Тип редуктора
Передаточное число [I]
Крутящий момент редуктора
Эксплуатационный коэффициент (сервис-фактор)
Мощность привода
Коэффициент полезного действия (КПД)
Взрывозащищенные исполнения
Показатели надежности
Сервис расчета привода
В данной статье содержится подробная информация о выборе и расчете мотор-редуктора. Надеемся, предлагаемые сведения будут вам полезны.
При выборе конкретной модели мотор-редуктора учитываются следующие технические характеристики:
- тип редуктора;
- мощность;
- обороты на выходе;
- передаточное число редуктора;
- конструкция входного и выходного валов;
- тип монтажа;
- дополнительные функции.
Тип редуктора
Наличие кинематической схемы привода упростит выбор типа редуктора. Конструктивно редукторы подразделяются на следующие виды:
Червячный одноступенчатый со скрещенным расположением входного/выходного вала (угол 90 градусов).
Червячный двухступенчатый с перпендикулярным или параллельным расположением осей входного/выходного вала. Соответственно, оси могут располагаться в разных горизонтальных и вертикальных плоскостях.
Цилиндрический горизонтальный с параллельным расположением входного/выходного валов. Оси находятся в одной горизонтальной плоскости.
Цилиндрический соосный под любым углом. Оси валов располагаются в одной плоскости.
В коническо-цилиндрическом редукторе оси входного/выходного валов пересекаются под углом 90 градусов.
ВАЖНО!
Расположение выходного вала в пространстве имеет определяющее значение для ряда промышленных применений.
- Конструкция червячных редукторов позволяет использовать их при любом положении выходного вала.
- Применение цилиндрических и конических моделей чаще возможно в горизонтальной плоскости. При одинаковых с червячными редукторами массо-габаритных характеристиках эксплуатация цилиндрических агрегатов экономически целесообразней за счет увеличения передаваемой нагрузки в 1,5-2 раза и высокого КПД.
Таблица 1. Классификация редукторов по числу ступеней и типу передачи
Тип редуктора | Число ступеней | Тип передачи | Расположение осей |
---|---|---|---|
Цилиндрический | 1 | Одна или несколько цилиндрических | Параллельное |
2 | Параллельное/соосное | ||
3 | |||
4 | Параллельное | ||
Конический | 1 | Коническая | Пересекающееся |
Коническо-цилиндрический | 2 |
Коническая Цилиндрическая (одна или несколько) |
Пересекающееся/скрещивающееся |
3 | |||
4 | |||
Червячный | 1 | Червячная (одна или две) | Скрещивающееся |
1 | Параллельное | ||
Цилиндрическо-червячный или червячно-цилиндрический | 2 |
Цилиндрическая (одна или две) Червячная (одна) |
Скрещивающееся |
3 | |||
Планетарный | 1 | Два центральных зубчатых колеса и сателлиты (для каждой ступени) | Соосное |
2 | |||
3 | |||
Цилиндрическо-планетарный | 2 |
Цилиндрическая (одна или несколько) Планетарная (одна или несколько) |
Параллельное/соосное |
3 | |||
4 | |||
Коническо-планетарный | 2 | Коническая (одна) Планетарная (одна или несколько) | Пересекающееся |
3 | |||
4 | |||
Червячно-планетарный | 2 |
Червячная (одна) Планетарная (одна или несколько) |
Скрещивающееся |
3 | |||
4 | |||
Волновой | 1 | Волновая (одна) | Соосное |
Передаточное число [I]
Передаточное число редуктора рассчитывается по формуле:
I = N1/N2
где
N1 – скорость вращения вала (количество об/мин) на входе;
N2 – скорость вращения вала (количество об/мин) на выходе.
Полученное при расчетах значение округляется до значения, указанного в технических характеристиках конкретного типа редукторов.
Таблица 2. Диапазон передаточных чисел для разных типов редукторов
Тип редуктора | Передаточные числа |
---|---|
Червячный одноступенчатый | 8-80 |
Червячный двухступенчатый | 25-10000 |
Цилиндрический одноступенчатый | 2-6,3 |
Цилиндрический двухступенчатый | 8-50 |
Цилиндрический трехступенчатый | 31,5-200 |
Коническо-цилиндрический одноступенчатый | 6,3-28 |
Коническо-цилиндрический двухступенчатый | 28-180 |
ВАЖНО!
Скорость вращения вала электродвигателя и, соответственно, входного вала редуктора не может превышать 1500 об/мин. Правило действует для любых типов редукторов, кроме цилиндрических соосных со скоростью вращения до 3000 об/мин. Этот технический параметр производители указывают в сводных характеристиках электрических двигателей.
Крутящий момент редуктора
Крутящий момент на выходном валу [M2] – вращающий момент на выходном валу. Учитывается номинальная мощность [Pn], коэффициент безопасности [S], расчетная продолжительность эксплуатации (10 тысяч часов), КПД редуктора.
Номинальный крутящий момент [Mn2] – максимальный крутящий момент, обеспечивающий безопасную передачу. Его значение рассчитывается с учетом коэффициента безопасности – 1 и продолжительность эксплуатации – 10 тысяч часов.
Максимальный вращающий момент {M2max] – предельный крутящий момент, выдерживаемый редуктором при постоянной или изменяющейся нагрузках, эксплуатации с частыми пусками/остановками. Данное значение можно трактовать как моментальную пиковую нагрузку в режиме работы оборудования.
Необходимый крутящий момент [Mr2] – крутящий момент, удовлетворяющим критериям заказчика. Его значение меньшее или равное номинальному крутящему моменту.
Расчетный крутящий момент [Mc2] – значение, необходимое для выбора редуктора. Расчетное значение вычисляется по следующей формуле:
Mc2 = Mr2 x Sf ≤ Mn2
где
Mr2 – необходимый крутящий момент;
Sf – сервис-фактор (эксплуатационный коэффициент);
Mn2 – номинальный крутящий момент.
Эксплуатационный коэффициент (сервис-фактор)
Сервис-фактор (Sf) рассчитывается экспериментальным методом. В расчет принимаются тип нагрузки, суточная продолжительность работы, количество пусков/остановок за час эксплуатации мотор-редуктора. Определить эксплуатационный коэффициент можно, используя данные таблицы 3.
Таблица 3. Параметры для расчета эксплуатационного коэффициента
Тип нагрузки | К-во пусков/остановок, час | Средняя продолжительность эксплуатации, сутки | |||
---|---|---|---|---|---|
<2 | 2-8 | 9-16h | 17-24 | ||
Плавный запуск, статичный режим эксплуатации, ускорение массы средней величины | <10 | 0,75 | 1 | 1,25 | 1,5 |
10-50 | 1 | 1,25 | 1,5 | 1,75 | |
80-100 | 1,25 | 1,5 | 1,75 | 2 | |
100-200 | 1,5 | 1,75 | 2 | 2,2 | |
Умеренная нагрузка при запуске, переменный режим, ускорение массы средней величины | <10 | 1 | 1,25 | 1,5 | 1,75 |
10-50 | 1,25 | 1,5 | 1,75 | 2 | |
80-100 | 1,5 | 1,75 | 2 | 2,2 | |
100-200 | 1,75 | 2 | 2,2 | 2,5 | |
Эксплуатация при тяжелых нагрузках, переменный режим, ускорение массы большой величины | <10 | 1,25 | 1,5 | 1,75 | 2 |
10-50 | 1,5 | 1,75 | 2 | 2,2 | |
80-100 | 1,75 | 2 | 2,2 | 2,5 | |
100-200 | 2 | 2,2 | 2,5 | 3 |
Мощность привода
Правильно рассчитанная мощность привода помогает преодолевать механическое сопротивление трения, возникающее при прямолинейных и вращательных движениях.
Элементарная формула расчета мощности [Р] – вычисление соотношения силы к скорости.
При вращательных движениях мощность вычисляется как соотношение крутящего момента к числу оборотов в минуту:
P = (MxN)/9550
где
M – крутящий момент;
N – количество оборотов/мин.
Выходная мощность [P2] вычисляется по формуле:
P2 = P x Sf
где
P – мощность;
Sf – сервис-фактор (эксплуатационный коэффициент).
ВАЖНО!
Значение входной мощности всегда должно быть выше значения выходной мощности, что оправдано потерями при зацеплении:
P1 > P2
Нельзя делать расчеты, используя приблизительное значение входной мощности, так как КПД могут существенно отличаться.
Коэффициент полезного действия (КПД)
Расчет КПД рассмотрим на примере червячного редуктора. Он будет равен отношению механической выходной мощности и входной мощности:
ñ [%] = (P2/P1) x 100
где
P2 – выходная мощность;
P1 – входная мощность.
ВАЖНО!
В червячных редукторах P2 < P1 всегда, так как в результате трения между червячным колесом и червяком, в уплотнениях и подшипниках часть передаваемой мощности расходуется.
Чем выше передаточное отношение, тем ниже КПД.
На КПД влияет продолжительность эксплуатации и качество смазочных материалов, используемых для профилактического обслуживания мотор-редуктора.
Таблица 4. КПД червячного одноступенчатого редуктора
Передаточное число | КПД при aw, мм | ||||||||
---|---|---|---|---|---|---|---|---|---|
40 | 50 | 63 | 80 | 100 | 125 | 160 | 200 | 250 | |
8,0 | 0,88 | 0,89 | 0,90 | 0,91 | 0,92 | 0,93 | 0,94 | 0,95 | 0,96 |
10,0 | 0,87 | 0,88 | 0,89 | 0,90 | 0,91 | 0,92 | 0,93 | 0,94 | 0,95 |
12,5 | 0,86 | 0,87 | 0,88 | 0,89 | 0,90 | 0,91 | 0,92 | 0,93 | 0,94 |
16,0 | 0,82 | 0,84 | 0,86 | 0,88 | 0,89 | 0,90 | 0,91 | 0,92 | 0,93 |
20,0 | 0,78 | 0,81 | 0,84 | 0,86 | 0,87 | 0,88 | 0,89 | 0,90 | 0,91 |
25,0 | 0,74 | 0,77 | 0,80 | 0,83 | 0,84 | 0,85 | 0,86 | 0,87 | 0,89 |
31,5 | 0,70 | 0,73 | 0,76 | 0,78 | 0,81 | 0,82 | 0,83 | 0,84 | 0,86 |
40,0 | 0,65 | 0,69 | 0,73 | 0,75 | 0,77 | 0,78 | 0,80 | 0,81 | 0,83 |
50,0 | 0,60 | 0,65 | 0,69 | 0,72 | 0,74 | 0,75 | 0,76 | 0,78 | 0,80 |
Таблица 5. КПД волнового редуктора
Передаточное число | 63 | 80 | 100 | 125 | 160 | 200 | 250 | 315 |
---|---|---|---|---|---|---|---|---|
КПД | 0,83 | 0,82 | 0,80 | 0,78 | 0,75 | 0,72 | 0,70 | 0,65 |
Таблица 6. КПД зубчатых редукторов
Тип редуктора | КПД |
---|---|
Цилиндрический и конический одноступенчатый | 0,98 |
Цилиндрический и коническо-цилиндрический двухступенчатый | 0,97 |
Цилиндрический и коническо-цилиндрический трехступенчатый | 0,96 |
Цилиндрический и коническо-цилиндрический четырехступенчатый | 0,95 |
Планетарный одноступенчатый | 0,97 |
Планетарный двухступенчатый | 0,95 |
Взрывозащищенные исполнения мотор-редукторов
Мотор-редукторы данной группы классифицируются по типу взрывозащитного исполнения:
- «Е» – агрегаты с повышенной степенью защиты. Могут эксплуатироваться в любом режиме работы, включая внештатные ситуации. Усиленная защита предотвращает вероятность воспламенений промышленных смесей и газов.
- «D» – взрывонепроницаемая оболочка. Корпус агрегатов защищен от деформаций в случае взрыва самого мотор-редуктора. Это достигается за счет его конструктивных особенностей и повышенной герметичности. Оборудование с классом взрывозащиты «D» может применяться в режимах предельно высоких температур и с любыми группами взрывоопасных смесей.
- «I» – искробезопасная цепь. Данный тип взрывозащиты обеспечивает поддержку взрывобезопасного тока в электрической сети с учетом конкретных условий промышленного применения.
Показатели надежности
Показатели надежности мотор-редукторов приведены в таблице 7. Все значения приведены для длительного режима эксплуатации при постоянной номинальной нагрузке. Мотор-редуктор должен обеспечить 90% указанного в таблице ресурса и в режиме кратковременных перегрузок. Они возникают при пуске оборудования и превышении номинального момента в два раза, как минимум.
Таблица 7. Ресурс валов, подшипников и передач редукторов
Показатель | Тип редуктора | Значение,ч |
---|---|---|
90% ресурса валов и передач | Цилиндрический, планетарный, конический, коническо-цилиндрический | 25000 |
90% ресурса подшипников | Червячный, волновой, глобоидный | 10000 |
Цилиндрический, планетарный, конический, коническо-цилиндрический | 12500 | |
Червячный | 5000 | |
Глобоидный, волновой | 10000 |
По вопросам расчета и приобретения мотор редукторов различных типов обращайтесь к нашим специалистам. Здесь можно ознакомиться с каталогом червячных, цилиндрических, планетарных и волновых мотор-редукторов, предлагаемых компанией Техпривод.
Романов Сергей Анатольевич,
руководитель отдела механики
компании Техпривод.
Другие полезные материалы:
Как правильно подобрать электродвигатель
Редуктор от «А» до «Я»
Выбор преобразователя частоты
Подключение и настройка частотного преобразователя
Схемы подключения устройства плавного пуска
Если этот параметр Вам не известен, то можно рассчитать его по формуле:
М2 = 9550 х Р1 х і х КПД / 100 х n1
Где: P1(кВт) входная мощность редуктора; i — передаточное отношение; КПД (%) — коэффициент полезного действия; n1(об/мин) — обороты на входном валу (вал электродвигателя).
- КПД=98% (для одноступенчатых редукторов)
- КПД=97% (для двухступенчатых редукторов)
- КПД=96% (для трехступенчатых редукторов)
- КПД=95% (для четырехступенчатых редукторов, а так же для червячных одноступенчатых редукторов)
- КПД=94% (для редукторов с количеством ступеней 5 и более, а так же для червячных двухступенчатых редукторов).
Определить необходимую мощность Р1 (кВт) для редуктора (входная мощность редуктора)
Если этот параметр Вам не известен, то можно рассчитать его по формуле:
Р1= М2 х n1 х 100 / 9550 х КПД
Где: M2(Нм) крутящий момент редуктора; n1(об/мин) — обороты на входном валу (вал электродвигателя); КПД (%) — коэффициентполезного действия.
- КПД=98% (для одноступенчатых редукторов)
- КПД=97% (для двухступенчатых редукторов)
- КПД=96% (для трехступенчатых редукторов)
- КПД=95% (для четырехступенчатых редукторов, а так же для червячных одноступенчатых редукторов)
- КПД=94% (для редукторов с количеством ступеней 5 и более, а так же для червячных двухступенчатых редукторов).
Определить номинальную мощность Рe (кВт) для редуктора (номинальная мощность редуктора)
Если этот параметр Вам не известен, то можно рассчитать его по формуле:
Где: P1 (кВт) — входная мощность редуктора; Sf — коэффициент эксплуатации (коэффициент надежности).
Определить необходимые обороты n2 (об/мин) для вашего оборудования или передаточное отношение i редуктора (обороты на выходном валу редуктора).
Если этот параметр Вам не известен, то можно рассчитать его по формуле:
n1(об/мин) — обороты на входном валу (вал электродвигателя); n1(об/мин) — обороты на выходном валу (вал редуктора).
Рассчитать необходимую радиальную нагрузку Fq (Н) на выходной вал редуктора (в зависимости от вида соединения редуктора с оборудованием).
Радиальную нагрузку на вал редуктора можно рассчитать его по формуле:
- Fq = 2100 х М2 / D зубчатая передача (рабочий угол – 20 градусов)
- Fq = 2100 х М2 / D цепная передача (на малых оборотах z > 17)
- Fq = 2500 х М2 / D зубчатая ременная передача
- Fq = 5000 х М2 / D клиноременная передача
- Fq = 5000 х М2 / D ременная передача через ролик натяжителя
Где: Fq(Н) — радиальная нагрузка на вал редуктора; М2(Нм) — крутящий момент редуктора; D (мм) — диаметр шестерни или шкива; при выборе редуктора необходимо учитывать, что:
Любое подвижное соединение, передающее усилие и меняющее направление движения, имеет свои технические характеристики. Основным критерием, определяющим изменение угловой скорости и направления движения, является передаточное число. С ним неразрывно связано изменение силы – передаточное отношение. Оно вычисляется для каждой передачи: ременной, цепной, зубчатой при проектировании механизмов и машин.
Перед тем как узнать передаточное число, надо посчитать количество зубьев на шестернях. Затем разделить их количество на ведомом колесе на аналогичный показатель ведущей шестерни. Число больше 1 означает повышающую передачу, увеличивающую количество оборотов, скорость. Если меньше 1, то передача понижающая, увеличивающая мощность, силу воздействия.
Общее определение
Наглядный пример изменения числа оборотов проще всего наблюдать на простом велосипеде. Человек медленно крутит педали. Колесо вращается значительно быстрее. Изменение количества оборотов происходит за счет 2 звездочек, соединенных в цепь. Когда большая, вращающаяся вместе с педалями, делает один оборот, маленькая, стоящая на задней ступице, прокручивается несколько раз.
Передачи с крутящим моментом
В механизмах используют несколько видов передач, изменяющих крутящий момент. Они имеют свои особенности, положительные качества и недостатки. Наиболее распространенные передачи:
Ременная передача самая простая в исполнении. Используется при создании самодельных станков, в станочном оборудовании для изменения скорости вращения рабочего узла, в автомобилях.
Ремень натягивается между 2 шкивами и передает вращение от ведущего в ведомому. Производительность низкая, поскольку ремень скользит по гладкой поверхности. Благодаря этому, ременной узел является самым безопасным способом передавать вращение. При перегрузке происходит проскальзывание ремня, и остановка ведомого вала.
Передаваемое количество оборотов зависит от диаметра шкивов и коэффициента сцепления. Направление вращения не меняется.
Переходной конструкцией является ременная зубчатая передача.
На ремне имеются выступы, на шестерне зубчики. Такой тип ремня расположен под капотом автомобиля и связывает звездочки на осях коленвала и карбюратора. При перегрузе ремень рвется, так как это самая дешевая деталь узла.
Цепная состоит из звездочек и цепи с роликами. Передающееся число оборотов, усилие и направление вращения не меняются. Цепные передачи широко применяются в транспортных механизмах, на конвейерах.
Характеристика зубчатой передачи
В зубчатой передаче ведущая и ведомая детали взаимодействуют непосредственно, за счет зацепления зубьев. Основное правило работы такого узла – модули должны быть одинаковыми. В противном случае механизм заклинит. Отсюда следует, что диаметры увеличиваются в прямой зависимости от количества зубьев. Одни значения можно в расчетах заменить другими.
Модуль – размер между одинаковыми точками двух соседних зубьев.
Например, между осями или точками на эвольвенте по средней линии Размер модуля состоит из ширины зуба и промежутка между ними. Измерять модуль лучше в точке пересечения линии основания и оси зубца. Чем меньше радиус, тем сильнее искажается промежуток между зубьями по наружному диаметру, он увеличивается к вершине от номинального размера. Идеальные формы эвольвенты практически могут быть только на рейке. Теоретически на колесе с максимально бесконечным радиусом.
Деталь с меньшим количеством зубьев называют шестерней. Обычно она ведущая, передает крутящий момент от двигателя.
Зубчатое колесо имеет больший диаметр и в паре ведомое. Оно соединено с рабочим узлом. Например, передает вращение с необходимой скоростью на колеса автомобиля, шпиндель станка.
Обычно посредством зубчатой передачи уменьшается количество оборотов и увеличивается мощность. Если в паре деталь, имеющая больший диаметр, ведущая, на выходе шестерня имеет большее количество оборотов, вращается быстрее, но мощность механизма падает. Такие передачи называют понижающими.
Расчет элементов корпуса редуктора
Толщина стенки корпуса редуктора
= 0,025+ 1=5 мм
Полученное значение округляем до целого числа с учетом того, что толщина стенки должна быть не меньшего 8 мм. Примем
= 8
Диаметр фундаментного болта
d
б1 = 0,036
+ 12 =17,76 мм
округлим расчетное значение до стандартного диаметра резьбы:
Диаметры болтов крепления крышки корпуса к основанию равны:
После округления до стандартных значений: d
б2 = 16 мм,
d
б3 =12 мм
Расстояние от внутренней стенки корпуса до края лапы
L
1= 3 +
+b
1 =51 мм
где b
1 = 40 мм, определяется по табл. 5 в зависимости от диаметра болта
d
б1.
Расстояние от внутренней стенки корпуса до оси фундаментного болта
P
1 = 3 +
+a
1 = 28 мм
где a
1 = 17 мм, определяется по табл. 5 в зависимости от диаметра болта
d
б1.
Расстояние от внутренней стенки корпуса до оси болта у подшипника
P
2= 3 +
+a
2= 24 мм
где a
2 = 13 мм, определяется по табл. 5 в зависимости от диаметра болта
d
б2.
Расстояние от внутренней стенки корпуса до оси фундаментного болта
P
3= 3 +
+a
3= 21 мм
где a
3 = 9 мм, определяется по табл. 5 в зависимости от диаметра болта
d
б3.
h=
2.5
=20 мм
h
1
=
1.6
= 14 мм
Минимальное расстояние от окружности вершин зубчатого колеса до стенки корпуса редуктора
f
= 1.2
=10 мм
C
=
= 8
Для уменьшения потерь мощности на трение и снижения интенсивности износа трущихся поверхностей, а также для предохранения их от заедания, коррозии и лучшего отвода теплоты трущиеся поверхности деталей должны иметь надежную смазку.
Как рассчитать передаточное число
Шестерня и колесо имеют разное количество зубов с одинаковым модулем и пропорциональный размер диаметров. Передаточное число показывает, сколько оборотов совершит ведущая деталь, чтобы провернуть ведомую на полный круг. Зубчатые передачи имеют жесткое соединение. Передающееся количество оборотов в них не меняется. Это негативно сказывается на работе узла в условиях перегрузок и запыленности. Зубец не может проскользнуть, как ремень по шкиву и ломается.
Расчет без учета сопротивления
В расчете передаточного числа шестерен используют количество зубьев на каждой детали или их радиусы.
Где u12 – передаточное число шестерни и колеса;
Z2 и Z1 – соответственно количество зубьев ведомого колеса и ведущей шестерни.
Знак «+» ставится, если направление вращения не меняется. Это относится к планетарным редукторам и зубчатым передачам с нарезкой зубцов по внутреннему диаметру колеса. При наличии паразиток – промежуточных деталей, располагающихся между ведущей шестерней и зубчатым венцом, направление вращения изменяется, как и при наружном соединении. В этих случаях в формуле ставится «–».
При наружном соединении двух деталей посредством расположенной между ними паразитки, передаточное число вычисляется как соотношение количества зубьев колеса и шестерни со знаком «+». Паразитка в расчетах не участвует, только меняет направление, и соответственно знак перед формулой.
Передаточное отношение зубчатой передачи
Значение передаточного числа зубчатой передачи совпадает передаточным отношением. Величина угловой скорости и момента силы изменяется пропорционально диаметру, и соответственно количеству зубьев, но имеет обратное значение.
Чем больше количество зубьев, тем меньше угловая скорость и сила воздействия – мощность.
При схематическом изображении величины силы и перемещения шестерню и колесо можно представить в виде рычага с опорой в точке контакта зубьев и сторонами, равными диаметрам сопрягаемых деталей. При смещении на 1 зубец их крайние точки проходят одинаковое расстояние. Но угол поворота и крутящий момент на каждой детали разный.
Например, шестерня с 10 зубьями проворачивается на 36°. Одновременно с ней деталь с 30 зубцами смещается на 12°. Угловая скорость детали с меньшим диаметром значительно больше, в 3 раза. Одновременно и путь, который проходит точка на наружном диаметре имеет обратно пропорциональное отношение. На шестерне перемещение наружного диаметра меньше. Момент силы увеличивается обратно пропорционально соотношению перемещения.
Крутящий момент увеличивается вместе с радиусом детали. Он прямо пропорционален размеру плеча воздействия – длине воображаемого рычага.
Передаточное отношение показывает, насколько изменился момент силы при передаче его через зубчатое зацепление. Цифровое значение совпадает с переданным числом оборотов.
Передаточное отношение редуктора вычисляется по формуле:
где U12 – передаточное отношение шестерни относительно колеса;
ω1 и ω2 – угловые скорости ведущего и ведомого элемента соединения;
Отношение угловых скоростей можно считать через число зубьев. При этом направление вращения не учитывается и все цифры с положительным знаком.
Зубчатая передача имеет самый высокий КПД и наименьшую защиту от перегруза – ломается элемент приложения силы, приходится делать новую дорогостоящую деталь со сложной технологией изготовления.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Покупка моторного редуктора – инвестиции в технико-технологические бизнес-процессы, которые должны быть не только обоснованными, но и окупаемыми. А окупаемость во многом зависит от выбора мотор-редуктора для конкретных целей. Осуществляется он на основе профессионального расчета мощности, размерности, производительной эффективности, требуемого уровня нагрузки для конкретных целей использования.
Во избежание ошибок, которые могут привести к раннему износу оборудования и дорогостоящим финансовым потерям, расчет мотор-редуктора должны производить квалифицированные специалисты. При необходимости его и другие исследования для выбора редуктора могут провести эксперты .
Выбор по основным характеристикам
Длительный срок службы при обеспечении заданного уровня работы оборудования, с которым работает мотор-редуктор, – ключевая выгода при правильном выборе привода. Наша многолетняя практика показывает, что при определении требований исходить стоит из следующих параметров:
- минимум 7 лет безремонтной работы для червячного механизма;
- от 10–15 лет для цилиндрического привода.
В ходе определения данных для подачи заказа на производство мотор-редуктора ключевыми характеристиками являются:
- мощность подключенного электродвигателя,
- скорость вращения подвижных элементов системы,
- тип питания мотора,
- условия эксплуатации редуктора – режим работы и загрузки.
При расчете мощности электродвигателя для мотор-редуктора за основу берут производительность техники, с которой он будет работать. Производительность редукторного мотора во многом зависит от выходного момента силы и скоростью его работы. Скорость, как и КПД, может меняться при колебаниях напряжения в системе питания двигателя.
Скорость моторного редуктора – это зависимая величина, на которую влияют две характеристики:
- передаточное число;
- частота вращательных движений мотора.
В нашем каталоге есть редукторы с разными скоростными параметрами. Имеются модели с одним или несколькими скоростными режимами. Второй вариант предусматривает наличие системы регулирования скоростных параметров и применяется в случаях, когда во время эксплуатации редуктора необходима периодическая смена скоростных режимов.
Определение понятия
Что же такое передаточное число редуктора? Любой редуктор служит для передачи крутящего момента с коробки передач на колеса. При этом скорость вращения всегда понижается. Передаточное число как раз и является показателем, во сколько раз это уменьшение происходит. К примеру, число 5,125, встречающееся в газелевских редукторах, показывает, что скорость вращения с входного вала на колеса уменьшается в 5,125 раза.
Практически редуктор в автомобиле располагается на ведущей оси. Если речь идёт о полноприводных вариантах – там имеется два редуктора, по одному на каждую ось. Отечественные автомобили производства ВАЗ и ГАЗ имеют задний редуктор, за некоторым исключением. Чтобы определить передаточное число редуктора, можно поступить несколькими способами:
- теоретический;
- практический;
- расчётный.
Выбор по типу редуктора для привода
Профессиональный расчет с целью выбора редуктора всегда начинается с проработки схемы привода (кинематической). Именно она лежит в основе соответствия выбранного оборудования условиях будущей эксплуатации. Согласно данной схеме, вы можете выбрать класс мотор-редуктора. Варианты следующие.
- Червячный механизм:
- одноступенчатая передача, входной вал под прямым углом к выходному валу (скрещенное положение входного вала и выходного вала);
- двухступенчатый механизм с расположением входного вала параллельно или перпендикулярно выходному валу (оси могут располагаться вертикально/горизонтально).
- Цилиндрический мотор-редуктор:
- с параллельным положением входного вала и выходного вала и горизонтальным размещением осей (выходной вал с органом на входе находятся в одной плоскости);
- с размещением осей входного вала и выходного в одной плоскости, но соосно (расположены под любым углом).
- Конически-цилиндрический. В нем ось входного вала пересекается с осью выходного вала под углом 90 градусов.
- Цилиндрический и конический моторный редуктор, имея аналогичные червячному приводу вес и размеры, демонстрирует более высокий КПД.
- Передаваемая цилиндрическим редуктором нагрузка в 1,5–2 раза выше, чем у червячного аналога.
- Использование конической и цилиндрической передачи возможно только при размещении по горизонтали.
Ключевое значение при выборе мотор-редуктора имеет положение выходного вала. При комплексном подходе к подбору устройства следует учитывать следующее:
Определение уровня масла.
В цилиндрических редукторах:
При окунании в масляную ванну колеса m≤ hм≤0.25d2, где m – модуль зацепления; при нижнем расположении шестерни hм=(0,1….0,5)d1, при этом hmin=2,2m. Желательно, чтобы уровень масла проходил через центр нижнего тела качения подшипника (шарика или ролика).
При нижнем расположении шестерни цилиндрической передачи и высокой частоте вращения для уменьшения тепловыделения и потери мощности, уровень масла понижают так, чтобы вывести шестерню из масляной ванны. В этом случае, для смазывания, на шестерню устанавливают разбрыгиватели.
Классификация по числу ступеней и типу передачи
Тип редуктора | Число ступеней | Тип передачи | Расположение осей |
Цилиндрический | 1 | Одна или несколько цилиндрических | Параллельное |
2 | Параллельное/соосное | ||
3 | |||
4 | Параллельное | ||
Конический | 1 | Коническая | Пересекающееся |
Коническо-цилиндрический | 2 | Коническая Цилиндрическая (одна или несколько) | Пересекающееся/ Скрещивающееся |
3 | |||
4 | |||
Червячный | 1 | Червячная(одна или две) | Скрещивающееся |
2 | Параллельное | ||
Цилиндро-червячный или червячно- цилиндрический | 2 | Цилиндрическая (одна или две) Червячная (одна) | Скрещивающееся |
3 | |||
Планетарный | 1 | Два центральных зубчатых колеса и сателлиты (для каждой ступени) | Соосное |
2 | |||
3 | |||
Цилиндрическо-планетарный | 2 | Цилиндрическая (одна или несколько) Планетарная (одна или несколько) | Параллельное/соосное |
3 | |||
4 | |||
Коническо-планетарный | 2 | Коническая (одна) Планетарная (одна или несколько) | Пересекающееся |
3 | |||
4 | |||
Червячно-планетарный | 2 | Червячная (одна) Планетарная (одна или несколько) | Скрещивающееся |
3 | |||
4 | |||
Волновой | 1 | Волновая (одна) | Соосное |
Передаточное число
Определение передаточного отношения выполняют по формуле вида:
- nвх– обороты входного вала (характеристика электродвигателя) в минуту;
- nвых– требуемое число оборотов выходного вала в минуту.
Полученное частное округляется до передаточного числа из типового ряда для конкретных типов мотор-редукторов. Ключевое условие удачного выбора электродвигателя – ограничение по частоте вращения входного вала. Для всех типов приводных механизмов она не должна превышать 1,5 тыс. оборотов в минуту. Конкретный критерий частоты указывается в технических характеристиках двигателя.
Расчётный способ
А можно ли узнать передаточное число неизвестного автомобиля, не разбирая редуктор? Оказывается, есть такой способ. Для этого ось, на которой установлен редуктор, вывешивается на опорах. Запоминается положение ведущего вала и колес. Это удобно сделать простыми метками. Затем колеса крутят до тех пор, пока метки снова не совпадут, подсчитывая число оборотов колес и вала отдельно. Удобнее эту процедуру проводить с помощником.
После получения экспериментальных данных следует рассчитать число путем деления количества оборотов вала на количество оборотов колес. Точность такого способа примерная и повышается только внимательностью при подсчете и совмещении меток.
Диапазон передаточных чисел для редукторов
Тип редуктора | Передаточные числа |
Червячный одноступенчатый | 8-80 |
Червячный двухступенчатый | 25-10000 |
Цилиндрический одноступенчатый | 2-6,3 |
Цилиндрический двухступенчатый | 8-50 |
Цилиндрический трехступенчатый | 31,5-200 |
Конческо-цилиндрический одноступенчатый | 6,3-28 |
Конческо-цилиндрический двухступенчатый | 28-100 |
Мощности
При вращательных движениях рабочих органов механизмов возникает сопротивление, которое приводит к трению – истиранию узлов. При грамотном выборе редуктора по показателю мощности он способен преодолевать это сопротивление. Потому этот момент имеет большое значение, когда нужно купить мотор-редуктор с долгосрочными целями.
Сама мощность – Р – считается как частное от силы и скорости редуктора. Формула выглядит так:
- где: M – момент силы;
- N – обороты в минуту.
Для выбора нужного мотор-редуктора необходимо сопоставить данные по мощности на входе и выходе – Р1 и Р2 соответственно. Расчет мощности мотор-редуктора на выходе рассчитывается так:
- где: P – мощность редуктора; Sf – эксплуатационный коэффициент, он же сервис-фактор.
На выходе мощность редуктора (P1 > P2) должна быть ниже, чем на входе. Норма данного неравенства объясняется неизбежными потерями производительности при зацеплении в результате трения деталей между собой.
При расчете мощностей обязательно применять точные данные: из-за разных показателей КПД вероятность ошибки выбора при использовании приблизительных данных близится к 80%.
Крутящий момент редуктора
Крутящий момент на выходном валу [M2] — вращающий момент на выходном валу. Учитывается номинальная мощность [Pn], коэффициент безопасности [S], расчетная продолжительность эксплуатации (10 тысяч часов), КПД редуктора.
Номинальный крутящий момент [Mn2] — максимальный крутящий момент, обеспечивающий безопасную передачу. Его значение рассчитывается с учетом коэффициента безопасности — 1 и продолжительность эксплуатации — 10 тысяч часов.
Максимальный вращающий момент [M2max] — предельный крутящий момент, выдерживаемый редуктором при постоянной или изменяющейся нагрузках, эксплуатации с частыми пусками/остановками. Данное значение можно трактовать как моментальную пиковую нагрузку в режиме работы оборудования.
Необходимый крутящий момент [Mr2] — крутящий момент, удовлетворяющим критериям заказчика. Его значение меньшее или равное номинальному крутящему моменту.
Расчетный крутящий момент [Mc2] — значение, необходимое для выбора редуктора. Расчетное значение вычисляется по следующей формуле:
Mc2 = Mr2 x Sf <= Mn2
где Mr2 — необходимый крутящий момент; Sf — сервис-фактор (эксплуатационный коэффициент); Mn2 — номинальный крутящий момент.
Расчет КПД
КПД мотор-редуктора является частным деления мощности на выходе и на входе. Рассчитывается в процентах, формула имеет вид:
При определении КПД следует опираться на следующие моменты:
- величина КПД прямо зависит от передаточного числа: чем оно выше, тем выше КПД;
- в ходе эксплуатации редуктора его КПД может снизиться – на него влияет как характер или условия эксплуатации, так и качество используемой смазки, соблюдение графика плановых ремонтов, своевременное обслуживание и т. д.
Показатели надежности
В таблице ниже приведены нормы ресурса основных деталей мотор-редуктора при длительной работе устройства с постоянной активностью.
Ресурс
Показатель | Тип редуктора | Значение, ч |
90% ресурса валов и передач | Цилиндрический, планетарный, конический, коническо-цилиндрический | 25000 |
90% ресурса подшибников | Червячный, волновой, глобоидный | 10000 |
Цилиндрический, планетарный, конический, коническо-цилиндрический | 12500 | |
Червячный | 5000 | |
Глобоидный,волновой | 10000 |
Купить мотор-редуктор
ПТЦ «Привод» – производитель редукторов и мотор-редукторов с разными характеристиками и КПД, которому не безразличны показатели окупаемости его оборудования. Мы постоянно работаем не только над повышением качества нашей продукции, но и над созданием самых комфортных условий ее приобретения для вас.
Специально для минимизации ошибок выбора нашим клиентам предлагается интеллектуальный конфигуратор. Чтобы воспользоваться этим сервисом, не нужны специальные навыки или знания. Инструмент работает в режиме онлайн и поможет вам определиться с оптимальным типом оборудования. Мы же предложим лучшую цену мотор-редуктора любого типа и полное сопровождение его доставки.
Типы взрывозащищенного исполнения
Выделяют 3 основные категории редукторов и мотор-редукторов по классу взрывозащищенности:
- Е – устройства с повышенной степенью защищенности. Пригодны для эксплуатации в любых условиях, в том числе при возникновении внештатных ситуаций. Благодаря высокой герметичности корпуса подходят для использования в средах взрывоопасных и горючих газов и газо-воздушных смесей без риска воспламенения последних;
- D – мотор-редукторы со взрывонепроницаемым корпусом, неразрушимым в случае взрыва самого агрегата. Отличаются полной герметичностью оболочки и безопасностью, которая позволяет использовать их в средах любых взрывоопасных газов и смесей, а также при предельно высоких эксплуатационных температурах;
- I – устройства с увеличенной искробезопасностью. Подразумевают поддержку взрывобезопасного тока в питающей цепи в соответствии с конкретными производственными условиями.
Если этот параметр Вам не известен, то можно рассчитать его по формуле:
М2 = 9550 х Р1 х і х КПД / 100 х n1
Где: P1(кВт) входная мощность редуктора; i — передаточное отношение; КПД (%) — коэффициент полезного действия; n1(об/мин) — обороты на входном валу (вал электродвигателя).
- КПД=98% (для одноступенчатых редукторов)
- КПД=97% (для двухступенчатых редукторов)
- КПД=96% (для трехступенчатых редукторов)
- КПД=95% (для четырехступенчатых редукторов, а так же для червячных одноступенчатых редукторов)
- КПД=94% (для редукторов с количеством ступеней 5 и более, а так же для червячных двухступенчатых редукторов).
Определить необходимую мощность Р1 (кВт) для редуктора (входная мощность редуктора)
Если этот параметр Вам не известен, то можно рассчитать его по формуле:
Р1= М2 х n1 х 100 / 9550 х КПД
Где: M2(Нм) крутящий момент редуктора; n1(об/мин) — обороты на входном валу (вал электродвигателя); КПД (%) — коэффициентполезного действия.
- КПД=98% (для одноступенчатых редукторов)
- КПД=97% (для двухступенчатых редукторов)
- КПД=96% (для трехступенчатых редукторов)
- КПД=95% (для четырехступенчатых редукторов, а так же для червячных одноступенчатых редукторов)
- КПД=94% (для редукторов с количеством ступеней 5 и более, а так же для червячных двухступенчатых редукторов).
Определить номинальную мощность Рe (кВт) для редуктора (номинальная мощность редуктора)
Если этот параметр Вам не известен, то можно рассчитать его по формуле:
Где: P1 (кВт) — входная мощность редуктора; Sf — коэффициент эксплуатации (коэффициент надежности).
Определить необходимые обороты n2 (об/мин) для вашего оборудования или передаточное отношение i редуктора (обороты на выходном валу редуктора).
Если этот параметр Вам не известен, то можно рассчитать его по формуле:
n1(об/мин) — обороты на входном валу (вал электродвигателя); n1(об/мин) — обороты на выходном валу (вал редуктора).
Рассчитать необходимую радиальную нагрузку Fq (Н) на выходной вал редуктора (в зависимости от вида соединения редуктора с оборудованием).
Радиальную нагрузку на вал редуктора можно рассчитать его по формуле:
- Fq = 2100 х М2 / D зубчатая передача (рабочий угол – 20 градусов)
- Fq = 2100 х М2 / D цепная передача (на малых оборотах z > 17)
- Fq = 2500 х М2 / D зубчатая ременная передача
- Fq = 5000 х М2 / D клиноременная передача
- Fq = 5000 х М2 / D ременная передача через ролик натяжителя
Где: Fq(Н) — радиальная нагрузка на вал редуктора; М2(Нм) — крутящий момент редуктора; D (мм) — диаметр шестерни или шкива; при выборе редуктора необходимо учитывать, что:
Любое подвижное соединение, передающее усилие и меняющее направление движения, имеет свои технические характеристики. Основным критерием, определяющим изменение угловой скорости и направления движения, является передаточное число. С ним неразрывно связано изменение силы – передаточное отношение. Оно вычисляется для каждой передачи: ременной, цепной, зубчатой при проектировании механизмов и машин.
Перед тем как узнать передаточное число, надо посчитать количество зубьев на шестернях. Затем разделить их количество на ведомом колесе на аналогичный показатель ведущей шестерни. Число больше 1 означает повышающую передачу, увеличивающую количество оборотов, скорость. Если меньше 1, то передача понижающая, увеличивающая мощность, силу воздействия.
Общее определение
Наглядный пример изменения числа оборотов проще всего наблюдать на простом велосипеде. Человек медленно крутит педали. Колесо вращается значительно быстрее. Изменение количества оборотов происходит за счет 2 звездочек, соединенных в цепь. Когда большая, вращающаяся вместе с педалями, делает один оборот, маленькая, стоящая на задней ступице, прокручивается несколько раз.
Передачи с крутящим моментом
В механизмах используют несколько видов передач, изменяющих крутящий момент. Они имеют свои особенности, положительные качества и недостатки. Наиболее распространенные передачи:
Ременная передача самая простая в исполнении. Используется при создании самодельных станков, в станочном оборудовании для изменения скорости вращения рабочего узла, в автомобилях.
Ремень натягивается между 2 шкивами и передает вращение от ведущего в ведомому. Производительность низкая, поскольку ремень скользит по гладкой поверхности. Благодаря этому, ременной узел является самым безопасным способом передавать вращение. При перегрузке происходит проскальзывание ремня, и остановка ведомого вала.
Передаваемое количество оборотов зависит от диаметра шкивов и коэффициента сцепления. Направление вращения не меняется.
Переходной конструкцией является ременная зубчатая передача.
На ремне имеются выступы, на шестерне зубчики. Такой тип ремня расположен под капотом автомобиля и связывает звездочки на осях коленвала и карбюратора. При перегрузе ремень рвется, так как это самая дешевая деталь узла.
Цепная состоит из звездочек и цепи с роликами. Передающееся число оборотов, усилие и направление вращения не меняются. Цепные передачи широко применяются в транспортных механизмах, на конвейерах.
Характеристика зубчатой передачи
В зубчатой передаче ведущая и ведомая детали взаимодействуют непосредственно, за счет зацепления зубьев. Основное правило работы такого узла – модули должны быть одинаковыми. В противном случае механизм заклинит. Отсюда следует, что диаметры увеличиваются в прямой зависимости от количества зубьев. Одни значения можно в расчетах заменить другими.
Модуль – размер между одинаковыми точками двух соседних зубьев.
Например, между осями или точками на эвольвенте по средней линии Размер модуля состоит из ширины зуба и промежутка между ними. Измерять модуль лучше в точке пересечения линии основания и оси зубца. Чем меньше радиус, тем сильнее искажается промежуток между зубьями по наружному диаметру, он увеличивается к вершине от номинального размера. Идеальные формы эвольвенты практически могут быть только на рейке. Теоретически на колесе с максимально бесконечным радиусом.
Деталь с меньшим количеством зубьев называют шестерней. Обычно она ведущая, передает крутящий момент от двигателя.
Зубчатое колесо имеет больший диаметр и в паре ведомое. Оно соединено с рабочим узлом. Например, передает вращение с необходимой скоростью на колеса автомобиля, шпиндель станка.
Обычно посредством зубчатой передачи уменьшается количество оборотов и увеличивается мощность. Если в паре деталь, имеющая больший диаметр, ведущая, на выходе шестерня имеет большее количество оборотов, вращается быстрее, но мощность механизма падает. Такие передачи называют понижающими.
Редуктор двухступенчатый с цилиндрическими колесами.
Редуктор двухступенчатый с цилиндрическими колесами стационарного типа широко применяется в промышленности. Приведенная ниже силовая характеристика редуктора соответствует режиму работы:
- крутящий момент, равный Т, действует в течение 0,2t;
- равный 0,75 Т — в течение 0,5t;
- равный 0,2Т — в течение 0,3t,
где t — время цикла.
Силовая характеристика редуктора:
- Мощность но тихоходном валу — 42,9 кВт;
- Вращающий момент на тихоходном валу — 7,52 кН•м;
- Частота вращения быстроходного вала — 1000 мин-1;
- Режим работы — Тяжелый;
- Передаточное число общее — 18,27;
- Передаточное число быстроходной ступени — 4,06;
- Передаточное число тихоходной ступени — 4,5;
z1=26 mn=3 β=9° 22′
z2=106 mn=3 β=9° 22′
z3=27 mn=4 β=9° 22′
z4=121 mn=4 β=9° 22′
Как рассчитать передаточное число
Шестерня и колесо имеют разное количество зубов с одинаковым модулем и пропорциональный размер диаметров. Передаточное число показывает, сколько оборотов совершит ведущая деталь, чтобы провернуть ведомую на полный круг. Зубчатые передачи имеют жесткое соединение. Передающееся количество оборотов в них не меняется. Это негативно сказывается на работе узла в условиях перегрузок и запыленности. Зубец не может проскользнуть, как ремень по шкиву и ломается.
Расчет без учета сопротивления
В расчете передаточного числа шестерен используют количество зубьев на каждой детали или их радиусы.
Где u12 – передаточное число шестерни и колеса;
Z2 и Z1 – соответственно количество зубьев ведомого колеса и ведущей шестерни.
Знак «+» ставится, если направление вращения не меняется. Это относится к планетарным редукторам и зубчатым передачам с нарезкой зубцов по внутреннему диаметру колеса. При наличии паразиток – промежуточных деталей, располагающихся между ведущей шестерней и зубчатым венцом, направление вращения изменяется, как и при наружном соединении. В этих случаях в формуле ставится «–».
При наружном соединении двух деталей посредством расположенной между ними паразитки, передаточное число вычисляется как соотношение количества зубьев колеса и шестерни со знаком «+». Паразитка в расчетах не участвует, только меняет направление, и соответственно знак перед формулой.
Передаточное отношение зубчатой передачи
Значение передаточного числа зубчатой передачи совпадает передаточным отношением. Величина угловой скорости и момента силы изменяется пропорционально диаметру, и соответственно количеству зубьев, но имеет обратное значение.
Чем больше количество зубьев, тем меньше угловая скорость и сила воздействия – мощность.
При схематическом изображении величины силы и перемещения шестерню и колесо можно представить в виде рычага с опорой в точке контакта зубьев и сторонами, равными диаметрам сопрягаемых деталей. При смещении на 1 зубец их крайние точки проходят одинаковое расстояние. Но угол поворота и крутящий момент на каждой детали разный.
Например, шестерня с 10 зубьями проворачивается на 36°. Одновременно с ней деталь с 30 зубцами смещается на 12°. Угловая скорость детали с меньшим диаметром значительно больше, в 3 раза. Одновременно и путь, который проходит точка на наружном диаметре имеет обратно пропорциональное отношение. На шестерне перемещение наружного диаметра меньше. Момент силы увеличивается обратно пропорционально соотношению перемещения.
Крутящий момент увеличивается вместе с радиусом детали. Он прямо пропорционален размеру плеча воздействия – длине воображаемого рычага.
Передаточное отношение показывает, насколько изменился момент силы при передаче его через зубчатое зацепление. Цифровое значение совпадает с переданным числом оборотов.
Передаточное отношение редуктора вычисляется по формуле:
где U12 – передаточное отношение шестерни относительно колеса;
ω1 и ω2 – угловые скорости ведущего и ведомого элемента соединения;
Отношение угловых скоростей можно считать через число зубьев. При этом направление вращения не учитывается и все цифры с положительным знаком.
Зубчатая передача имеет самый высокий КПД и наименьшую защиту от перегруза – ломается элемент приложения силы, приходится делать новую дорогостоящую деталь со сложной технологией изготовления.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Покупка моторного редуктора – инвестиции в технико-технологические бизнес-процессы, которые должны быть не только обоснованными, но и окупаемыми. А окупаемость во многом зависит от выбора мотор-редуктора для конкретных целей. Осуществляется он на основе профессионального расчета мощности, размерности, производительной эффективности, требуемого уровня нагрузки для конкретных целей использования.
Во избежание ошибок, которые могут привести к раннему износу оборудования и дорогостоящим финансовым потерям, расчет мотор-редуктора должны производить квалифицированные специалисты. При необходимости его и другие исследования для выбора редуктора могут провести эксперты .
Выбор по основным характеристикам
Длительный срок службы при обеспечении заданного уровня работы оборудования, с которым работает мотор-редуктор, – ключевая выгода при правильном выборе привода. Наша многолетняя практика показывает, что при определении требований исходить стоит из следующих параметров:
- минимум 7 лет безремонтной работы для червячного механизма;
- от 10–15 лет для цилиндрического привода.
В ходе определения данных для подачи заказа на производство мотор-редуктора ключевыми характеристиками являются:
- мощность подключенного электродвигателя,
- скорость вращения подвижных элементов системы,
- тип питания мотора,
- условия эксплуатации редуктора – режим работы и загрузки.
При расчете мощности электродвигателя для мотор-редуктора за основу берут производительность техники, с которой он будет работать. Производительность редукторного мотора во многом зависит от выходного момента силы и скоростью его работы. Скорость, как и КПД, может меняться при колебаниях напряжения в системе питания двигателя.
Скорость моторного редуктора – это зависимая величина, на которую влияют две характеристики:
- передаточное число;
- частота вращательных движений мотора.
В нашем каталоге есть редукторы с разными скоростными параметрами. Имеются модели с одним или несколькими скоростными режимами. Второй вариант предусматривает наличие системы регулирования скоростных параметров и применяется в случаях, когда во время эксплуатации редуктора необходима периодическая смена скоростных режимов.
Выбор по типу редуктора для привода
Профессиональный расчет с целью выбора редуктора всегда начинается с проработки схемы привода (кинематической). Именно она лежит в основе соответствия выбранного оборудования условиях будущей эксплуатации. Согласно данной схеме, вы можете выбрать класс мотор-редуктора. Варианты следующие.
- Червячный механизм:
- одноступенчатая передача, входной вал под прямым углом к выходному валу (скрещенное положение входного вала и выходного вала);
- двухступенчатый механизм с расположением входного вала параллельно или перпендикулярно выходному валу (оси могут располагаться вертикально/горизонтально).
- Цилиндрический мотор-редуктор:
- с параллельным положением входного вала и выходного вала и горизонтальным размещением осей (выходной вал с органом на входе находятся в одной плоскости);
- с размещением осей входного вала и выходного в одной плоскости, но соосно (расположены под любым углом).
- Конически-цилиндрический. В нем ось входного вала пересекается с осью выходного вала под углом 90 градусов.
- Цилиндрический и конический моторный редуктор, имея аналогичные червячному приводу вес и размеры, демонстрирует более высокий КПД.
- Передаваемая цилиндрическим редуктором нагрузка в 1,5–2 раза выше, чем у червячного аналога.
- Использование конической и цилиндрической передачи возможно только при размещении по горизонтали.
Ключевое значение при выборе мотор-редуктора имеет положение выходного вала. При комплексном подходе к подбору устройства следует учитывать следующее:
Выбор оборудования
Это надо понимать: даже в устройствах идентичной конфигурации/конструкции соотношение скорости вращения входного вала и выходного вала может отличаться. Для верного выбора важно знать, как посчитать передаточное число редукторного двигателя. Хотя существует и другой путь — уточнить данные непосредственно у производителя.
Инженеры производственного знают все о характеристиках редукторного оборудования и рады помочь заказчику подобрать механизм, который оптимально отвечает запросам производственной площадки. Профессиональный расчет и всесторонняя информационная поддержка предоставляются бесплатно. Специалисты расскажут, как определить передаточное число редуктора и оформить заказ. А также помогут просчитать стоимость и сориентируют по срокам его доставки.
Классификация по числу ступеней и типу передачи
Тип редуктора | Число ступеней | Тип передачи | Расположение осей |
Цилиндрический | 1 | Одна или несколько цилиндрических | Параллельное |
2 | Параллельное/соосное | ||
3 | |||
4 | Параллельное | ||
Конический | 1 | Коническая | Пересекающееся |
Коническо-цилиндрический | 2 | Коническая Цилиндрическая (одна или несколько) | Пересекающееся/ Скрещивающееся |
3 | |||
4 | |||
Червячный | 1 | Червячная(одна или две) | Скрещивающееся |
2 | Параллельное | ||
Цилиндро-червячный или червячно- цилиндрический | 2 | Цилиндрическая (одна или две) Червячная (одна) | Скрещивающееся |
3 | |||
Планетарный | 1 | Два центральных зубчатых колеса и сателлиты (для каждой ступени) | Соосное |
2 | |||
3 | |||
Цилиндрическо-планетарный | 2 | Цилиндрическая (одна или несколько) Планетарная (одна или несколько) | Параллельное/соосное |
3 | |||
4 | |||
Коническо-планетарный | 2 | Коническая (одна) Планетарная (одна или несколько) | Пересекающееся |
3 | |||
4 | |||
Червячно-планетарный | 2 | Червячная (одна) Планетарная (одна или несколько) | Скрещивающееся |
3 | |||
4 | |||
Волновой | 1 | Волновая (одна) | Соосное |
Тип редуктора
Наличие кинематической схемы привода упростит выбор типа редуктора. Конструктивно редукторы подразделяются на следующие виды:
- Червячный одноступенчатый со скрещенным расположением входного/выходного вала (угол 90 градусов).
- Червячный двухступенчатый с перпендикулярным или параллельным расположением осей входного/выходного вала. Соответственно, оси могут располагаться в разных горизонтальных и вертикальных плоскостях.
- Цилиндрический горизонтальный с параллельным расположением входного/выходного валов. Оси находятся в одной горизонтальной плоскости.
- Цилиндрический соосный под любым углом. Оси валов располагаются в одной плоскости.
- В коническо-цилиндрическом редукторе оси входного/выходного валов пересекаются под углом 90 градусов.
Важно! Расположение выходного вала в пространстве имеет определяющее значение для ряда промышленных применений.
- Конструкция червячных редукторов позволяет использовать их при любом положении выходного вала.
- Применение цилиндрических и конических моделей чаще возможно в горизонтальной плоскости. При одинаковых с червячными редукторами массо-габаритных характеристиках эксплуатация цилиндрических агрегатов экономически целесообразней за счет увеличения передаваемой нагрузки в 1,5-2 раза и высокого КПД.
Таблица 1. Классификация редукторов по числу ступеней и типу передачи
Тип редуктора | Число ступеней | Тип передачи | Расположение осей |
Цилиндрический | 1 | Одна или несколько цилиндрических | Параллельное |
2 | Параллельное/соосное | ||
3 | |||
4 | Параллельное | ||
Конический | 1 | Коническая | Пересекающееся |
Коническо-цилиндрический | 2 | Коническая Цилиндрическая (одна или несколько) | Пересекающееся/скрещивающееся |
3 | |||
4 | |||
Червячный | 1 | Червячная (одна или две) | Скрещивающееся |
1 | Параллельное | ||
Цилиндрическо-червячный или червячно-цилиндрический | 2 | Цилиндрическая (одна или две) Червячная (одна) | Скрещивающееся |
3 | |||
Планетарный | 1 | Два центральных зубчатых колеса и сателлиты (для каждой ступени) | Соосное |
2 | |||
3 | |||
Цилиндрическо-планетарный | 2 | Цилиндрическая (одна или несколько) Планетарная (одна или несколько) | Параллельное/соосное |
3 | |||
4 | |||
Коническо-планетарный | 2 | Коническая (одна) Планетарная (одна или несколько) | Пересекающееся |
3 | |||
4 | |||
Червячно-планетарный | 2 | Червячная (одна) Планетарная (одна или несколько) | Скрещивающееся |
3 | |||
4 | |||
Волновой | 1 | Волновая (одна) | Соосное |
Передаточное число
Определение передаточного отношения выполняют по формуле вида:
- nвх– обороты входного вала (характеристика электродвигателя) в минуту;
- nвых– требуемое число оборотов выходного вала в минуту.
Полученное частное округляется до передаточного числа из типового ряда для конкретных типов мотор-редукторов. Ключевое условие удачного выбора электродвигателя – ограничение по частоте вращения входного вала. Для всех типов приводных механизмов она не должна превышать 1,5 тыс. оборотов в минуту. Конкретный критерий частоты указывается в технических характеристиках двигателя.
Диапазон передаточных чисел для редукторов
Тип редуктора | Передаточные числа |
Червячный одноступенчатый | 8-80 |
Червячный двухступенчатый | 25-10000 |
Цилиндрический одноступенчатый | 2-6,3 |
Цилиндрический двухступенчатый | 8-50 |
Цилиндрический трехступенчатый | 31,5-200 |
Конческо-цилиндрический одноступенчатый | 6,3-28 |
Конческо-цилиндрический двухступенчатый | 28-100 |
Формула
Самый простой способ расчета передаточного числа осуществляется по следующей формуле:
I = N1 / N2
- I — искомая величина, передаточное число вращения;
- N1 — обороты за 1 мин., совершаемые входным валом;
- N2 — скорость вращения рабочего органа на выходе.
Результат, полученный по этой формуле передаточного числа редуктора, округляется до ближайшей величины из указываемых в техническом описании серии.
Диапазон передаточных чисел для разных типов редукторов
Тип редуктора | Передаточные числа |
Червячный одноступенчатый | 8-80 |
Червячный двухступенчатый | 25-10000 |
Цилиндрический одноступенчатый | 2-6,3 |
Цилиндрический двухступенчатый | 8-50 |
Цилиндрический трехступенчатый | 31,5-200 |
Коническо-цилиндрический одноступенчатый | 6,3-28 |
Коническо-цилиндрический двухступенчатый | 28-180 |
Мощности
При вращательных движениях рабочих органов механизмов возникает сопротивление, которое приводит к трению – истиранию узлов. При грамотном выборе редуктора по показателю мощности он способен преодолевать это сопротивление. Потому этот момент имеет большое значение, когда нужно купить мотор-редуктор с долгосрочными целями.
Сама мощность – Р – считается как частное от силы и скорости редуктора. Формула выглядит так:
- где: M – момент силы;
- N – обороты в минуту.
Для выбора нужного мотор-редуктора необходимо сопоставить данные по мощности на входе и выходе – Р1 и Р2 соответственно. Расчет мощности мотор-редуктора на выходе рассчитывается так:
- где: P – мощность редуктора; Sf – эксплуатационный коэффициент, он же сервис-фактор.
На выходе мощность редуктора (P1 > P2) должна быть ниже, чем на входе. Норма данного неравенства объясняется неизбежными потерями производительности при зацеплении в результате трения деталей между собой.
При расчете мощностей обязательно применять точные данные: из-за разных показателей КПД вероятность ошибки выбора при использовании приблизительных данных близится к 80%.
Расчет КПД
КПД мотор-редуктора является частным деления мощности на выходе и на входе. Рассчитывается в процентах, формула имеет вид:
При определении КПД следует опираться на следующие моменты:
- величина КПД прямо зависит от передаточного числа: чем оно выше, тем выше КПД;
- в ходе эксплуатации редуктора его КПД может снизиться – на него влияет как характер или условия эксплуатации, так и качество используемой смазки, соблюдение графика плановых ремонтов, своевременное обслуживание и т. д.
Показатели надежности
В таблице ниже приведены нормы ресурса основных деталей мотор-редуктора при длительной работе устройства с постоянной активностью.
Ресурс
Показатель | Тип редуктора | Значение, ч |
90% ресурса валов и передач | Цилиндрический, планетарный, конический, коническо-цилиндрический | 25000 |
90% ресурса подшибников | Червячный, волновой, глобоидный | 10000 |
Цилиндрический, планетарный, конический, коническо-цилиндрический | 12500 | |
Червячный | 5000 | |
Глобоидный,волновой | 10000 |
Редуктор двухступенчатый с двумя разъемами.
Редуктор двухступенчатый с двумя разъемами, быстроходный вал расположен наверху. Смазывание окунанием колеса в масло возможно при условии применения дополнительных устройств. На редукторе для смазывания зацепления быстроходной ступени и подшипников применено промежуточное зубчатое колесо, установленное на тихоходном валу.
Соседние страницы
- Кинематические схемы редукторов
- Редуктор с вертикальными валами
- Редуктор с двумя быстроходными валами.
- Редуктор двухступенчатый соосный
- Варианты исполнений опор валов цилиндрического двухступенчатого соосного редуктора
- Редуктор с торсионными валами
- Редуктор двухступенчатый трехпоточный соосный
- Редуктор соосный цилиндрический с внутренним зацеплением тихоходной ступени
- Мотор-редуктор МЦ2С-125
- Редуктор цилиндрический Ц2-160
- Редуктор цилиндрический двухступенчатый 1Ц2У.
- Редуктор Ц2-200.
- Редуктор специальный
- Редуктор Ц3КФ-100
- Редуктор РТЦ-500.
- Редуктор трехступенчатый
- Редуктор РЦТ-1015.
- Редуктор конический К-125.
- Редуктор конический
- Редуктор коническо-цилиндрический
- Редуктор червячный.
- Мотор-редуктор цилиндрическо-червячный.
- Редуктор цилиндрическо-червячный.
- Редуктор червячный двухступенчатый.
Купить мотор-редуктор
ПТЦ «Привод» – производитель редукторов и мотор-редукторов с разными характеристиками и КПД, которому не безразличны показатели окупаемости его оборудования. Мы постоянно работаем не только над повышением качества нашей продукции, но и над созданием самых комфортных условий ее приобретения для вас.
Специально для минимизации ошибок выбора нашим клиентам предлагается интеллектуальный конфигуратор. Чтобы воспользоваться этим сервисом, не нужны специальные навыки или знания. Инструмент работает в режиме онлайн и поможет вам определиться с оптимальным типом оборудования. Мы же предложим лучшую цену мотор-редуктора любого типа и полное сопровождение его доставки.
Редуктор двухступенчатый с уменьшенной установочной плоскостью.
Редуктор двухступенчатый с уменьшенной установочной плоскостью, смещенной в сторону тихоходного, более нагруженного вала.
Для удешевления изготовления редуктора и облегчения условий его эксплуатации подшипники на быстроходном и промежуточном валах унифицированы. Унификацию подшипников и других деталей следует проводить по возможности во всех случаях.
Крышка редуктора снабжена двумя отжимными болтами 1, облегчающими съем крышки с корпуса. При тщательной пригонке стыкуемых поверхностей корпуса и крышки отделить крышку от корпуса без отжимных болтов затруднительно, особенно на больших тяжелых редукторах.
Тип редуктора Передаточное число [I] Крутящий момент редуктора Эксплуатационный коэффициент (сервис-фактор) Мощность привода Коэффициент полезного действия (КПД) Взрывозащищенные исполнения Показатели надежности Сервис расчета привода
В данной статье содержится подробная информация о выборе и расчете мотор-редуктора. Надеемся, предлагаемые сведения будут вам полезны.
При выборе конкретной модели мотор-редуктора учитываются следующие технические характеристики:
- тип редуктора;
- мощность;
- обороты на выходе;
- передаточное число редуктора;
- конструкция входного и выходного валов;
- тип монтажа;
- дополнительные функции.
Тип редуктора
Наличие кинематической схемы привода упростит выбор типа редуктора. Конструктивно редукторы подразделяются на следующие виды:
Червячный одноступенчатый со скрещенным расположением входного/выходного вала (угол 90 градусов).
Червячный двухступенчатый с перпендикулярным или параллельным расположением осей входного/выходного вала. Соответственно, оси могут располагаться в разных горизонтальных и вертикальных плоскостях.
Цилиндрический горизонтальный с параллельным расположением входного/выходного валов. Оси находятся в одной горизонтальной плоскости.
Цилиндрический соосный под любым углом. Оси валов располагаются в одной плоскости.
В коническо-цилиндрическом редукторе оси входного/выходного валов пересекаются под углом 90 градусов.
ВАЖНО! Расположение выходного вала в пространстве имеет определяющее значение для ряда промышленных применений.
- Конструкция червячных редукторов позволяет использовать их при любом положении выходного вала.
- Применение цилиндрических и конических моделей чаще возможно в горизонтальной плоскости. При одинаковых с червячными редукторами массо-габаритных характеристиках эксплуатация цилиндрических агрегатов экономически целесообразней за счет увеличения передаваемой нагрузки в 1,5-2 раза и высокого КПД.
Таблица 1. Классификация редукторов по числу ступеней и типу передачи
Тип редуктора | Число ступеней | Тип передачи | Расположение осей |
Цилиндрический | 1 | Одна или несколько цилиндрических | Параллельное |
2 | Параллельное/соосное | ||
3 | |||
4 | Параллельное | ||
Конический | 1 | Коническая | Пересекающееся |
Коническо-цилиндрический | 2 | Коническая Цилиндрическая (одна или несколько) | Пересекающееся/скрещивающееся |
3 | |||
4 | |||
Червячный | 1 | Червячная (одна или две) | Скрещивающееся |
1 | Параллельное | ||
Цилиндрическо-червячный или червячно-цилиндрический | 2 | Цилиндрическая (одна или две) Червячная (одна) | Скрещивающееся |
3 | |||
Планетарный | 1 | Два центральных зубчатых колеса и сателлиты (для каждой ступени) | Соосное |
2 | |||
3 | |||
Цилиндрическо-планетарный | 2 | Цилиндрическая (одна или несколько) Планетарная (одна или несколько) | Параллельное/соосное |
3 | |||
4 | |||
Коническо-планетарный | 2 | Коническая (одна) Планетарная (одна или несколько) | Пересекающееся |
3 | |||
4 | |||
Червячно-планетарный | 2 | Червячная (одна) Планетарная (одна или несколько) | Скрещивающееся |
3 | |||
4 | |||
Волновой | 1 | Волновая (одна) | Соосное |
Определение
Различают понятия фактического и номинального передаточного числа редуктора. Эти величины близки, но все же могут отличаться:
- фактическое значение устанавливается в ходе испытаний (реальная максимально точная скорость вращения элементов), может включать сколько угодно цифр после запятой;
- номинальное — округленное полученное фактическое (7,75 = 8).
Такое разделение помогло стандартизовать обозначения и упростить выбор редуктора для различных условий эксплуатации.
Таблица 1. Примеры округлений
Узнать, какое передаточное число редуктор выдает, можно одним из 3 способов.
- Посмотреть на корпусе. Как правило, там есть гравировка, табличка или наклейка, в которой перечислены характеристики модели.
- Почитать в паспорте устройства или на сайте производителя.
- Рассчитать самостоятельно.
Передаточное число [I]
Передаточное число редуктора рассчитывается по формуле:
I = N1/N2
где N1 – скорость вращения вала (количество об/мин) на входе; N2 – скорость вращения вала (количество об/мин) на выходе.
Полученное при расчетах значение округляется до значения, указанного в технических характеристиках конкретного типа редукторов.
Таблица 2. Диапазон передаточных чисел для разных типов редукторов
Тип редуктора | Передаточные числа |
Червячный одноступенчатый | 8-80 |
Червячный двухступенчатый | 25-10000 |
Цилиндрический одноступенчатый | 2-6,3 |
Цилиндрический двухступенчатый | 8-50 |
Цилиндрический трехступенчатый | 31,5-200 |
Коническо-цилиндрический одноступенчатый | 6,3-28 |
Коническо-цилиндрический двухступенчатый | 28-180 |
ВАЖНО! Скорость вращения вала электродвигателя и, соответственно, входного вала редуктора не может превышать 1500 об/мин. Правило действует для любых типов редукторов, кроме цилиндрических соосных со скоростью вращения до 3000 об/мин. Этот технический параметр производители указывают в сводных характеристиках электрических двигателей.
Суть параметра
Суть передаточных чисел — в соотношении частоты (скорости) вращения входного вала и тихоходного (на выходе). Упрощая, можно сказать так: характеристика определяет количество полных оборотов, которые должен совершить входной вал, пока тихоходный совершает 1 оборот.
Эта характеристика указывается в обозначениях механизмов. Пример для модели на червячной передаче: Ч-100-50. Здесь интересующий нас показатель указан последним и означает, что пока выходной вал совершает 1 оборот, его быстроходный «коллега» успевает «накрутить» 50 кругов.
Крутящий момент редуктора
Крутящий момент на выходном валу [M2] – вращающий момент на выходном валу. Учитывается номинальная мощность [Pn], коэффициент безопасности [S], расчетная продолжительность эксплуатации (10 тысяч часов), КПД редуктора.
Номинальный крутящий момент [Mn2] – максимальный крутящий момент, обеспечивающий безопасную передачу. Его значение рассчитывается с учетом коэффициента безопасности – 1 и продолжительность эксплуатации – 10 тысяч часов.
Максимальный вращающий момент {M2max] – предельный крутящий момент, выдерживаемый редуктором при постоянной или изменяющейся нагрузках, эксплуатации с частыми пусками/остановками. Данное значение можно трактовать как моментальную пиковую нагрузку в режиме работы оборудования.
Необходимый крутящий момент [Mr2] – крутящий момент, удовлетворяющим критериям заказчика. Его значение меньшее или равное номинальному крутящему моменту.
Расчетный крутящий момент [Mc2] – значение, необходимое для выбора редуктора. Расчетное значение вычисляется по следующей формуле:
Mc2 = Mr2 x Sf ≤ Mn2
где Mr2 – необходимый крутящий момент; Sf – сервис-фактор (эксплуатационный коэффициент); Mn2 – номинальный крутящий момент.
Выбор оборудования
Это надо понимать: даже в устройствах идентичной конфигурации/конструкции соотношение скорости вращения входного вала и выходного вала может отличаться. Для верного выбора важно знать, как посчитать передаточное число редукторного двигателя. Хотя существует и другой путь — уточнить данные непосредственно у производителя.
Инженеры производственного знают все о характеристиках редукторного оборудования и рады помочь заказчику подобрать механизм, который оптимально отвечает запросам производственной площадки. Профессиональный расчет и всесторонняя информационная поддержка предоставляются бесплатно. Специалисты расскажут, как определить передаточное число редуктора и оформить заказ. А также помогут просчитать стоимость и сориентируют по срокам его доставки.
Эксплуатационный коэффициент (сервис-фактор)
Сервис-фактор (Sf) рассчитывается экспериментальным методом. В расчет принимаются тип нагрузки, суточная продолжительность работы, количество пусков/остановок за час эксплуатации мотор-редуктора. Определить эксплуатационный коэффициент можно, используя данные таблицы 3.
Таблица 3. Параметры для расчета эксплуатационного коэффициента
Тип нагрузки | К-во пусков/остановок, час | Средняя продолжительность эксплуатации, сутки | |||
<2 | 2-8 | 9-16h | 17-24 | ||
Плавный запуск, статичный режим эксплуатации, ускорение массы средней величины | <10 | 0,75 | 1 | 1,25 | 1,5 |
10-50 | 1 | 1,25 | 1,5 | 1,75 | |
80-100 | 1,25 | 1,5 | 1,75 | 2 | |
100-200 | 1,5 | 1,75 | 2 | 2,2 | |
Умеренная нагрузка при запуске, переменный режим, ускорение массы средней величины | <10 | 1 | 1,25 | 1,5 | 1,75 |
10-50 | 1,25 | 1,5 | 1,75 | 2 | |
80-100 | 1,5 | 1,75 | 2 | 2,2 | |
100-200 | 1,75 | 2 | 2,2 | 2,5 | |
Эксплуатация при тяжелых нагрузках, переменный режим, ускорение массы большой величины | <10 | 1,25 | 1,5 | 1,75 | 2 |
10-50 | 1,5 | 1,75 | 2 | 2,2 | |
80-100 | 1,75 | 2 | 2,2 | 2,5 | |
100-200 | 2 | 2,2 | 2,5 | 3 |
Порядок выбора червячного редуктора
Среди достоинств данного агрегата – обоснованная цена червячного редуктора. Но даже с ее учетом подбор должен быть очень выверенным. Чтобы купить оборудование, которое оптимально впишется в используемую программу технического оснащения, необходимо разобраться с базовыми параметрами выбора червячного редуктора. В данной системе расчетов параметров для определения цены присутствуют такие характеристики, как:
- передаточное отношение;
- КПД;
- количество ступеней;
- планируемое время запуска;
- габаритные размеры конструкции.
Определение передаточного числа
Начинается выбор червячного редуктора с расчета передаточного отношения – соотношения зубьев ведомой шестерни с количеством зубьев ведущего червяка. От этого зависит кратность увеличения крутящего момента при движении червяка.
Для расчета передаточного числа (требуемого) с целью правильного выбора червячного редуктора используется формула вида:
- N вх. – это обороты входного вала электромотора де-факто (по паспорту, количество в минуту);
- N вых. – требуемое число оборотов тихоходного выходного вала за минуту.
Результаты нужно округлить. После чего можно купить модель, руководствуясь таблицей передаточных чисел для разных вариаций механизмов.
Расчет количества ступеней
Расчет передаточного числа является ключевым и при определении требуемого числа ступеней. Во исполнение последней задачи необходимо подобрать систему, согласно полученному соотношению, из таблицы, приведенной ниже.
Выбор червячного редуктора | Передаточные числа |
одноступенчатый | 8–80 |
двухступенчатый | 100–4000 |
Выбор червячного редуктора по габаритам
Грамотный выбор червячного редуктора по габаритным параметрам требует приведение в соответствие параметров мощности, оборотов двигателя с типом приводного механизма. Чтобы определиться, какой типоразмер нужно купить именно вам, используйте формулу:
- Р – производительность используемого электромотора, принимается в кВт;
- U – расчетный показатель передаточного числа;
- N – КПД, согласно техническим характеристикам и результатам вычислений;
- К – коэффициент использования/эксплуатации, принимается в зависимости от условий работы червячного редуктора, согласно таблице (она представлена ниже);
- N вх. – паспортное количество оборотов двигателя.
Режим использования (согласно ГОСТу 21354-87, а также нормам ГосТехНадзора) | ПВ (%) | K | |
Непрерывный | 100 | 0,7 | |
I | Тяжелый | >63 | 0,8 |
II | Средний | Продолжительность эксплуатации Расчет времени включения осуществляется так:
Важное условие: полученный момент не должен превышать номинального крутящего момента. Последний указан в паспорте (технические характеристики червячного редуктора). Это необходимо для продолжительной работы валов механизма (во избежание разницы между нагрузками, прикладываемыми де-факто, и предусмотренными в паспорте). |
Мощность привода
Правильно рассчитанная мощность привода помогает преодолевать механическое сопротивление трения, возникающее при прямолинейных и вращательных движениях.
Элементарная формула расчета мощности [Р] – вычисление соотношения силы к скорости.
При вращательных движениях мощность вычисляется как соотношение крутящего момента к числу оборотов в минуту:
P = (MxN)/9550
где M – крутящий момент; N – количество оборотов/мин.
Выходная мощность [P2] вычисляется по формуле:
P2 = P x Sf
где P – мощность; Sf – сервис-фактор (эксплуатационный коэффициент).
ВАЖНО!
Значение входной мощности всегда должно быть выше значения выходной мощности, что оправдано потерями при зацеплении:
P1 > P2
Нельзя делать расчеты, используя приблизительное значение входной мощности, так как КПД могут существенно отличаться.
Определяем передаточное отношение редуктора вручную
Очень часто клиенты при обращении в нашу организацию, говорят, что вышедший из строя редуктор не имеет шильда и они не имеют понятия, как узнать передаточное число редуктора. Данному вопросу и будет посвящён этот раздел сайта.
Итак, расчёт передаточного числа цилиндрического редуктора состоит из следующих операций;
- считаем количество зубьев каждой шестерни и вала-шестерни всех ступеней редуктора;
- делим количество зубьев шестерни на количество зубьев вала-шестерни, работающего с ней в паре;
- производим эту операцию для каждой ступени — получаем передаточное число (отношение) каждой ступени;
- перемножаем полученные числа друг на друга — получаем общее передаточное число редуктора
Расчёт передаточного числа червячного редуктора состоит из следующих этапов:
- считаем количество зубьев на червячном колесе
- определяем количество заходов червяка (например, обычное сверло имеет два захода)
- делим количество зубьев колеса на количество заходов червяка и получаем передаточное отношение червячного редуктора
- в случае, если редуктор двухступенчатый, делаем это для каждой ступени и умножаем друг на друга
Как видим, всё достаточно просто. Если же редуктор сохранил хоть какую-то работоспособность, то достаточно вручную прокрутить входной вал редуктора до одного полного оборота выходного вала. Количество оборотов входного вала и будет являться передаточным числом редуктора. Подобным образом возможно определить передаточное отношение большинства редукторов, представленных в нашем каталоге.
Коэффициент полезного действия (КПД)
Расчет КПД рассмотрим на примере червячного редуктора. Он будет равен отношению механической выходной мощности и входной мощности:
ñ [%] = (P2/P1) x 100
где P2 – выходная мощность; P1 – входная мощность.
ВАЖНО!
В червячных редукторах P2 < P1 всегда, так как в результате трения между червячным колесом и червяком, в уплотнениях и подшипниках часть передаваемой мощности расходуется.
Чем выше передаточное отношение, тем ниже КПД.
На КПД влияет продолжительность эксплуатации и качество смазочных материалов, используемых для профилактического обслуживания мотор-редуктора.
Таблица 4. КПД червячного одноступенчатого редуктора
Передаточное число | КПД при aw, мм | ||||||||
40 | 50 | 63 | 80 | 100 | 125 | 160 | 200 | 250 | |
8,0 | 0,88 | 0,89 | 0,90 | 0,91 | 0,92 | 0,93 | 0,94 | 0,95 | 0,96 |
10,0 | 0,87 | 0,88 | 0,89 | 0,90 | 0,91 | 0,92 | 0,93 | 0,94 | 0,95 |
12,5 | 0,86 | 0,87 | 0,88 | 0,89 | 0,90 | 0,91 | 0,92 | 0,93 | 0,94 |
16,0 | 0,82 | 0,84 | 0,86 | 0,88 | 0,89 | 0,90 | 0,91 | 0,92 | 0,93 |
20,0 | 0,78 | 0,81 | 0,84 | 0,86 | 0,87 | 0,88 | 0,89 | 0,90 | 0,91 |
25,0 | 0,74 | 0,77 | 0,80 | 0,83 | 0,84 | 0,85 | 0,86 | 0,87 | 0,89 |
31,5 | 0,70 | 0,73 | 0,76 | 0,78 | 0,81 | 0,82 | 0,83 | 0,84 | 0,86 |
40,0 | 0,65 | 0,69 | 0,73 | 0,75 | 0,77 | 0,78 | 0,80 | 0,81 | 0,83 |
50,0 | 0,60 | 0,65 | 0,69 | 0,72 | 0,74 | 0,75 | 0,76 | 0,78 | 0,80 |
Таблица 5. КПД волнового редуктора
Передаточное число | 63 | 80 | 100 | 125 | 160 | 200 | 250 | 315 |
КПД | 0,83 | 0,82 | 0,80 | 0,78 | 0,75 | 0,72 | 0,70 | 0,65 |
Таблица 6. КПД зубчатых редукторов
Тип редуктора | КПД |
Цилиндрический и конический одноступенчатый | 0,98 |
Цилиндрический и коническо-цилиндрический двухступенчатый | 0,97 |
Цилиндрический и коническо-цилиндрический трехступенчатый | 0,96 |
Цилиндрический и коническо-цилиндрический четырехступенчатый | 0,95 |
Планетарный одноступенчатый | 0,97 |
Планетарный двухступенчатый | 0,95 |
Показатели надежности
Подразумевается срок службы (ресурс) тех или иных частей агрегата при условии продолжительной эксплуатации. Для валов и элементов передачи (зубчатых колес, червячных пар) он составляет:
- у редукторов планетарного, коническо-цилиндрического, конического и цилиндрического типов – 25 000 часов;
- у редукторов глобоидного, червячного и волнового типов – 10 000 часов.
Для подшипников, используемых в указанных ниже редукторах, ресурс составляет:
- коническо-цилиндрических, планетарных, цилиндрически и конических – 12 500 часов;
- червячных – 5 000 часов;
- волновых, глобоидных – 10 000 часов.
При расчете редукторов нужно учитывать, что указанные конструктивные элементы должны оставаться в работоспособном состоянии в течение срока, составляющего не менее 90% от приведенных величин. Это относится только к нормальным условиям эксплуатации. При их нарушении (например, несвоевременной замене масла) скорость износа комплектующих резко увеличится, а ресурс сократится.
Наше предприятие «ТехПривод» предлагает широкий выбор редукторов и мотор-редукторов по оптимальным ценам, в любых требуемых объемах и с доставкой во все регионы страны. Чтобы рассчитать мощность, момент и другие требуемые параметры оборудования, свяжитесь со специалистами компании.
Источник
Взрывозащищенные исполнения мотор-редукторов
Мотор-редукторы данной группы классифицируются по типу взрывозащитного исполнения:
- «Е» – агрегаты с повышенной степенью защиты. Могут эксплуатироваться в любом режиме работы, включая внештатные ситуации. Усиленная защита предотвращает вероятность воспламенений промышленных смесей и газов.
- «D» – взрывонепроницаемая оболочка. Корпус агрегатов защищен от деформаций в случае взрыва самого мотор-редуктора. Это достигается за счет его конструктивных особенностей и повышенной герметичности. Оборудование с классом взрывозащиты «D» может применяться в режимах предельно высоких температур и с любыми группами взрывоопасных смесей.
- «I» – искробезопасная цепь. Данный тип взрывозащиты обеспечивает поддержку взрывобезопасного тока в электрической сети с учетом конкретных условий промышленного применения.
Редуктор двухступенчатый с уменьшенной установочной плоскостью.
Редуктор двухступенчатый с уменьшенной установочной плоскостью, смещенной в сторону тихоходного, более нагруженного вала.
Для удешевления изготовления редуктора и облегчения условий его эксплуатации подшипники на быстроходном и промежуточном валах унифицированы. Унификацию подшипников и других деталей следует проводить по возможности во всех случаях.
Крышка редуктора снабжена двумя отжимными болтами 1, облегчающими съем крышки с корпуса. При тщательной пригонке стыкуемых поверхностей корпуса и крышки отделить крышку от корпуса без отжимных болтов затруднительно, особенно на больших тяжелых редукторах.
19 минут назад, квершлаг сказал:
Анурьев пишет.как меняется момент на червячном редукторе.
Анурьев дает правила и методы расчетов. Если конкретно про червячные механизмы — т.2, со страницы 384.
Очевидно, что понижающий редуктор увеличивает крутящий момент на величину, равную коэффициенту передачи редуктора. Но при этом из-за трения не может иметь КПД = 1, поэтому существуют потери при передаче мощности или момента. При этом не важно, какого типа редуктор используется, цилиндрический, червячный. конический, …
Вот тут еще почитайте, там букаф меньше )))