В предложенном Вами примере необходимо найти промежутки убывания и возрастания квадратичной функции, поэтому для начала Вам требуется найти абсциссу вершины параболы, являющейся графиком этой самой квадратичной функции. Формула для ее нахождения выглядит так:
Подставляя значения из нашего примера, получим х0=10. Поскольку коэффициент а в нашем случае положителен (он равен 1/4), то заданная функция убывает на промежутке (–∞, 10) и возрастает на промежутке (10, +∞).
Можно использовать и другой метод. Находим производную заданной функции:
f'(x)=x/2-5
и определяем ее нули:
х1=10.
Функция будет убывающей в интервале, в котором производная меньше нуля, и возрастает в интервале, в котором производная больше. В нашем случае получаем все тот же ответ: она убывает на промежутке (–∞, 10) и возрастает на промежутке (10, +∞).
Описание презентации Тема «Возрастание и убывание квадратичной функции» Найти по по слайдам
Тема «Возрастание и убывание квадратичной функции» Найти по графику промежутки возрастания и убывания квадратичной функции
Нахождение по графику промежутков возрастания и убывания квадратичной функции ху 0 11 Функция является убывающей на промежутке, если большему значению х соответствует меньшее значение у , т. е. при движении слева направо график идет вниз (просмотр по щелчку) Функция является возрастающей на промежутке, если большему значению х соответствует большее значение у , т. е. при движении слева направо график идет вверх (просмотр по щелчку)
8 у х0 11 Найти по графику и записать промежутки возрастания и убывания квадратичной функции Обратите внимание, что график квадратичной функции состоит из двух ветвей. Ветви соединяются между собой вершиной параболы. При записи промежутков возрастания и убывания самую главную роль будет играть абсцисса (х) вершины параболы Пример 1. Рассмотрим движение по каждой ветке параболы отдельно: • по левой ветке при движении слева направо график идет вниз, значит функция убывает ; • по правой ветке — график идет вверх, значит функция возрастает. Ответ: промежуток убывания (- ∞; -1 ] ; промежуток возрастания [ -1; +∞)
8 у х0 11 Найти по графику и записать промежутки возрастания и убывания квадратичной функции Пример 2. Рассмотрим движение по каждой ветке параболы отдельно: • по левой ветке при движении слева направо график идет вверх, значит функция возрастает ; • по правой ветке — график идет вниз, значит функция убывает. Ответ: промежуток возрастания (- ∞; 3 ] ; промежуток убывания [ 3; +∞).
Задания для самостоятельного решения (выполнять в тетради) Задание 1 Задание 2 Задание 3 Задание 4 Приложение
промежуток возрастания (- ∞; -1 ] ; промежуток убывания [ -1; +∞). сверить ответ. Найти по графику и записать промежутки возрастания и убывания квадратичной функции 88 у х0 1 11 просмотреть анимацию записать ответ самостоятельно
« промежуток убывания (- ∞; 3 ] ; промежуток возрастания [ 3; +∞). Найти по графику и записать промежутки возрастания и убывания квадратичной функции у х 11 0 8 2 просмотреть анимацию записать ответ самостоятельно сверить ответ
Найти по графику и записать промежутки возрастания и убывания квадратичной функции 8 у 0 1 1 х3 просмотреть анимацию записать ответ самостоятельно промежуток убывания (- ∞; 0 ] ; промежуток возрастания [ 0; +∞). сверить ответ
«Найти по графику и записать промежутки возрастания и убывания квадратичной функции 8 1 у 01 х4 просмотреть анимацию записать ответ самостоятельно промежуток возрастания (- ∞; — 0, 5 ] ; промежуток убывания [ — 0, 5; +∞). сверить ответ
Приложение • Граничная точка промежутков возрастания и убывания является абсциссой вершины параболы • Граничная точка промежутков возрастания и убывания всегда записывается в ответ с квадратной скобкой , т. к. квадратичная функция непрерывна
Что такое возрастание функции
В начале прочитаем определение возрастания функции.
Запомните!
Функция « y(x) » называется возрастающей на некотором промежутке, если
для любых
« x1 » и « x2 »
принадлежащих данному промежутку, таких, что « x2 > x1 »
выполняется неравенство
« y( x2 ) > y( x1 )».
Определение сложно понять без наглядного примера.
Поэтому сразу перейдём к разбору задачи на возрастание функции.
По-другому можно сказать, что, если каждому бóльшему значению « x »
соответствует бóльшее значение « y », значит,
функция « y(x) » возрастает.
x2 > x1 |
Обязательное условие возрастания функции |
Давайте разберем определение возрастания функции на конкретном примере.
Разбор примера
Возрастающей или убывающей является функция « y = 9x − 4 » ?
Для начала определим
область определения функции
« y = 9x − 4 ».
y = 9x − 4
D(y): x ∈ R ,
то есть « x » —
любое действительное число.
Построим график функции
« y = 9x − 4 ».
Так как функция
« y = 9x − 4 »
линейная, ее график — прямая.
Используем правила построения графика линейной функции. Нам достаточно найти две точки, чтобы построить ее график.
Область определения функции
« y = 9x − 4 » — все действительные числа,
поэтому можно подставить любое число вместо « x » и вычислить « y » по
формуле функции
« y = 9x − 4 ». Например, возьмем
« x = 0 ».
x = 0
y(x) = 9x − 4
y(0) = 9 · 0 − 4 = −4
Для второй точки возьмем « x = 1 ».
x = 1
y(x) = 9x − 4
y(1) = 9 · 1 − 4 = 5
Отметим две полученные
точки «(0; −4)» и «(1; 5)» на
координатной плоскости
и проведем через них прямую.
Докажем, что функция
« y = 9x − 4 » возрастает на всей своей области определения двумя способами: по ее графику и
аналитически
(по ее формуле).
Как определить по графику, что функция возрастает
По определению возрастания функции мы знаем, что
если « x » увеличивается,
то « y » тоже должен увеличиваться.
На рисунке ниже видно, что график функции « y = 9x − 4 »
«идет в гору». Другими словами, при увеличении « x »
↑ растет
значение « y » ↑.
В этом можно убедиться, если взять две любые точки на графике. Например, точки, по
которым мы построили график функции. Назовем эти точки:
« (·)A » и « (·)B ».
У первой точки « (·)A »
координаты:
x1 = 0 ; y1 = − 4
У второй точки « (·)B » координаты:
x2 = 1 ; y2 = 5
На примере точек « (·)A » и « (·)B » видно, что
при увеличении
« x ↑ ( x2 > x1 )»
растет
« y ↑ ( y2 > y1 ) ».
Поэтому график зрительно «идет в гору».
Как по формуле доказать, что функция возрастает
Вернёмся к нашей функции
« y = 9x − 4 ».
По графику мы поняли, что
функция « y = 9x − 4 » возрастает,
так как ее график «идет в гору».
Но как доказать по формуле, что функция
возрастает на всей своей области определения?
Запомните!
Функция возрастает на всей области определения, когда при
« x2 > x1 »
выполняется условие
« y( x2 ) > y( x1 ) ».
Формулировка выше не самая простая для понимания. Давайте разберем ее на практике.
По определению возрастания функции нам нужно доказать, что при
« x2 > x1 » увеличивается значение функции
« y( x2 ) > y( x1 ) ».
Но как нам найти значения функции
« y( x1 )» и
«y( x2 ) »?
Для нахождения « y( x1 )» и
«y( x2 ) »
достаточно подставить « x1 » и
« x2 » в исходную формулу « y = 9x − 4 ».
y( x1 ) = 9x1 − 4
y( x2 ) = 9x2 − 4
Теперь запишем обязательное условие возрастания функции.
x2 > x1 |
Обязательное условие возрастания функции |
Подставим в неравенство
« y( x2 ) >
y( x1 ) » полученные формулы
« y( x1 ) = 9x1 − 4» и
« y( x2 ) = 9x2 − 4 » .
y( x2 ) > y( x1 )
9x2 − 4 > 9x1 − 4
Упростим полученное
неравенство.
9x2 − 9x1 > − 4 + 4
9x2 − 9x1 > 0
Вынесем общий множитель
в левой части неравенства.
9(x2 − x1) > 0
Разделим левую и правую часть на «9».
При делении нуля на любое число получается ноль.
x2 − x1 > 0
x2 > x1
Мы доказали, что выполняется исходное условие возрастания функции «x2 > x1».
Отсюда следует, что функция
« y = 9x − 4 » возрастает на всей области определения.
В завершении вместо ответа следует написать фразу:
«Что и требовалось доказать».
Посмотрим другой пример, где требуется доказать, что функция возрастает.
Разбор примера
Доказать, что функция возрастает на всей области определения: y = 13x − 1
По аналогии с предыдущим примером составим неравенства, которые доказывают, что функция возрастает.
x2 > x1 |
Обязательное условие возрастания функции |
Вместо « y( x1 )» и
«y( x2 ) » запишем
формулу функции « y = 13x − 1 » и упростим полученное неравенство.
y( x2 ) > y( x1 )
13x2 − 1 > 13x1 − 1
13x2 − 13x1 > 1 − 1
13(x2 − x1) > 0 |: 13
>
x2 − x1 > 0
x2 > x1
Что и требовалось доказать.
Что такое убывание функции
Запомните!
Функция « y(x) » называется убывающей на некотором промежутке, если для любых
« x1 » и « x2 »
принадлежащих данному промежутку, таких,
что « x2 > x1 »
выполняется неравенство « y( x2 ) < y( x1 )».
x2 > x1 |
Обязательное условие убывания функции |
Как по графику понять, что функция убывает
Разбор примера
Доказать, что функция убывает на всей области определения: y = 1 − 3x
По определению убывания функции мы знаем, что,
если « x »
↑ растет, то
« y » ↓ должен уменьшаться.
Построим график функции
« y = 1 − 3x ». Ее график — прямая, поэтому нам будет достаточно двух точек.
Область определения функции
« y = 1 − 3x » — все действительные числа,
поэтому можно поставить любое число вместо « x » и вычислить « у » по
формуле функции
« y = 1 − 3x ». Например, возьмем
« x = 0 »
и « x = 1 ».
x = 0
y(x) = 1 − 3x
y(0) = 1 − 3 · 0 = 1
(·) А (0; 1)
x = 1
y(1) = 1 − 3x
y(1) = 1 − 3 · 1 = 1 − 3 = −2
(·) B (1; −2)
Построим график функции
« y = 1 − 3x » по полученным точкам
« (·)A » и « (·)B ».
На графике функции видно, что зрительно график «спускается с горы», то есть функция убывает. Другими словами, при увеличении
« x »
↑ уменьшается
значение
« y » ↓.
Как по формуле доказать, что функция убывает
Вернёмся к нашей функции
« y = 1 − 3x ».
По ее графику мы поняли, что функция убывает, так как график «спускается с горы». Но как доказать по формуле,
что функция « y = 1 − 3x » убывает на всей области определения?
Запомните!
Чтобы доказать, что функция убывает требуется доказать, что при любых
« x2 > x1 » выполняется
« y( x2 ) < y( x1 ) ».
Давайте разберем на примере функции
« y = 1 − 3x ». Докажем, что она убывает
на всей своей области определения.
x2 > x1 |
Обязательное условие убывания функции |
Подставим « y( x1 )» и
«y( x2 ) » в
формулу функции « y = 1 − 3x » и упростим полученное неравенство.
y( x2 ) < y( x1 )
1 − 3x2 < 1 − 3x1
3x1 − 3x2 < 1 − 1
3(x1 − x2) < 0 | :3
<
x1 − x2 < 0
−x2 < −x1
Умножим на « −1 » левую и правую часть неравенства. При
умножении неравенства на отрицательное число знак неравенства поменяется на
противоположный.
−x2 < −x1 | · (−1)
x2 > x1
Что и требовалось доказать.
Как по графику функции определить
возрастание и убывание
Потренируемся только по графику функции определять промежутки возрастания и убывания функции.
Разбор примера
На рисунке ниже изображён график функции, определенной на множестве действительных чисел.
Используя график, найдите промежутки возрастания и промежутки убывания функции.
Отметим с помощью штриховых линий промежутки, где график функции убывает
(«спускается с горы») и где он возрастает («идет в гору»).
Запишем через знаки неравенств,
какие значения принимает « x » на полученных промежутках.
Обратите внимание, что во всех случаях при указании промежутков, мы указываем, что их
концы входят в промежуток, то есть используем знаки нестрогого неравенства.
Остаётся записать полученные промежутки возрастания и убывания функции в ответ.
Ответ:
- функция убывает при
x ≤ −2; 0 ≤ x ≤ 3,5 - функция возрастает при
−2 ≤ x ≤ 0 ; x ≥ 3,5
Более грамотно будет записать ответ с помощью специальных
математических символов.
Ответ:
- функция убывает на промежутках
x ∈ (−∞ ; −2] ∪ [0; 3,5] - функция возрастает на промежутках x ∈ [−2 ; 0] ∪ [3,5 ; +∞]
При каких значениях
« m »
функция является убывающей или возрастающей
Ещё один тип заданий, в которых требуется определить,
при каких
« m » ( « а, b » или других буквах) функция убывает или возрастает.
Разбор примера
При каких значениях « m » функция
« y = mx − m − 3 + 2x » является убывающей?
Обратимся снова к определению убывания функции. Вспомним, как записать условия убывания функции с точки зрения формул.
x2 > x1 |
Обязательное условие убывания функции |
Запишем эти условия, используя формулу функции « y = mx − m − 3 + 2x », заданную в
задаче. Вместо
« x »
подставим « x1 » и « x2 ».
y( x2 ) < y( x1 )
mx2 − m − 3 + 2x2 < mx1 − m − 3 + 2x1
Упростим полученное неравенство. Перенесем из правой части все члены неравенства в левую часть с противоположными знаками.
mx2 − m − 3 + 2x2 − mx1
+ m
+ 3
− 2x1
< 0
Упростим полученное выражение. Некоторые члены неравенства взаимоуничтожатся.
mx2 − mx1
− m + m − 3 + 3 + 2x2 − 2x1
< 0
mx2 − mx1 + 2x2 − 2x1
< 0
Вынесем общие множители за скобки.
m( x2 − x1) + 2(x2 − x1)
< 0
Теперь
вынесем общий множитель
« ( x2 − x1 ) ».
( x2 − x1) (m + 2)
< 0
Вспомним обязательное условие убывания функции.
x2 > x1 |
Обязательное условие убывания функции |
Преобразуем исходное условие убывания функции « x2 > x1 ».
Перенесем все в левую часть.
x2 > x1
x2 − x1 > 0
По условию убывания функции
« x2 − x1 > 0 »,
значит, чтобы
произведение
«( x2 − x1) (m + 2)
» было меньше нуля, требуется, чтобы множитель «(m + 2)» был меньше нуля. Так как по
правилу знаков:
плюс на минус даёт минус.
+ | · | − | < 0 |
(x2 − x1) | · | (m + 2) | < 0 |
Решим полученное неравенство.
m + 2 < 0
m < −2
Ответ: при «m < −2» функция
« y = mx − m − 3 + 2x »
является убывающей.
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий:
(a > 0) (коэффициент (a) положительный) |
(a < 0) (коэффициент (a) отрицательный) |
|
Эскиз графика |
|
|
Расположение графика |
Ветви параболы направлены вверх |
Ветви параболы направлены вниз |
Интервалы возрастания и убывания функции |
Функция убывает, если x∈(−∞;0 , возрастает, если x∈0;+∞ |
Функция возрастает, если x∈(−∞;0 , убывает, если x∈0;+∞ |
Наибольшее значение функции |
нет | (y = 0) |
Наименьшее значение функции |
(y = 0) | нет |
Интервалы, в которых значение функции положительное |
Функция положительная ((y > 0)), если x∈(−∞;0)∪(0;+∞) (график находится выше оси (Ox)) |
нет |
Интервалы, в которых значение функции отрицательное | нет |
Функция отрицательная ((y < 0)), если x∈(−∞;0)∪(0;+∞) (график находится ниже оси (Ox)) |
План урока:
Возрастание и убывание функций
Промежутки монотонности основных функций
Свойства монотонных функций
Четные и нечетные функции
Свойства четных и нечетных функций
Ограниченные и неограниченные функции
Квадратичная функция
Возрастание и убывание функций
Посмотрим на график произвольной функции:
Видно, что область определения ф-ции – это промежуток [– 6; 4].
На графике сначала ф-ция как бы «поднимается». При увеличении х растет значение у. Так происходит до точки (1; 5). После этого ситуация меняется, при увеличении аргумента значение ф-ции начинает падать. В математике принято говорить, что ф-ция возрастает на промежутке [– 6; 1] и функция убывает на промежутке [1; 4]. Можно сказать и иначе – ф-ция у является возрастающей функцией на множестве [– 6; 1] и убывающей функцией на множестве [1; 4].
Рассмотрим это определение возрастающей функции подробнее. Построим произвольную возрастающую ф-цию и выберем на ней две точки со значениями аргумента х1 и х2. Также отметим значения ф-ции в этих точках, у(х1) и у(х2):
По определению, если х1 меньше х2, то и у(х1) <у(х2). Другими словами, из двух точек та, которая располагается левее (то есть имеет меньшее значение х), будет одновременно располагаться и ниже, (то есть иметь меньшее значение у).
Мы видим возрастание функции на промежутке [– 6; 5]. Однако она также будет возрастать и на любом другом промежутке, который является частью отрезка [– 6; 5]. Например, можно сказать, что она возрастает на промежутке [1; 3] или [– 2; 0].
Аналогично дается и определение убывающей ф-ции:
По сравнению с определением возрастающей ф-ции изменился лишь один символ, в последнем неравенстве для у(х1) и у(х2) стоит знак «больше» а не меньше. Покажем пример убывания функции.
Заметим, что в приведенных определениях используются строгие неравенства со знаками «>»и «<». Однако в математике используются и нестрогие неравенства, содержащие знаки «≤» и «≥». С их использованием можно записать ещё 2 определения:
Приведем пример неубывающей ф-ции:
Здесь х1<x2<x3<x4. Видно, что, например, у(х1) <у(х2). Однако у(х2) = у(х3). Получается, что на графике ф-ции есть плоская «площадка» на промежутке [1; 3]. Для всех значений х из этого промежутка у = 3,5. Из-за этой площадки ф-цию нельзя считать строго возрастающей.
Теперь покажем пример невозрастающей ф-ции:
Здесь также есть плоские «площадки», из-за которых ф-цию нельзя считать просто убывающей.
Ясно, что всякая возрастающая ф-ция является неубывающей, а каждая убывающая ф-ция одновременно считается и невозрастающей.
В математике часто вместо всех этих терминов используют понятие монотонности. Дадим определение монотонной функции:
Если же ф-ция убывает или возрастает на промежутке (то есть не имеет плоской площадки), то говорят, что она строго монотонна.
Рассмотрим ф-цию, изображенную на рисунке:
Ф-ция возрастает на промежутках [– 6; –2] и [3; 4,5], а также убывает на промежутках [– 2; 1,5] и [2,5; 3]. Значит, на каждом из этих промежутков ф-ция строго монотонна. На отрезке [-2; 3] ф-ция невозрастающая, поэтому здесь она просто монотонна. Любой промежуток, на котором ф-ция монотонна, называют промежутком монотонности.
Различают как промежутки убывания функции, так и промежутки возрастания функции.
Понятно, что если ф-ция строго монотонна, то она и просто монотонна. В большинстве школьных задач не важна строгость монотонности, поэтому слово «строго» часто опускают.
Во всех данных определениях рассматривалось поведение ф-ции на каком-то отдельном числовом промежутке. Одна и та же ф-ция может на одном числовом промежутке возрастать, а на другом убывать. Однако некоторые ф-ции сохраняют свой характер на всей своей области определения. Например, линейная ф-ция у = 2х – 3 возрастает на протяжении всей числовой прямой, то есть на промежутке (– ∞; + ∞):
В большинстве случаев промежутки монотонности ф-ции очевидны, исходя из графика ф-ции. Однако и без их построения можно аналитически доказывать монотонность ф-ции.
Пример. Докажите, что ф-ция у = 2х – 3 возрастает на промежутке (– ∞; + ∞).
Решение. Выберем произвольные числа х1 и х2, причем х1< х2. Разность (х2 – х1) будет, очевидно, положительным числом. Найдем теперь разность (у(х2) – у(х1)):
у(х2) – у(х1) = (2х2 – 3) – (2х1 – 3) = 2х2– 3 – 2х1+ 3 = 2х2 – 2х1 = 2(х2 – х1)
Так как (х2 – х1) – положительное число, то и 2(х2 – х1), а значит, и (у(х2) – у(х1)) – тоже положительное число. Если же разность двух числе положительна, то уменьшаемое больше вычитаемого. Значит, у(х2) > у(х1). По определению получаем, что у = 2х – 3 – возрастающая ф-ция.
Промежутки монотонности основных функций
Мы ранее уже изучили несколько видов ф-ций. Посмотрим, какие у них промежутки монотонности.
Поведение линейной ф-ции у = kх + b зависит исключительно от значение коэффициента k. Если он больше нуля, то функция возрастает на промежутке (– ∞; + ∞), то есть на всей числовой прямой. Если же k< 0, то ф-ция будет убывать. Если k = 0, то график будет выглядеть как горизонтальная линия. Её можно считать одновременно и неубывающей, и невозрастающей ф-цией. Приведем примеры на рисунке:
Поведение обратной пропорциональности у = k/х также зависит от значения k. Если он больше нуля, то ф-ция убывает на двух промежутках: (– ∞;0) и (0; + ∞).
Здесь стоит обратить внимание, что, хотя у ф-ции нет ни одного участка, на котором бы она возрастала, нельзя утверждать, что обратная пропорциональность убывает на всей своей области определения (– ∞; 0)∪(0; + ∞). Например, сравним значение ф-ции у = 5/х при х1 = – 1 и х2 = 1:
у(– 1) = 5/(– 1) = – 5
у(1) = 5/1 = 5
Получили, что для этих значений х1<x2, а у(– 1) <у(1), поэтому ф-цию нельзя считать убывающей на всей области определения.
Если в обратной пропорциональности коэффициент k отрицательный, то ф-ция возрастает на промежутках (– ∞;0) и (0; + ∞):
Ф-ция
возрастает на всей своей области определения, то есть на промежутке [0; + ∞):
Поведение степенной ф-ции у = хn зависит от показателя n. Если он нечетный, то получается ф-ция, возрастающая на всей числовой прямой:
Если же число n четное, то степенная ф-ция будет убывать на промежутке (– ∞:0] и возрастать на промежутке [0; + ∞):
Пример. Найдите значения параметра a, при котором ф-ция
у = (5а – 2)х +16
является возрастающей.
Решение. Данная ф-ция является линейной ф-цией вида у = kx + b, где в роли коэффициента k выступает выражение (5а – 2). Ф-ция будет возрастать, если этот коэффициент будет больше нуля, то есть
5а – 2> 0
5а> 2
а > 0,4
Получаем, что ф-ция будет возрастающей при значениях а, больших 0,4, или, другими словами, при а∊(4; + ∞).
Ответ: а∊(4; + ∞).
Свойства монотонных функций
Монотонные функции имеют ряд примечательных свойств, которые могут помогать при решении задач. Вспомним, что некоторые ф-ции могут при различных значениях аргументов принимать одинаковое значение. Например, таковой является степенная ф-ция у = х2:
у(2) = 4
у(– 2) = 4
С точки зрения графиков это означает, что горизонтальная линия может пересекать график ф-ции в нескольких точках:
С другой стороны, это значит, что уравнение х2 = 4 имеет два корня, 2 и ( – 2).
Если же ф-ция строго монотонна, то такая ситуация невозможна. Любое ее значение может быть получено только при одном значении аргумента.
Действительно, если ф-ция монотонна, то любая горизонтальная прямая сможет пересечь ее график не более чем в одной точке:
Это также означает, что, если у(х) – строго монотонная ф-ция, а b– произвольное число, то уравнение у(х) = b имеет не более одного корня. Так, у уравнения х3 = 8 есть только один корень (он равен 2), потому что х3 – монотонная ф-ция.
Рассмотрим следующее свойство монотонных функций.
Действительно, ранее мы уже изучали сжатие и растягивание графиков. умножение ф-ции на постоянное число как раз и ведет к подобным преобразованиям. Ясно, что при этом не происходит изменение монотонности ф-ций:
Например, парабола у = х2 возрастает на промежутке [0; + ∞), значит, и ф-ция у = 3х2 также возрастает на этом же промежутке:
Проще говоря, при умножении ф-ции на положительное число ее промежутки монотонности не изменяются.
А что же произойдет при умножении ф-ции на отрицательное число. Она не только сожмется или растянется, но ещё и отобразится симметрично относительно оси Ох. В результате промежутки возрастания ф-ции превратятся в промежутки убывания, и наоборот.
Проиллюстрируем это на примере ф-ций у = х2 и у = – х2:
Видно, что на промежутке (– ∞; 0] ф-ция у = – х2 возрастает, в то время как обычная парабола убывает. На промежутке [0; + ∞)ситуация противоположная.
Если две ф-ции одновременно возрастают на одном промежутке, то и их сумма также будет возрастать на этом промежутке.
Например, ф-ции у = х5 и у = 4х возрастают на всей числовой прямой. Следовательно, возрастающей является и ф-ция у = х5 + 4х.
Пример. Решите уравнение
х7 + 2х – 3 = 0
Решение. Можно заметить, что число 1 является корнем этого уравнения. Действительно, подставим единицу в уравнение и получим верное равенство:
17 + 2•1 – 3 = 0
1 + 2 – 3 = 0
0 = 0
Докажем, что других корней уравнение не имеет. В его левой части стоит сумма двух возрастающих ф-ций, у = х7 и у = 2х – 3. Следовательно, и ф-ция у = х7 + 2х – 3 также является возрастающей на всей числовой прямой. Это значит, что исследуемое уравнение имеет не более 1 корня, то есть корень х = 1 – единственный.
Ответ: 1.
Пример. Докажите, что у уравнения
не более одного корня.
Решение.
Выражение в левой части имеет смысл только при положительных х. Ведь если х < 0, то под корнем окажется отрицательное число, а если х = 0, то ноль окажется в знаменателе. Другими словами, уравнение имеет смысл на промежутке (0; + ∞). При этом левая часть представляет собой сумму трех слагаемых:
Первое и третье из них являются возрастающими ф-циями. Второе слагаемое – это взятая со знаком «минус» ф-ция у = 2/х. Так как у = 2/х убывает на промежутке (0; + ∞), то у = – 2/х на нем же возрастает. В итоге получаем, что в левой части сумма трех возрастающих ф-ций, значит, и всё это выражение – возрастающая ф-ция. Из этого следует, что у уравнения есть не более одного корня. Попробуйте сами подобрать его.
Четные и нечетные функции
При изучении степенных ф-ций мы заметили, что при четном показатели степени n их график симметричен относительно оси Оу:
Почему так происходит? Дело в том, что у этих ф-ций противоположным значениям аргументов соответствует одно и то же значение у. Убедимся в этом на примере у = х2:
- у(1) = 12 = 1 и у(– 1) = (– 1)2 = 1;
- у(2) = 22 = 4 и у(– 2) = (– 2)2 = 4;
- у(3) = 32 = 9 и у(– 3) = (– 3)2 = 9.
В общем случае эту особенность можно доказать так:
у(– х) = (– х)2 = х2 = у(х)
В математике есть специальный термин для обозначения ф-ций, обладающих таким свойством. Их называют четным функциями.
Определение четной функции можно записать и так, чтобы в нем фигурировали формулы:
Для проверки того, является ли функция четной, достаточно подставить в нее вместо аргумента х величину (– х).
Пример. Докажите, что ф-ция у = х4 + 3х2 является четной.
Решение. Подставим в ф-цию значение (– х):
у(– х) = (– х)4 + 3(– х)2 = х4 + 3х2
Получили исходную ф-цию у(х). Значит, исследуемая функция является четной.
Пример. Четна ли ф-ция
Решение снова подставим в ф-цию значение (– х):
Получили изначальную ф-цию. Следовательно, она – четная.
Почему же четные ф-ции симметричны относительно оси Оу? Из определения следует, что если графику четной ф-ции принадлежит точка (х0;у0), то ему же принадлежит точка (– х0;у0). Посмотрим, как они располагаются на координатной плоскости:
Они симметричны относительно оси Оу. Если же для каждой точки графика есть симметричная точка, также ему принадлежащая, то и в целом график симметричен относительно вертикальной оси.
Теперь посмотрим на степенные ф-ции, у которых нечетный показатель степени. В качестве примера можно привести у = х3 и у = х5. Видно, что они симметричны относительно центра координат:
Такая симметрия (относительно точки), называется центральной. Геометрически она означает, каждой точке графика в I четверти с двумя положительными координатами соответствует точка графика в III четверти с такими же координатами, но взятыми со знаком «минус»:
Существует множество ф-ций, обладающих подобной симметрией. В математике их все называют нечетными функциями. У них противоположным значениям аргументов соответствуют противоположные значения ф-ции, а график нечетной функции всегда симметричен относительно начала координат.
Чаще используется определение, содержащее формулу:
Покажем это свойство у ф-ции у = х3:
- у(1) = 13 = 1 и у(– 1) = (– 1)3 = – 1;
- у(2) = 23 = 8 и у(– 2) = (– 2)3 = – 8;
- у(3) = 33 = 27 и у(– 3) = (– 3)3 = – 27.
Для того, чтобы доказать нечетность ф-ции, надо поставить в нее (– х) вместо х. Если получилась исходная ф-ция с противоположным знаком, то это значит, что ф-ция нечетная.
Пример. Докажите, что ф-ция у = х5 + х – нечетная.
Решение: Подставим (– х):
у(– х) = (– х)5 + (– х) = –х5 – х = – (х5 + х) = – у(х)
Получили исходную ф-цию, но со знаком «минус», поэтому ф-ция является нечетной.
Пример. Докажите нечетность ф-ции у = 5/х + 4х.
Решение. Подставляем в ф-цию (– х):
у = 5/(– х) + 4(– х) = – 5/х – 4х = – (5/х + 4х) = – у(х)
Снова получили исходную ф-цию со знаком минус, следовательно, мы исследовали нечетную ф-цию.
Известно, что любое целое число либо четное, либо нечетное. Однако с ф-циями всё по-другому. Существует множество ф-ций, которые не относятся ни к тем, ни к другим. Чтобы доказать, что ф-ция не является ни четной, ни нечетной, достаточно продемонстрировать, что хотя бы для одного значения х не выполняются условия у(– х) = у(х) и у(– х) = – у(х).
Пример. Докажите, что у = х3 + х2 – ни четная, ни нечетная ф-ция.
Решение. Определим значение ф-ции при, например, х = 1 и х = –1
у(1) = 13 + 12 = 2
у(– 1) = (– 1)3 + (– 1)2 = 0
Получили, что при противоположных х значения у не являются ни одинаковыми, ни противоположными. Значит, рассматриваемая ф-ция не подходит под приведенные определения четности и нечетности.
Свойства четных и нечетных функций
Рассмотрим важные свойства, помогающие быстро определять четность и нечетность ф-ций.
Например, так как четной является ф-ция у = х6, то также четными будут и ф-ции:
- у = 2х6;
- у = 3х6;
- у = – х6;
- у = – 12х6;
- у = 0,135х6.
Так, ф-ции у = х3 и у = 1/х – нечетны. Значит, нечетна и их сумма у = х3 + 1/х.
Другими словами, ф-цию можно «перевернуть», и она всё равно сохранит свою четность. Так, ф-ция 5х4 + х2 четная, поэтому и ф-ция
останется такой же.
Вообще рассматриваемое свойство ф-ции часто называют ее четностью. Так, про две рассматриваемые ф-ции у = х3 и у = х9 можно сказать, что они обладают одинаковой четностью (обе нечетные), а у = х5 и у = х7 обладают различной четностью (одна из них четная, а другая нечетная).
Например, ф-ции у = 5х3 + 6х и у = 9х5 имеют одинаковую четность (обе нечетные), а потому их произведение у = 9х5(5х3 + 6х) является четным. С другой стороны, у = х5 и у = х8 + у6 имеют различную четность, следовательно, их произведение у = х5(х8 + у6) нечетное.
Докажем справедливость этого правила. Пусть есть две ф-ции, у = у(х) и g = g(х), которые обладают какой-нибудь четностью. Определим четность их произведения у(х)•g(х). Для этого рассмотрим 3 различных случая:
- И у = у(х), и g = g(х) – четные. Тогда у(– х) = у(х), g(– х) = g(х), и мы получаем следующее:
у(– х)•g(– х) = у(х)•g(х).
- Обе рассматриваемые ф-ции – нечетные. Тогда у(– х) = – у(х), g(– х) = – g(х), и получается следующее:
у(– х)•g(– х) = (– у(х))•(– g(х)). = (– 1)(– 1)у(х)•g(х) = у(х)•g(х).
- Если же одна из ф-ций, например, у(х), будет четной, а вторая – нечетной, то их произведение будет следующим:
у(– х)•g(– х) = у(х)•(– g(х)) = – у(х)•g(х).
Пример. Определите четность ф-ции у = (8х4 + 3х2)(7х5 + 2х)
Решение. Ф-ция из условия представляет собой произведение двух других ф-ций: у = 8х4 + 3х2 и у = 7х5 + 2х. Первая из них является суммой двух четных и поэтому сама четная. Вторая ф-ция, наоборот, нечетная. Следовательно, их произведение – это тоже нечетная ф-ция.
Ответ: Нечетная ф-ция.
Пример. Определите четность ф-ции у = (х6 + х2)(х10 + х8)
Решение. Так как ф-ции у = х6 + х2 и у = х10 + х8 имеют одинаковую четность (обе четные), то их произведение является четным.
Ответ: Четная ф-ция.
Для изучения следующего свойства ф-ций необходимо сначала рассмотреть понятие сложной ф-ции. Так называют ф-цию, которую получают подстановкой одной «простой» ф-ции в другую.Например, пусть есть ф-ции g = х2 и у = х3 + 2х. Подставив вторую в первую, получим
g = (х3 + 2х)2
Ещё пример сложной ф-ции:
у = 2(9х2 + 4х + 1)3 + 3(9х2 + 4х + 1)
Она получена путем подстановки выражения 9х2 + 4х + 1 в ф-цию у = х3 + 3х. В общем случае, если в ф-цию у = f (x) подставляют g(x), то используют запись у = f (g(x)). Иногда вместо термина «сложная функция» используют аналогичное понятие «композиция функций».
Итак, сформулируем ещё одно свойство четных функций:
Например, пусть есть четная ф-ция у = х2. Подставим ее в любую другую ф-цию, скажем, в у = 5х + 7 + 1/х. В итоге получим новую, сложную ф-цию
у = 5х2 + 7 + 1/(х2)
которая будет четной. При этом природа ф-ции у = 5х + 7 + 1/х не играет никакой роли. Мы могли бы взять любую другую ф-цию, например, у = 958,235х3 – 12,25х2 + 19х + 2/3, и подставив в нее х2 вместо х, получить ф-цию
у = 958,235(х2) 3 – 12,25(х2) 2 + 19х2+ 2/3
которая будет четной.
Ограниченные и неограниченные функции
Ещё раз рассмотрим ф-цию у = х2. Очевидно, что все точки ее графика лежат выше оси Ох (кроме точки (0;0), лежащей непосредственно на оси Ох). Ось Ох – это, по сути, горизонтальная прямая у = 0. Можно провести ряд других горизонтальных линий, каждая из которых лежит ниже параболы и не пересекает её:
В математике говорят, что ф-ция у = х2 ограничена снизу. То есть для любого допустимого х выполняется неравенство у(х) ⩾ а, где а – это какое-то произвольное число. И действительно, неравенство х2⩾ 0 выполняется при всех значениях х. Также выполняются неравенства
х2⩾ – 1,5
х2⩾ – 3
х2⩾ – 5
Дадим определение функции, ограниченной снизу
Очевидно, что если неравенство у(х) ⩾ а выполняется хотя бы для одного числа а, то оно выполняется и для всех а, которые ещё меньше. Так, из справедливости неравенства х2⩾ 0 автоматически следует справедливость неравенства х2⩾ – 1,5, так как
– 1,5 ⩽ 0.
Аналогично в математике существует понятие функции, ограниченной сверху.
В качестве примера ограниченной сверху ф-ции можно привести у = 4 – х2:
Ясно, что неравенство 4 – х2⩽ 4 выполняется при всех х, то есть ни одна точка графика не лежит выше прямой у = 4.
Иногда бывает так, что функция ограничена одновременно и снизу, и сверху. Их называют ограниченными функциями.
Ф-ция, не попадающее под это определение, называется неограниченной функцией. В качестве примера неограниченной функции можно привести линейную ф-цию у = х + 1.
График ограниченной ф-ции находится в своеобразной «полосе» из горизонтальных линий, которые ограничивают его сверху и снизу. Примером ограниченной ф-ции является
С одной стороны, у этой дроби и числитель, и знаменатель – положительное число, поэтому она ограничена снизу прямой у = 0. С другой стороны, дробь тем больше, чем меньше ее знаменатель (если они оба положительны). Минимальное значение выражения х2 + 1 – это единица (при х = 0), а поэтому максимальное значение дроби равно 4/1 = 4. Поэтому график ограничен сверху прямой у = 4.
Пример. Ограничена ли ф-ция
Решение. Выделим в ф-ции целую часть:
Так как величина 5х2 + 5 всегда положительна, то и дробь
а значит, и вообще вся ф-ция положительна, то есть ограничена снизу прямой у = 0
С другой стороны, дробь будет принимать максимальное значение при минимальном значении знаменателя, которое равно 5 (при х = 0) При х = 0 имеем
Получается, что ф-ция ограничена сверху прямой у = 1,4.
Ответ: ограничена.
Пример. Ограничена ли ф-ция
Решение. Величина х2 всегда положительна, то есть х2⩾ 0. Преобразуем это неравенство, умножив его на (– 1) и добавив к нему 16:
х2⩾ 0
– х2⩽ 0
16 – х2⩽ 16
Получили, что подкоренное выражение не превосходит 16, а значит, и корень из него не больше, чем
То есть график будет ограничен прямой у = 4 сверху. С другой стороны, арифметический квадратный корень не может быть отрицательным числом, а потому его график ограничен снизу прямой у = 0. Для наглядности покажем график исследуемой ф-ции:
Ответ: ограничена.
Квадратичная функция
В качестве ф-ции можно использовать квадратный трехчлен, например:
у = 2х2 + 6х – 10
у = – 1,5х2 + 19х + 0,5
у = 0,005х2 + 654,25х – 124
Все эти ф-ции заданы с помощью выражения, представляющего собой квадратный трехчлен, поэтому в математике их называют квадратичными функциями.
Если коэффициент перед х2 окажется равным нулю, то ф-ция превратится из квадратичной в линейную:
0х2 + bx + c = bx + c
Попытаемся понять, как выглядит график квадратичной функции. Для этого начнем рассматривать частные случаи и использовать правило растяжения и сжатия, а также параллельного переноса графиков ф-ций.
Если в выражение для квадратичной ф-ции подставить значения
а =1
b= 0
с = 0
то получится уже известная нам степенная ф-ция у = х2:
1х2 + 0x + 0 = х2
Её графиком является парабола.
График ф-ции у = ах2 – это тоже парабола (где а – некоторое число), которая однако, получена из «обычной» параболы у = х2 путем сжатия или растяжения графика. Если коэффициент а является отрицательным, то парабола «перевернется» то есть отобразится симметрично относительно оси Ох. Покажем примеры нескольких графиков у = ах2:
Напомним, что при добавлении к ф-ции какого-нибудь постоянного числа n ее график переносится на n единиц вверх. Зная это можно легко получить график ф-ции у = ах2 + с из графика у = ах2:
Таким образом, графиком ф-ции у = ах2 + с является парабола, чья вершина поднята на с единиц вверх.
Как изменится график квадратичной ф-ции у = ах2 + с, если в вместо х возводить в квадрат выражение (х +m), где m – произвольное число? В этом случае ф-ция примет вид у = а(х +m)2 + с. Вершина параболы должна будет сместиться на m единиц влево:
Теперь докажем, что любая квадратичная ф-ция может быть представлена как в виде у = а(х + m) + n, где m и n – некоторые числа (в том числе и отрицательные). Похожие преобразования мы производили, когда учились решать квадратные уравнения. Запишем саму квадратичную ф-цию:
у = ах2 + bх + с
Вынесем множитель а за скобки:
Далее попытаемся преобразовать трехчлен в скобках, используя формулу квадрата суммы. Для этого добавим к нему и сразу же вычтем величину (b/2a)2:
Теперь раскроем внешние скобки:
Теперь произведем две замены:
Используя их, можно записать:
Получили, что любую квадратичную ф-цию можно свести к виду у = а(х + m)2 + n. Что это значит и для чего мы это доказывали? Из этого факта следует, что график любой квадратичной ф-ции может быть получен из обычной параболы у = х2 за счет трех действий.
- Необходимо растянуть график у = х2 в а раз и получить график у = ах2. Если число а является отрицательным, то график не только растянется, но ещё «перевернется» ветвями вниз, то есть отобразится симметрично относительно оси Ох.
- Необходимо сдвинуть график у = ах2 на n единиц вверх и получить график у = ах2 + n. Если n< 0, то график переместится вниз, а не вверх.
- Полученный график у = ах2 + n следует сместить влево на m единиц и получить график у = а(х + m)2 + n. Если m отрицательно, то график сместится не влево, а вправо.
Итак, как будет выглядеть график квадратичной ф-ции? В общем случае он является параболой, центр которой располагается не в точке (0;0), а в некоторой другой точке (х0; у0):
Если мы вернемся к доказательству того, что любую квадратичную ф-цию можно представить в виде у = а(х + m)2 + n, то увидим, что число m рассчитывается по формуле
Так как график из-за этого числа m перемещается влево, а не вправо, то координата вершины х0 рассчитывается по формуле:
Нет смысла составлять такую же формулу для определения координаты вершины у0, ведь можно подставить х0 в сам ф-цию и так узнать вторую координату вершины.
Пример. Определите вершину параболы, задаваемой ф-цией
у = 2х2 + 8х + 5
Решение. Выпишем коэффициенты а, b и c квадратичной ф-ции:
а = 2
b = 8
c = 5
Зная их, легко рассчитаем координату х вершины параболы:
Теперь подставим это число в исходную ф-цию и определим координату у вершины параболы:
у0 = у(х0) = 2(– 2)2 + 8(– 2) + 5 = 8 – 16 + 5 = – 3
Ответ (– 2; – 3)
Напомним, что нули ф-ции – это те точки, в которых ее график пересекает ось Ох. Для их поиска необходимо приравнять ф-цию к нулю и решить уравнение. В случае с квадратичной ф-цией мы получим квадратной уравнение.
Пример. Постройте график ф-ции у = х2 – 4х + 3, отметьте на нем вершину параболы и нули ф-ции.
Решение. Приравняем ф-цию к нулю:
х2 – 4х + 3 = 0
Решим это уравнение
D = b2 – 4ас = (– 4)2 – 4•1•3 = 16 – 12 = 4
Итак, нашли нули ф-ции: 1 и 3. Теперь найдем вершину параболы:
у0 = у(х0) = 22 – 4•2 + 3 = 4 – 8 + 3 = – 1
Вершина находится в точке (2; – 1). Теперь отметим ее, а также нули ф-ции на графике, и соединим их линией, похожей на параболу:
При необходимости для точности построения всегда можно вычислить значение ф-ции в нескольких дополнительных точках и провести параболу через них. Здесь мы этого делать не будем
Ответ: вершина параболы – точка (2; – 1), нули ф-ции х1 = 1 и х2 = 3
Обратите внимание, что в рассмотренном примере вершина параболы оказалась ниже нулей, поэтому ее ветви смотрят вверх. Вообще, если коэффициент а > 0, то ветви смотрят вверх, а если а < 0, то они смотрят вниз. Также можно заметить ещё одно свойство квадратичной функции – вершина параболы находится точно посередине между нулями ф-ции. То есть если нули ф-ции равны 1 и 3, то координата х вершины параболы равна их среднему арифметическому:
х0 = (х1 + х2)/2 = (1 + 3)/2 = 2
Заметим, что не все квадратичные ф-ции имеют нули, ведь не каждое квадратное уравнение имеет решение.
Пример. Постройте графики ф-ций
у = – 2х2– 4х + 6
у = – 3х2 + 6х – 4
Решение. Начнем с первой ф-ции. Сначала найдем ее нули:
– 2х2 – 4х + 6 = 0
D = b2 – 4ас = (– 4)2 – 4•(– 2)•6 = 16+48 = 64
Найдем вершину. Сначала используем обычную формулу:
Далее просто проверим себя, найдя среднее арифметическое нулей ф-ции:
Как и ожидалось, получились одинаковые результаты! Вычислим теперь у0:
у0 = у(х0) = – 2(– 1)2 – 4(– 1) + 6 = – 2 + 4 + 6 = 8
Итак, вершина первой ф-ции – это точка (– 1; 8).
Перейдем ко второй ф-ции. Попробуем найти ее нули:
– 3х2 + 6х – 4 = 0
D = b2 – 4ас = 62 – 4•(– 3)•(– 4) = 36–48 = – 16
Дискриминант отрицательный, значит, корней у уравнения нет. Не будет и нулей и ф-ции. Найдем вершину параболы
Найдем координату у0 вершины:
у0 = у(х0) = – 3•12 + 6•1 – 4 = – 3 + 6 – 4 = – 1
Отметим, что у обоих графиков коэффициент а отрицательный, а потому их ветви будут смотреть вниз. Построим их графики:
Иногда приходится решать обратную задачу – по графику квадратичной ф-ции находить выражение, задающее эту ф-цию. Для ее решения необходимо подставлять в общий вид квадратичной ф-ции
у = ах2 + bx + c
значения квадратичной функции, взятые из графика (то есть координаты точек параболы) и получать уравнения, из которых можно найти величины a, b и c.
Пример. Запишите выражение для квадратичной ф-ции, имеющей следующий график:
Решение. Заметим, что графику параболы принадлежит точка с координатами (0; 3). Подставим эти числа, х = 0 и у = 3, в квадратичную ф-цию:
у = ах2 + bx + c
3 = а•02 + b•02 + c
3 = c
Итак, мы нашли, что коэффициент с = 3. Осталось найти а и b. Возьмем ещё одну точку, скажем, (1; 0), и подставим ее координаты (вообще в большинстве случаев удобно брать точки, одна из координат которой равна 0 или, на худой конец, единице):
у = ах2 + bx + 3
0 = а•12 + b•1 + 3
a + b = – 3
Возьмем точку с координатами (– 3; 0):
у = ах2 + bx + 3
0 = а•(– 3)2 + b•(– 3) + 3
9а – 3b = – 3
Получили два уравнения с двумя неизвестными: a + b = – 3 и 9а – 3b = – 3. Решим систему, составленную из них:
Подставим первое уравнение во второе и получим:
9а – 3(– 3 – а) = – 3
9а + 9 + 3а = – 3
12а = – 3 – 9
12а = – 12
а = – 1
Нашли а. Теперь подставим его в уравнение для b:
b = – 3 – а = – 3 – (– 1) = – 2
Получили b = – 2. Мы нашли все коэффициенты, а потому можем записать ф-цию в аналитическом виде:
у = – х2 – 2х + 3
Ответ:– х2 – 2х + 3