительные значения; 2) отрицательные значения.
Проведем через точки, где график функции пересекает ось «Ox» прямые.
Определим области, где функция принимает отрицательные или положительные значения.
Подпишем над каждой полученной областью, какие значения принимает
«x» в каждой из выделенных областей.
Ответ: при «x < −1» и
«x > 2» функция принимает отрицательные значения;
при «−1 < x < 2» функция принимает
положительные значения.
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий: