Как найти обратное отношение двух чисел

В этом уроке мы узнаем, что такое отношения. Также поймем, что нам показывает отношение двух чисел. И в завершение узнаем, как определить часть одного числа от другого.

Эта информация доступна зарегистрированным пользователям

Начнем с определения:

Отношением двух чисел называют частное этих двух чисел.

Записать отношение числа a к числу b мы можем как (mathbf{a div b}) или же через дробную черту: (mathbf{frac{a}{b}})

У нас получается дробное выражение, поэтому возможны варианты во что оно преобразуется:

  • может получиться натуральное число
  • обыкновенная дробь
  • смешанное число

Посмотрим на разные примеры.

Пример 1

Найдем отношение чисел 256 и 8

По определению, отношением двух чисел будет являться их частное, что мы и посчитаем.

(mathbf{256div8=32})

Ответом будет 32.

Иными словами, 256 относится к 8 как 32 к 1

В последней фразе была как раз упомянута суть отношения, мы акцентируем на этом внимание.

Отношение одного числа к другому показывает, как одно число соотносится с другим, иными словами, во сколько раз оно его больше или меньше:

  • если отношение получилось больше 1, значит, первое число больше второго
  • если меньше 1, то второе число больше первого
  • если отношение оказалось равно 1, значит, числа равны

Пример 2

Найдите отношение 15 к 12

По определению посчитаем частное, а далее посмотрим на полученный результат.

(mathbf{15div12=frac{15}{12}=frac{5cdot3}{4cdot3}=frac{5}{4}=1frac{1}{4}})

Данный пример иллюстрирует, в каких случая получается смешанное число.

Отношение равняется смешанному числу в тех случаях, когда первое число больше второго, и при этом первое на второе не делится.

Мы можем прочитать результат так: 15 больше 12 в (mathbf{1frac{1}{4}}) раза.

Пример 3

Найдем отношение 16 к 24.

Снова идем по алгоритму: делим первое число на второе.

(mathbf{16div24=frac{16}{24}=frac{8cdot2}{8cdot3}=frac{2}{3}})

В этом случае мы получили в ответе правильную дробь.

Нам это говорит о том, что первое число меньше второго.

А если мы хотим сказать, как именно первое число меньше второго, то это можно сделать так: первое число меньше второго в (mathbf{frac{2}{3}}) раза.

Мы можем сформулировать вывод и так: 16 составляет (mathbf{frac{2}{3}}) от 24-х, то есть мы отвечаем на вопрос, какой частью является первое число от второго.

Также важно отметить, что отношение числа a к числу b не всегда равно отношению числа b к числу a.

Пример 4

Есть два числа, 14 и 28

Посчитаем отношение 14 к 28

(mathbf{14div28=frac{14}{28}=frac{14cdot1}{14cdot2}=frac{1}{2}})

И посчитаем отношение 28 к 14

(mathbf{28div14=2})

Как вы видите, получились разные значения.

Как можно заметить, это взаимно обратные числа.

Отметим еще одно свойство отношений: если есть два числа a и b, то отношение a к b взаимно обратно отношению b к a.

Если дано отношение первого числа ко второму, то мы без труда сможем найти отношение второго к первому, даже не зная самих чисел, просто посчитав обратное к отношению число.

Пример 5

Дано, что отношение числа a к числу b равно (mathbf{frac{2}{5}}), найдем отношение b к a

Для этого надо найти обратное число к (mathbf{frac{2}{5}})

(mathbf{1divfrac{2}{5}=frac{5}{2}=2frac{1}{2}})

Значит, отношение b к a равняется (mathbf{2frac{1}{2}})

В конце этой части добавим еще одно простое, но важное свойство.

Отношение двух чисел не изменится, если каждое из них домножить или разделить на одно и тоже число.

Это легко доказать, показав, что при делении этот множитель сократится.

Пример 6

Отношение числа 10 к числу 30 равно (mathbf{frac{1}{3}})

Домножим каждое из чисел на 2 и заметим, что отношение 20 к 60 также равно (mathbf{frac{1}{3}})

Эта информация доступна зарегистрированным пользователям

Посмотрим, какие еще можно сделать выводы, зная отношение.

Мы знаем, что, чтобы найти часть от числа (другими словами, дробь от числа), надо умножить число на эту дробь.

Так мы получим число, которое будет частью исходного.

Допустим, изначально у нас было число 4, и мы решили найти от него (mathbf{frac{3}{8}})

Перемножив, мы получим:

(mathbf{4cdotfrac{3}{8}=frac{4cdot3}{8}=frac{4cdot3}{4cdot2}=frac{3}{2}=1frac{1}{2}})

А теперь найдите отношение полученного числа к изначальному.

Для этого разделите одно на другое:

(mathbf{1frac{1}{2}div4=frac{3}{2}div4=frac{3}{2cdot4}=frac{3}{8}})

То, что вы получили отношение, равное той дроби, которую мы находили, не совпадение.

Действительно, находя дробь от числа мы получаем число, чье отношение к исходному будет равно этой дроби.

Сформулируем еще более коротко и четко: отношение числа a к числу b обратно дроби, которую нужно взять от числа а, чтобы получить число b.

Пример 1

Известно, что некая дробь от числа 10 равна (mathbf{2frac{1}{2}})

Найдем, какая именно это дробь.

Решение:

Дробь от числа равна отношению полученного числа к изначальному.

Теперь разделим одно на другое и получим ответ.

(mathbf{2frac{1}{2}div10=frac{2cdot2+1}{2}div10=frac{5}{2}div10=frac{5}{2cdot10}=frac{1}{2cdot2}=frac{1}{4}})

Ответ: дробь, взяв которую от 10 получили (mathbf{2frac{1}{2}}), равняется (mathbf{frac{1}{4}})

Пример 2

Отношение первого числа ко второму равно (mathbf{1frac{1}{5}}), также известно, что первое число равно 6.

Найдем второе число.

Решение:

Мы знаем, что отношение обратно дроби.

Найдем обратное число к (mathbf{1frac{1}{5}})

(mathbf{1div1frac{1}{5}=1divfrac{6}{5}=1cdotfrac{5}{6}=frac{5}{6}})

Теперь можно найти второе число, домножим первое на эту дробь:

(mathbf{6cdotfrac{5}{6}=frac{6cdot5}{6}=5})

Второе число равно 5

Проверка:

Найдем отношение первого числа ко второму, то есть 6 к 5

(mathbf{6div5=frac{6}{5}=1frac{1}{5}})

Получилось то же отношение, что и в условии.

Пример 3

Решим похожую задачу:

Отношение числа а к числу b равно (mathbf{1frac{1}{2}})

Известно, что число b равняется 8-ми, надо найти число а.

Решение:

Найдем, какую дробь число b составляет от числа a, то есть найдем обратное число от отношения:

(mathbf{1div1frac{1}{2}=1divfrac{3}{2}=frac{2}{3}})

Теперь, чтобы найти число по его дроби, надо разделить часть от числа на эту дробь.

В нашем случае на дробь надо делить число b :

(mathbf{8divfrac{2}{3}=8cdotfrac{3}{2}=frac{8cdot3}{2}=4cdot3=12})

Ответ: число a равняется 12

Эта информация доступна зарегистрированным пользователям

Теперь научимся находить отношения в задачах.

Сразу перейдем к примерам, чтобы посмотреть, за какими формулировками могут стоять отношения.

Задача 1

Длина улицы составляет 25 километров. Освещено 15 километров улицы.

а) Найдите, какая часть улицы освещена.

б) Во сколько раз вся улица длиннее ее освещенной части?

Эта информация доступна зарегистрированным пользователям

Решение:

В начале урока мы находили отношение меньшего числа к большему, тем самым определили, какую часть первое число составляет от второго.

Именно это и спрашивается в первом вопросе.

Для нахождения отношения длины освещенного участка к длине всей улицы поделим одну величину на другую:

(mathbf{15div25=frac{15}{25}=frac{3cdot5}{5cdot5}=frac{3}{5}})

Значит, длина освещенного участка составляет (mathbf{frac{3}{5}}) от длины всей улицы.

Во втором вопросе нас спрашивают: «Во сколько раз больше?» — это соответствует отношению большего числа к меньшему.

Для нахождения этого отношения необходимо поделить длину всей улицы на длину ее освещенной части:

(mathbf{25div15=frac{25}{15}=frac{5cdot5}{3cdot5}=frac{5}{3}=1frac{2}{3}})

Что отвечает на вопрос второго пункта.

Ответ: a) (mathbf{frac{3}{5}}), б) (mathbf{1frac{2}{3}})

Также важно помнить, что если подаются какие-либо величины, то всегда надо следить, чтобы мера измерения была одинаковой.

То есть если нам подали что-то в тоннах и килограммах и мы хотим найти отношения этих величин, то надо либо тонны переводить в килограммы, либо наоборот.

Задача 2

Масса груза составляет 2 тонны. Известно, что часть груза-  это одежда и ее масса 350 кг.

Найдите, какую часть от массы груза составляет масса одежды.

Эта информация доступна зарегистрированным пользователям

Решение:

Для начала преобразуем преобразуем тонны в килограммы. Получается, что масса груза равна 2000 кг.

Теперь найдем искомое отношение:

(mathbf{frac{350}{2000}=frac{35}{200}=frac{7cdot5}{5cdot40}=frac{7}{40}})

Ответ: (mathbf{frac{7}{40}}).

Теперь попробуйте порешать задачи самостоятельно, а если будет сложно, используйте подсказки.

Эта информация доступна зарегистрированным пользователям

Эта информация доступна зарегистрированным пользователям

Сегодня вы узнаете о математических фокусах!

Их идея в том, что можно запутать людей математическими преобразованиями, которые выдадут то, что нужно нам.

Фокус 1

Попросите зрителя загадать число и никому не говорить.

Теперь попросите его умножить это число на 2, прибавить к результату 8, разделить на 2 и вычесть задуманное число.

Теперь вы можете уверенно сказать, что у зрителя получилось число 4.

Так получается за счет того, что в процессе преобразований исходное число вообще уходит из цепочки вычислений и остается только четверка.

Попробуй доказать это на формулах, взяв за задуманное число Х 

Фокус 2

В нем вы можете угадать День рождения человека.

Попросите зрителя умножить на 2 число дня его рождения, затем пусть он прибавит к результату 5 и умножит это все на 50, после этого попросите зрителя прибавить к этому числу номер месяца рождения (январь- 1, февраль- 2 и т. д.).

Для того чтобы сказать по полученному числу День рождения человека, надо вычесть из числа, названного зрителем, 250 — получится трехзначное или четырехзначное число, где первые одна или две цифры — это день рождения, а последние две — месяц.

Обратное отношение в математике — это отношение, взятое в обратном порядке по отношению к данному.

Определение

Пусть на множестве {displaystyle X} задано бинарное отношение {displaystyle R.} Тогда его обратным называется отношение {displaystyle R^{-1},} построенное следующим образом:

{displaystyle forall x,yin Xquad {bigl (}xR^{-1}y{bigr )}Leftrightarrow {bigl (}yRx{bigr )}.}

Свойства

  • Если отношение {displaystyle R} обладает одним из перечисленных свойств: рефлексивностью, нерефлексивностью, симметрией, антисимметрией, асимметрией, транзитивностью или полнотой, то и обратное отношение {displaystyle R^{-1}} также обладает им.
  • Если {displaystyle R} инъективно, сюръективно или функционально, то {displaystyle R^{-1}}, вообще говоря, не обязано обладать таким же свойством.

Примеры

п·о·р

Бинарное отношение

между двумя множествами: инъективное · сюръективное · биективное · полное слева · полное справа · функциональное
на множестве: рефлексивное · нерефлексивное · симметричное · антисимметричное · асимметричное · транзитивное · полное · евклидово

План урока:

Отношение двух чисел

Определение пропорции

Масштаб

Отношение двух чисел

На уроке математики ребята выполняли самостоятельную работу. На решение самостоятельных заданий Наталья Ивановна выделила 15 минут, после чего попросила сдать тетради на проверку. Подумайте, какую часть урока заняла самостоятельная работа?

1proverochnye123

Чтобы дать ответ на данное задание, давайте вспомним, какую продолжительность имеет обычный урок? Всем известно, что стандартный урок длится 45 минут. Получается, из 45 минут только 15 дети решали самостоятельную работу. Следовательно, нужно выяснить, какая часть целого урока потрачена на самостоятельную работу. В арифметике для вычисления части от числа или определения во сколько раз одно число больше другого существует специальное понятие «Отношение чисел»:

2sdgdsg

Исходя из рассмотренного определения, необходимо составить отношение длительности самостоятельной работы к длительности целого урока. Таким образом, ответим на главный вопрос задачи. Запишем отношение (частное) двух чисел:

15/45 – данную дробь можно сократить, разделив числитель и знаменатель на 15.

15/45 = 1/3.

Выходит, что на самостоятельную работу класс потратил 1/3 всего урока.

Важно помнить, что числовое значение отношения чисел останется прежним, если каждый компонент отношения умножить или разделить на одно и то же число.

Например:

Давайте, составляющие отношения 6/7 умножим на 2, то есть на дробь 2/2.

6/7 × 2/2 (числитель умножаем на числитель, знаменатель на знаменатель);

Получаем:

6×2/7×2 = 12/14 – при сокращении на 2, получим исходную дробь.

Следовательно, числовое значение дроби не изменилось – 6/7 = 12/14.

При составлении отношений с использованием различных чисел и величин, важно помнить, что отношение будет верным, если все компоненты отношения выражены в одинаковых единицах измерения.

Разберем на примере.

В вазочке находился один килограмм конфет. Бабушка отсыпала 300 граммов сладостей в пакет. Определите, какую часть всех конфет отсыпала бабушка?

3hsfhfh319020

Чтобы ответить на главный вопрос задачи нужно составить отношение массы отсыпанных конфет к общей массе сладостей: 300 граммов/1 килограмм. Сразу определить числовое значение отношения не можем, составляющие имеют разные единицы измерения массы – грамм и килограмм. Выразим один килограмм в граммах:

1кг = 1000 грамм

Теперь определим, какую часть составили отсыпанные сладости:

4sdgdsg

Бабушка отсыпала 3/10 всех сладостей в пакет.

Запомни!

Если a и b числовые значения или значения, выраженные в одной и той же величине, тогда:

  • отношение a/b, будет равно частному a и b;
  • при условии, что a>b, отношение a/b говорит, во сколько раз a больше, чем b;
  • при условии, что a<b, отношение a/b говорит, какую часть a составляет от b.

Определение пропорции

Руководитель детского хореографического кружка, для пошива костюмов своим воспитанникам, приобрел в магазине тканей 10 метров шелка, на сумму 420 рублей. Но купленной ткани не хватило. Какую сумму нужно потратить, чтобы купить еще 5 метров такого же материала?

5dfjhgfj

Данную задачу можно решить двумя способами. Рассмотрим каждый из них подробно.

1 способ.

По условию нам известно, что 10 метров материала, стоит 420 рублей. Отсюда можно узнать цену одного метра. Для этого, общую сумму(420) необходимо разделить на количество приобретенной ткани(10):

420 : 10 = 42 рубля стоит один метр ткани.

Зная цену одного метра ткани, можно узнать стоимость пяти метров. Для этого стоимость одного метра (42), умножаем на количество таких метров (5):

42 × 5 = 210 рублей необходимо, для покупки 5 метров материала.

Этот способ известен еще из начальной школы. Но далеко не все задачи такого вида можно решить первым способом.

 В этом случае используют второй способ решения задач такого вида.

2 способ.

Вначале, запишем краткое условие.

10м. – 420 р.

 5м. – ? р.

Теперь нужно подумать. В нашем случае, количество материала уменьшается, следовательно,уменьшается стоимость покупки. Обозначим цену пяти метров материала – х.

Имеем,

10 – 420.

  5 – х.

Для решения задач такого вида в математике существует специальное определение – «Пропорция»

6sdgdsg

Используя рассмотренное определение, подумаем, как составить пропорцию из чисел? Формировать пропорцию будем, опираясь на краткую запись условия задачи – десять относится к пяти как четыреста двадцать к иксу:

10/5 = 420/х.

Пропорция составлена и возникает вопрос, как вычислить неизвестный компонент?

Для вычисления неизвестной составляющей пропорции существует правило, которое называется «Основное свойство пропорции»:

7sdgdsg

Определим крайние и средние члены в составленном равенстве:

Крайними членами пропорции будут числа 10, х.

Средними членами пропорции будут числа 5, 420.

Запишем равенство произведений крайних и средних членов в составленной пропорции:

10/5 = 420/х;

10х = 5 × 420 – высчитываем произведение;

10х = 2100 – решаем как обычное уравнение;

х = 2100 : 10;

х = 210.

Выходит, 210 рублей необходимо для приобретения пяти метров материала.

Вот так на примере решения задачи мы разобрали новое определение. Запомните, пожалуйста, все правила и поиск неизвестного компонента в любых отношениях и пропорциях будет для вас только развлечением!

Продолжаем дальше знакомиться с пропорцией.

Прямая и обратная пропорциональная зависимость.

Рассмотрим ситуацию, в которой оказывается каждый, попадая в магазин.

8gfkfhk8

Витя пришел в магазин за покупками. В кошельке ребенка лежало 300 рублей. Витя купил хлеб, молоко, масло, заплатил за товар. Денег у мальчика стало меньше. После посещения кондитерского отдела, где он купил карамель, пирожные, рулет денег стало совсем мало. Делаем вывод: чем больше покупок делает мальчик, тем меньше денег у него остается.

9sdgdsg

Значит, количество денег в нашем кошельке и количество покупок имеют обратно пропорциональную зависимость и являются обратно пропорциональными величинами.

А если взять ситуацию с оплатой за пользование водой и электроэнергией

10d Electricity

Чем больше воды/электроэнергии мы используем, тем больше должны заплатить. В таком случае величины кубы воды/киловатты электроэнергии и денежные единицы называются прямо пропорциональными и имеют прямую пропорциональную зависимость.

11sdgdsg

Масштаб

Мама с Арсением решили нарисовать путь, который проходит мальчик, идя из дома в школу. Ребенок заволновался: «Как можно на листке бумаги нарисовать 450 метров пути?». Мама успокоила сына и рассказала, что именно для таких случаев и используется определение масштаба карты.

12sdgdsg

Рассмотрим решение задачи с использованием масштаба.

Расстояние на карте от Москвы до Киева составляет пять сантиметров. Вычислите, сколько километров от Москвы до Киева, если масштаб карты 1:15 000 000.

13fjdjgd5d16c73 i 3149

В первую очередь, нужно понимать, что масштаб 1:15 000 000 показывает, что 1 см карты содержит 15 000 000 сантиметров или 150 километров на местности.

Чтобы ответить на главный вопрос задачи,составим пропорцию. Для этого, расстояние на местности от Москвы до Киева примем за х:

1 : 150 = 5 : х.

Помним, произведение крайних членов пропорции равно произведению средних. Имеем:

х= 150 × 5;

х = 750.

Выходит, 750 километров – расстояние от Москвы до Киева.

Расчеты оказались верными. Вся справочная литература говорит о том, что расстояние Москва – Киев составляет примерно 755 км!

Теперь вы совершенно самостоятельно можете рассчитать абсолютно любое расстояние, имея под рукой линейку и карту!

Интересно!

С пропорциями мы сталкиваемся, ежедневно, ежеминутно. Все в нашем мире пропорционально. Любая вещь, предмет, техника, животные, растения – все имеет свои пропорции! Мы можем любоваться красивой архитектурой – благодаря пропорциям, наслаждаться цветками роз или ромашек – тоже не без участия пропорций. Природа создает все в строгой пропорциональности. В случае, когда пропорции отсутствуют, вещь или предмет нам кажутся неправильными. Ведь даже в нашем теле все имеет свои пропорции:

  • длина ладони равна длине четырех пальцев, длина четырех ладошек(без учета пальцев) равна длине стопы, шесть ладоней – длина локтя, а четыре локтя в точности укажут на рост хозяина;
  • длина человеческой ладони с пальцами составляет 1/10 роста человека;
  • длина расставленных в стороны рук совпадает с длиной человеческого тела;
  • стопа составляет 1/7 часть роста;
  • длина от корней волос до кончика подбородка равна 1/10 роста.

Если мы хотим
определить такое понятие, как отношение,
мы должны, прежде всего, ввести такое
понятие, как упорядоченная
пара
.

Различие между
неупорядоченной парой элементов {a,b}
и упорядоченной парой (a,b)
обычно поясняют на примере сравнения
двух пар элементов. Две неупорядоченные
пары {a,b}={c,d},
если a=b&c=da=c&b=d.
Для упорядоченных пар (a,b)=(c,d)

a=b&c=d.
То есть, в общем случае, для упорядоченных
пар (a,b)(b,a).
Иногда употребляют и такую запись:
R=(a,b)={a,{a,b}}.
Нетрудно догадаться, что существование
множества {a,b}
зависит от того, какое мы выберем a.
Если a,b
– числа, то мы можем описать множество
упорядоченных пар в виде графика,
откладывая по оси абсцисс значения a,
по оси ординат значения b,
для которых существует R=(a,b).

Упорядоченную
пару R
называют двухместным
или бинарным
отношением
.
Упорядоченный набор из n
элементов (a1,
… , an)
называют n-местным
отношением
или
кортежем.

Элементы для
формирования упорядоченных наборов
мы можем выбирать как из одного множества,
так и из разных. При построении графиков,
которые отображают бинарные отношения
между множествами действительных чисел
X
и Y,
мы используем так называемую декартову
систему координат.

Прямым (декартовым)
произведением двух множеств
A
и
B
называется множество упорядоченных
пар (a,b),
в которых aA
и bB:
AB={(a,b)|
aA
& bB}.

Степенью множества
A
называется его прямое произведение
само на себя: An=A…A
– всего n
раз.

Пользуясь введенным
понятием прямого произведения, можно
определить бинарное отношение как
подмножество
прямого произведения
AB:
R=ab={(a,b)R|
RAB}.

Запись ab
обозначает
отношение между элементами a
и b
в общем виде, а запись (a,b)
обозначает конкретную упорядоченную
пару элементов, то есть один элемент
отношения.

Если у нас задан
некоторый универсум U,
то мы можем рассматривать понятия
принадлежности (),
включения (),
и равенства (=), как отношения на B(U)
– множестве всех подмножеств универсума
U.

Способы задания
отношений.

Если отношение содержит небольшое
количество пар (или наборов), его можно
задать, как и множество, перечислением.
Бинарные отношения, как уже говорилось,
могут быть заданы в виде графиков, если
A,B
– числовые множества. В общем случае
отношения могут быть заданы в виде
таблиц или графов. В реляционных базах
данных понятие «кортеж» соответствует
записи в таблице, а поля таблицы с
именами A,B,C,…,
из которых берутся элементы записи,
образуют прямое произведение множеств
ABC…
.

Основные понятия,
связанные с понятием бинарного отношения.

Пусть
R=ab={(a,b)R|
RAB}.
Тогда
существуют:

обратное отношение
R-1={(b,a)|(a,b)R};

дополнение
отношения R={(a,b)|(a,b)R}=(AB)R;

тождественное
отношение I={(a,a)|aA};

однородное
отношение:
UR={(a,b)|aA&bA}.

Композиция
отношений.

Пусть заданы два
бинарных отношения: R1AB
и R2BC
(говорят так: отношение из A
в B
и отношение из B
в C).

Композицией
отношений

R1
и R2
называется
отношение R
из A
в C:

R=
R1
o R2
={(a,c)|
aA
&
cC
&
bB
: (a,b)

R
1
& (b,c)

R
2}.

Пример.Пусть
A
— множество студентов ФПК, B
– множество специальностей, С –
множество учебных курсов, изучаемых
на этих специальностях. Нам нужно
определить, какие дисциплины будет
изучать каждый конкретный студент ФПК
(что будет включать его приложение к
диплому).

Здесь R1
AB
– «студент aA
получает специальность bB»,
R2
BC
– «на специальности bВ
изучается дисциплина cC».
Искомое отношение R
– «студент aA
изучает дисциплину cC»
есть композиция отношений R=
R1
R2.
То есть, чтобы студент aA
изучал дисциплину cC
нужно, чтобы он учился на специальности
bB,
что соответствует отношению ab,
и на этой специальности изучалась
данная дисциплина cC,
что соответствует отношению bc.
Значит, для решения задачи нам нужно
выяснить, для каких пар (a,b)
имеются пары (b,c),
и из этих пар составить новые пары
(a,c),
взяв первый элемент из пары (a,b),
а второй элемент – из пары (b,c).

Графически операцию
композиции можно проиллюстрировать
на следующей схеме.

В этой графической
схеме каждой упорядоченной паре
элементов (a,b)
и (b,c)
сопоставлены стрелки из множества А
в множество B
и из множества B
в множество C
соответственно. Искомым парам (a,c)
соответствуют возможные переходы по
стрелкам из множества A
в множество C.

Теперь составим
бинарные таблицы R1
и R2
для
представленных данной схемой отношений.
Элементы этих таблиц rij(1)
и rjk(2)
соответствуют
отношениям (ai,bj)
и (bj,ck).
Первая таблица будет содержать |A|
строк и |B|
столбцов, вторая — |B|
строк и |C|
столбцов. Для нашего примера таблицы
будут иметь вид:

1

0

0

0

1

1

1

0

0

0

1

0

1

0

1

1

0

0

0

1

0

0

1

0

0

0

1

0

0

1

R1

R2

Одновременное
существование отношений rij(1)
и rjk(2)
соответствует
логическому произведению (конъюнкции)
элементов таблицы rij(1)

rij(2),
и значение каждого элемента rik
итоговой таблицы R
будет зависеть от того, принимает ли
хотя бы одна из этих элементарных
конъюнкций значение «1», что соответствует
логическому сложению (дизъюнкции). Для
нашего примера r11=(r11(1)
r21(1)
r31(1)
r41(1)
)(
r11r12(2)
r13(2)
r14(2)
r15(2)
r16(2)),
и так далее. То есть при i=1,…,|A|,
j=1,…,|B|,
k=1,…,|C|
мы имеем: R=
R1
o
R2
= R1
R2
, где R1
R2
логическое
перемножение матриц
.

Степенью отношения
Rn
называется композиция отношения R
n
раз с самим собой.

Ядром отношения
RAB
называется композиция R*=
R
o
R-1.
Ядро отношения является отношением на
A.

9.Однородные
(универсальные) отношения. Примеры
универсальных отношений. Свойства
однородных отношений (рефлексивность,
симметричность, транзитивность).
Отношение эквивалентности и отношение
порядка
.

однородным
отношением

отношение R=
a

b={(a,b)|aA&bA}.

однородное отношение
– это отношение RA2.
Однородные
бинарные отношения

– важный тип отношений для многих
приложений информатики и других разделов
дискретной математики, для задач теории
графов. Ребра любого графа задают
однородное бинарное отношение на
множестве его вершин V.
Множество точек на плоскости с заданной
системой координат (X,Y)
– это тоже однородное бинарное отношение,
где A
– множество действительных чисел.

Свойства однородных
отношений.

1. Рефлексивность:

aA
имеет место отношение (a,a).
То есть отношение (a,b)
всегда существует при a=b.
Свойство рефлексивности означает,
что IR.

2.
Антирефлексивность:

aA
имеет место (a,a).
То есть отношение (a,
b)
не существует
ни при каких a=b.
Если для каких-то a=b
отношение существует, а для каких-то
нет, то следует говорить, что отношение
просто не
рефлексивно
.

Примеры рефлексивных
отношений

на множестве точек плоскости XY:

1) R={(x,y)
| x=y};

2) R={(x,y)
| |y|<|x|+1};

3) R={(x,y)
| x+y=2k,
k=1,2,…,n}.

3.
Симметричность:

a,bA
(a,b)R

(b,a)R.
Свойство
симметричности означает, что R-1R.

Симметричными
отношениями на множестве точек плоскости
XY
являются отношения 1) и 3) из приведенных
выше.

4.
Антисимметричность:

a,bA
, ab,
(a,b)R


(b,a)R.
То есть
условие симметричности не
выполняется

ни при каких a,b.
Простейший пример антисимметричного
отношения на XY
– строгое неравенство x<y.

Если для каких-то
ab
симметричность выполняется, а для
каких-то нет, то следует говорить, что
отношение R
просто не
симметрично
.
Примером такого отношения является
отношение 2).

5. Транзитивность.

a,b,cA
(a,b)R
& (b,c)R

(a,c)R.
Очень важное свойство отношений.

Свойство
транзитивности можно записать через
степень отношения (композицию отношения
с самим собой): R2
=R

R

R.

Антитранзитивность
обычно не рассматривают, хотя можно и
ее определить так же, как в первых двух
случаях.

Примеры транзитивных
отношений
:

1) все три примера,
приведенных выше;

2) x<y
( в том числе и нестрогое неравенство);

3) отношение
вложенности на B(U):
пусть A,B,C

U.
Если A

B
& B

C

A

C.

6.
Полнота
(
линейность):

a,bA
, ab


(a,b)R

(b,a)R
.
Полнота
отношения означает, что R

R-1

I
= UR.

Свойство полноты,
вообще говоря, довольно редкое. Пример
полного отношения — неравенство xy.

Отношения
эквивалентности и отношения порядка.

Определение 1.
Если однородное отношение RA2:

  1. рефлексивно,
    2)симметрично, 3) транзитивно

то оно называется
отношением
эквивалентности.
Отношение
эквивалентности часто обозначается
«»,
как и операция эквивалентности в логике.
Множество элементов aA,
для которых выполняется отношение
эквивалентности R,
называется классом
эквивалентности
.
Класс эквивалентности будем обозначать
[x]:

[x]
= {y
| yA
& yx}.

Из рассмотренных
выше примеров отношениями эквивалентности
являются примеры 1) и 3).

Примером отношения
эквивалентности на B(U)
может служить отношение равномощности
множеств: |A|=|B|.
То есть все подмножества из U
одинаковой мощности образуют класс
эквивалентности.

Определееие 2.
Если однородное отношение RA2:

  1. антисимметрично,
    2) транзитивно,

то
оно называется отношением
порядка
.
Если отношение при этом еще и
антирефлексивно,
то это отношение
строгого порядка
.
Отношение нестрогого порядка может
быть как рефлексивным, так и просто не
рефлексивным.Для обозначения отношения
порядка можно использовать обычный
знак неравенства.Если отношение порядка
не обладает свойством полноты
(линейности), то обычно говорят об
отношении частичного
порядка
. В
задачах дискретной математики и
информатики чаще всего встречается
именно этот тип отношений.

Если на множестве
А определено отношение частичного
порядка, то оно называется частично
упорядоченным
.
Множество, на котором определено
отношение полного порядка, называется
вполне
упорядоченным
.
Например, числовые множества – это
вполне упорядоченные множества.

Теорема.
На всяком конечном, непустом, частично
упорядоченном множестве существует
минимальный
элемент
y
| 
xy
y<x.

Вполне упорядоченное
множество содержит только один
минимальный элемент, на частично
упорядоченном множестве их может быть
несколько. Булеан B(U),
— это вполне упорядоченное множество
относительно отношения вложенности
().
Минимальным элементом в этом случае
является пустое множество .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Асимметричная грудь как исправить
  • Составьте предложения употребив данные обороты как обособленные имейте в виду несмотря на уговоры
  • Как найти где я нахожусь гугл
  • Секс в видео чате как найти
  • Как найти свое призвание женщине

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии