Содержание:
Говоря об объеме, имеют ввиду вместимость пространственной фигуры. Как вы думаете, емкость какого из цилиндров на рисунке больше?
Призмой, вписанной (описанной) в цилиндр, называется призма, основания которой вписаны (описаны) в основания цилиндра.
Объем цилиндра
Пусть в цилиндр с радиусом
При бесконечном возрастании площадь оснований данных призм приближаются к площади основания
цилиндра, а их объемы к объему цилиндра:
Объем цилиндра равен произведению площади основания на высоту.
Практическая работа. Какая связь существует между объемами призмы и пирамиды, если они имеют одинаковые высоты и основания? Можно ли эту связь применить для объемов цилиндра и конуса?
Сделайте из картона модели сосудов в виде конуса и цилиндра, радиусы оснований и высоты которых одинаковы. Заполните цилиндрический сосуд при помощи сосуда в виде конуса (песком, рисом, и т. п.).
Сколько таких сосудов понадобится, чтобы заполнить цилиндрический сосуд? Верно ли утверждение, что цилиндрический сосуд можно заполнить тремя полными сосудами в виде конуса?
Обобщите соответствующую информацию о вычислении объема призмы, цилиндра, пирамиды и конуса, записав ответ в закрашенные ячейки.
Объем призмы и цилиндра:
Объем = площадь основания
Объем пирамиды и конуса:
Объем = объем призмы или цилиндра, имеющих одинаковые
основание и высоту.
Объем конуса
Объем конуса равен произведению одной третьей площади основания на высоту.
Пример №1
Образующая конуса 9 см, высота 6 см. Найдите объем конуса.
Решение:
Объем шара и его частей
Практическая работа.
1. Возьмите мяч. Определите его диаметр.
2. Изобразите на бумаге развертку цилиндра, диаметр и высота которого равны диаметру шару.
3. Вырежьте и сверните полученную развертку в цилиндр без верхней крышки. Скрепите развертку при помощи клейкой ленты. Разделите высоту цилиндра на 3 равные части и сделайте соответствующие разметки.
4. Обверните мяч фольгой или плотным материалом и сделайте мешок сферической формы. Наполните его песком.
5. Пересыпьте песок в цилиндр. Какая часть цилиндра заполнится?
Если разделить поверхность шара сеткой из вертикальных и горизонтальных линий и маленький «прямоугольный» кусочек сферы соединить с центром шара, то можно представить, что шар состоит из множества «маленьких пирамид».
Объем шара можно выразить через сумму объемов «маленьких пирамид» высота которых равна радиусу шара. Бесконечно уменьшая размеры оснований, количество пирамид будет бесконечно расти.
Сумма площадей оснований «маленьких пирамид» будет равна площади поверхности шара. Учитывая, что площадь поверхности шара равна получим формулу для нахождения объема шара:
Объем шара:
Объем шара равен произведению и куба радиуса.
Пример №2
Найдите: а) объем шара радиуса 3 см
b) радиус шара объемом 288
Решение:
а)
b)
Сектор шара и сегмент шара
Шаровой сектор — это часть шара, ограниченная конической поверхностью с вершиной в центре шара. Шаровой сектор-объеденение конуса и шарового сегмента.
Так как шаровой сектор можно рассмотреть как предел суммы объемов маленьких пирамид, вершины которых находятся в центре шара, а основания касаются его поверхности, то
Здесь радиус шара,
высота соответствующего сегмента
С другой стороны,
Проектная работа.
Отношение между объемами цилиндра, конуса и шара, которое получил Архимед.
Архимед нашел формулу для нахождения объема шара, исследовав связь между объемом цилиндра, описанного вокруг шара радиуса и объемом конуса, вписанного в данный цилиндр. Попробуйте и вы выполнить это исследование.
Если — расстояние от центра шара до плоскости сечения, то для шара радиуса
представьте зависимость площади сечения от
выполнив следующие шаги.
a) Вычислите следующие значения функции
Для примера найдено значение
b) Представьте свои суждения о значениях и
сечений.
c) Запишите общую формулу для определения площади сечения, расположенного на расстоянии от центра шара радиуса
d) Свяжите формулу, полученную в пункте и следующий рисунок.
e) Чтобы понять умозаключения Архимеда, вернемся к начальному рисунку.
При «извлечении» конуса из цилиндра в поперечном сечении получаем кольца, параллельные основанию.
На одном и том же уровне поперечное сечение шара является кругом. Из подобия треугольников можно доказать, что площадь кольца каждого слоя равна Поскольку площади этих плоских сечений равны, по принципу Кавальери равны и объемы этих тел.
Объемы подобных фигур
Отношения соответствующих линейных размеров подобных пространствнных фигур должны быть равны.
По заданным соответствующим размерам подобных пространственных фигур можно найти неизвестные размеры.
Пример №3
Конусы и
подобны. По данным рисунка найдите образующую конуса
Решение: Запишем отношение линейных размеров: Радиус А Образующая А
Известно, что отношение площадей поверхностей двух подобных пространственных фигур равно квадрату отношения соответствующих линейных размеров или квадрату коэффициента подобия:
Объемы подобных пространственных фигур
Отношение объемов подобных пространственных фигур и
равно кубу отношения соответствующих линейных размеров или кубу коэффициента подобия:
Пример №4
Отношение боковых поверхностей двух подобных цилиндров равно 4:9. Зная, что разность объемов равна куб.ед., найдите объемы цилиндров.
Решение: по условию тогда
Значит
С другой стороны, принимая во внимание, что
получим:
Объемы тел в высшей математике
Под телом Т будем подразумевать ограниченное множество в пространстве.
Будем рассматривать тела, имеющие внутренние точки и границу, которая также принадлежит телу (замкнутые тела), причем такие, что любые две внутренние
точки можно соединить непрерывной линией, проходящей внутри тела.
Определение 1. Рассмотрим тело составленное из конечного числа многогранников, содержащихся в Т, и тело
, составленное из многогранников и покрывающее тело Т:
Пусть Тело называется кубируемым, если
. При этом число
(1) называется объемом тела Т (по Жордану).
Замечание. Для кубируемости тела Т необходимо и достаточно, чтобы такие, что
(2)
Пусть для кубируемого тела Т известны площади s=s(x) его сечения плоскостями перпендикулярными оси Ох, проходящими через точки (х, 0, 0), – непрерывна
Разобьем отрезок [ a b ] на n частичных отрезков точками и обозначим это разбиение
. Пусть
– диаметр разбиения, тогда
(3)
Где это – объем цилиндрического тела высотой
и площадью основания
Пусть
k − -ый слой тела Т между плоскостями, проходящими через точки
и перпендикулярными оси Ох.
Так как Т – кубируемо, то – также кубируемо и
где
Тогда
∀n ∈ N, или
Гдеэто – нижняя и верхняя суммы Дарбу функции s(x) для разбиения
Поэтому
Таким образом
(6)
Замечание. Нужно заметить, что неравенство (4), которое использовалось для вывода формулы (6), выполняется, когда любые два рассматриваемые сечения
тела Т при проекции на плоскость yOz полностью содержатся одно в другом.
Однако формула (6) верна и в общем случае. Для этого достаточно потребовать,
чтобы тело Т было кубируемым и функция s (x) – непрерывной.
Пример №5
Найти объем тела ограниченного поверхностями (ниже параболоида).
Решение.
Из системы уравнений следует, что z=h.
В сечении тела плоскостью проходящей через точку (0, 0, z) перпендикулярно оси Оz получается кольцо
Радиус внешней окружности равен R, радиус внутренней равен
Поэтому по формуле (6):
Формулу (6) удобно применять к телам вращения. Пусть y=f(x) – непрерывна на отрезке Будем вращать криволинейную трапецию
вокруг оси Ох. Получим тело:
Тогда сечением полученного тела плоскостью проходящей через точку (х,0,0) и перпендикулярной оси Ох будет круг радиуса и по формуле (6):
Где y=f(x).
Аналогично, если то при вращении вокруг оси Ох фигуры
Получим тело, объем которого
Пример №6
Рассмотрим фигуру Φ ограниченную эллипсом
Найдем объем эллипсоида полученного при вращении вокруг оси Ох фигуры Φ .
Решение.
По формуле (7):
Пусть функция x=x(y) – непрерывна при Тогда, аналогично, при вращении вокруг оси Оу фигуры
Получим тело, объем которого (9)
Если же вращать вокруг оси Оу трапецию
то (10)
Пример №7
Рассмотрим тело Т из примера 1. Оно получается, если вращать вокруг оси Oz фигуру, ограниченную линиями:
Из первого уравнения найдем поэтому по формуле (9):
Пример №8
Объем при вращении фигуры
из примера 3 вокруг оси Oz можно также найти и по формуле (10):
Пример №9
Фигура Ф ограничена линиями Найти
Решение.
Абсциссы точек пересечения: (см. пример 1 § 30). По формуле (8):
Замечание. Для непрерывной функции рассмотрим криволинейную трапецию
Пусть – непрерывно-дифференцируема на промежутке
Тогда по формуле (7):
по формуле (1) § 26
Где – параметрическое задание линии
Таким образом
или
(12)
(кривая обходится так, чтобы область Ф оставалась слева).
Аналогично, для непрерывной функции рассмотрим криволинейную трапецию
Пусть – непрерывно-дифференцируема на промежутке
Тогда по формуле (9):
по формуле (1) § 26
Где – параметрическое задание линии
Таким образом (13) (кривая обходится так, чтобы область Ф оставалась слева).
Рассмотрим область ,ограниченную простой замкнутой кривой
(кривая лежит по одну сторону от оси Ox ). Тогда объем
можно находить по формуле (12):
(кривая обходится так, чтобы область оставалась слева).
Аналогично ,для области ограниченной простой замкнутой кривой
(кривая лежит по одну сторону от оси Oy )объем
можно находить по формуле (13):
(кривая обходится так, чтобы область оставалась слева).
Пример №10
Дана астроида
Найдем .
Решение.
по формуле (12):
Пример №11
Петля кривой вращается вокруг оси Ox .Найти
.
Решение.
петля обходится против часовой стрелки. По формуле (12):
Пусть – кривая в полярной системе координат, r (ϕ) – непрерывна при
Рассмотрим на плоскости хОу криволинейный сектор
Тогда объем тела при вращении фигуры ϕ вокруг полярной оси равен
(14)
Пример №12
(см. пример 4 § 31).
Найдем .
Решение.
По формуле (14):
- Длина дуги кривой
- Геометрические фигуры и их свойства
- Основные фигуры геометрии и их расположение в пространстве
- Пространственные фигуры — виды, изображения, свойства
- Площадь прямоугольника
- Объем пространственных фигур
- Объёмы поверхностей геометрических тел
- Фигуры вращения: цилиндр, конус, шар
Рис. 67 |
Пусть требуется
Составим |
С помощью произвольно
выбранных точек
разобьем отрезок
на n
элементарных
отрезков длиной
i
= 1, 2, …, n.
Через точки деления проведем плоскости
перпендикулярно оси Ох.
Получим n
элементарных объемов тел вращения. На
каждом элементарном отрезке выберем
произвольно точку
и вычислим значение функции
.
Каждое элементарное тело вращения
заменим цилиндром с радиусом основания
и высотой
,
объем которого равен
.
Объем всего тела вращения приближенно
равен
.
Данная сумма
является интегральной. Перейдем к
пределу при
,
и получим точное значение объема
или
.
Если тело образуется
вращением вокруг оси Оy
фигуры, ограниченной линиями:
,
,
то его объем находится по формуле
.
Пример
5.15.
Рис. 68 |
Найти объем тела
Найдем |
Учитывая
симметричность фигуры, находим объем
.
Пример
5.16.
Найти объем тела, образованного вращением
вокруг оси Оy
фигуры, ограниченной линиями
.
Рис. 69 |
Находим
|
5.10.3. Длина дуги кривой
Требуется найти
длину отрезка кривой
при
.
Составим интегральную сумму и перейдем
к пределу. Разобьем отрезок
с помощью произвольно выбранных точек
на n
элементарных отрезков длиной
.
Рис. 70 |
На каждом
(рис. 70), длина
Используем |
Получим
.
Составим интегральную
сумму для нахождения приближенного
значения длины дуги отрезка кривой
.
Перейдем к пределу,
получим точное значение длины дуги
кривой
или
.
Пример
5.17.
Найти длину полукубической параболы
,
отсекаемой прямой
(рис. 71).
Рис. 71 |
Найдем
Учтем симметрию
|
5.11. Численные методы нахождения определенных интегралов
Данные методы
основываются на геометрическом смысле
интеграла как площади криволинейной
трапеции.
Обычно интервал
интегрирования
разбивают на
n
равных элементарных отрезков. На каждом
элементарном отрезке подынтегральную
функцию заменяют или прямой, или кривой
задаваемого вида. Интеграл находится
приближенно как сумма площадей
элементарных криволинейных трапеций.
В зависимости от вида функции, которой
заменяют подынтегральную функцию на
элементарных отрезках получают различные
формулы для численных методов нахождения
определенных интегралов.
Пусть требуется
вычислить значение интеграла
.
С помощью точек
где
,
разобьем отрезок
на n
равных элементарных отрезков длиной
h.
Вычислим значения подынтегральной
функции в точках деления
.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Дополнения
1.О применении определённого интеграла для нахождения объёмов тел вращения
1.1.Формула объёма тела вращения
В п.16.2 дано определение тела вращения.
Получим формулу для вычисления объёма тела вращения, применяя интеграл, о котором вам рассказали в курсе «Алгебры и начал математического анализа».
Пусть f(x) — непрерывная на отрезке [a; b] функция, не принимающая отрицательных значений; А, В — точки графика этой функции (рис. 225).
Рис. 225
Рассмотрим криволинейную трапецию aABb, ограниченную кривой графика функции y = f(x), отрезками aA, bB и отрезком [a; b] координатной оси Ох (см. рис. 225). При вращении этой трапеции вокруг оси Ох образуется тело вращения (рис. 226), которое обозначим Ф и поставим себе задачу: найти объём этого тела.
Рис. 226
Через произвольную точку х = с (a ⩽ с ⩽ b) отрезка [a; b] проведём плоскость, перпендикулярную оси Ox. Сечением тела Ф этой плоскостью является круг, радиус которого равен f(с), а площадь — πf2(с) (или точка (c; 0)).
Объём части тела Ф, заключённой между этой плоскостью и плоскостью х = a, изменяется при изменении x. Обозначим этот переменный объём V(х). Заметим, что V(x) = V(a) = 0 при х = a; при х = b имеем V(x) = V(b) = V — искомый объём тела вращения Ф.
Покажем, что функция V(x) имеет производную V′(х) и V′(х) = πf2(х).
Придадим абсциссе х приращение ∆х > 0, тогда объём V(х) получает приращение ∆V(х) = V(x + ∆x) – V(x). Пусть m и М — соответственно наименьшее и наибольшее значения функции f(х) на промежутке [х; х + ∆х]. Цилиндр, радиус основания которого равен m, содержится в теле вращения объёма ∆V(x), а цилиндр, радиус основания которого равен M, содержит тело объёма ∆V(х); образующие цилиндров параллельны оси Ох и имеют длину, равную ∆х. Объёмы этих цилиндров равны соответственно πm2•∆x и πM2•∆х. На основании свойства 2 объёмов (п. 10.1) получаем
πm2•∆x ⩽ ∆V(x) ⩽ πM2•∆x,
откуда
πm2 ⩽ ⩽ πM2.
Рассуждения для случая ∆х < 0 проводятся аналогично и дают тот же результат.
Пусть теперь ∆х 0. Имеем
m =
M = f(x), тогда
πm2 ⩽
⩽
πM2
или
πf2(х) ⩽ ⩽ πf2(x).
Значит, = πf2(х). По определению производной функции
= V′(x). Поэтому V ′(x) = πf2(х), следовательно, V(х) — первообразная для πf2(х).
Таким образом, переменный объём V(x) телa вращения представляет собой одну из первообразных для функции πf 2(х) на отрезке [a; b]. Эта первообразная обладает тем свойством, что при х = a она обращается в нуль (V(a) = 0), а при х = b значение функции V(x) равно объёму тела вращения Ф (V(b) = V).
Если F(х) — также некоторая первообразная для функции πf 2(x), то V(x) = F(x) + С, где С — произвольная постоянная. Так как V (a) = 0, то из равенства V(a) = F (a) + C = 0 находим С = –F(a). Значит, V(x) = F(x) – F(a). Toгдa V(b) = F(b) – F(a). Ho V(b) = V — искомый объём тела вращения Ф. Таким образом, V = F(b) – F(a), где F(b) и F(a) — значения первообразной для функции πf 2(х) соответственно при х = b и х = a. Это означает, что
V = f 2(x)dx = π
(x)dx.
Вот почему объём тела, образованного вращением вокруг оси Ох фигуры, ограниченной линиями у = f(x), х = a, х = b, у = 0, вычисляется по формуле
Рис. 227
V = (x)dx.(*)
ЗАДАЧА. Вычислить объём тела, образованного вращением вокруг оси Ох фигуры, ограниченной линиями у = , х = 0, x = 2 и y = 0 (рис. 227).
Решение. Воспользуемся формулой V = π(x)dx, для чего из уравнения у =
находим y2 = 2х. Тогда получаем
V = πdx = 2π•
=
= 4π.
Ответ: 4π.
1.2. Объёмы конуса, шара и его частей
Используя формулу V = (x)dx вычисления объёма тела вращения, получим формулы для вычисления объёма каждого изученного ранее тела вращения.
а) Объём конуса и усечённого конуса
Теорема 1 (об объёме полного конуса). Объём V конуса с высотой Н и радиусом основания R равен одной трети произведения площади основания на высоту:
V = R2Н.
Рис. 228
Доказательство. Конус с высотой Н и радиусом основания R можно рассматривать как тело, образованное вращением вокруг оси Ox прямоугольного треугольника с вершинами О(0; 0), А(Н; 0) и B(Н; R) (рис. 228). Треугольник АОВ является частным случаем криволинейной трапеции, которая ограничена графиком функции у = х (0 ⩽ х ⩽ H), осью Ох и отрезком прямой х = Н. Поэтому, используя формулу (*) п. 1.1 «Дополнений» для объёма V конуса, получаем:
V = dx = π
•
=
πR2H,
где πR2 — площадь основания конуса. Теорема доказана. ▼
Теорема 2 (об объёме усечённого конуса). Объём усечённого конуса с высотой Н и радиусами оснований r и R равен сумме объёмов трёх конусов с высотой Н, радиусы оснований которых соответственно равны r, R и :
V = (r2 + R2 + rR)H.
Доказательство. Усечённый конус с высотой H и радиусами оснований r и R можно получить, вращая вокруг оси Oх прямоугольную трапецию OABC, где O(0; 0), A(0; r), В(Н; R), С(H; 0) (рис. 229).
Рис. 229
Прямая AВ проходит через точки (0; r) и (Н; R), поэтому её уравнение имеет вид у = х + r. Следовательно, трапеция ОАВС ограничена графиком функции y =
х + r (0 ⩽ х ⩽ Н), осью Oх и отрезками прямых х = 0 и х = Н. Поэтому, используя формулу (*) из п. 1.1 для объёма V усечённого конуса, получаем:
V = dx.(1)
Для вычисления интеграла сделаем замену переменных
x + r = t.(2)
Тогда dx = dt, откуда dx =
dt. Новые пределы интегрирования (по переменной t) найдём посредством подстановки формулы (2): х = 0 ⇒ t = r; х = Н ⇒ t = R. Таким образом, для объёма V усечённого конуса получаем:
что и требовалось доказать. ▼
б) Объём шарового слоя
В прямоугольной декартовой системе координат Оху рассмотрим криволинейную трапецию aABb, ограниченную дугой окружности х2 + у2 = R2, –R ⩽ a ⩽ х ⩽ b ⩽ R, отрезком [a; b] оси Ох и отрезками aА и bВ прямых соответственно x = a и х = b (рис. 230, а).
Рис. 230
При вращении криволинейной трапеции aАВb вокруг оси Ох образуется шаровой слой (рис. 230, б). Найдём его объём, применяя формулу (*) п. 1.1.
Из уравнения х2 + у2 = R2 имеем у2 = R2 – x2. Поэтому для вычисления объёма V шарового слоя получаем:
Таким образом, объём шарового слоя, отсекаемого от шара x2 + y2 + z2 ⩽ R2 радиуса R плоскостями x = a и x = b, вычисляется пo формуле
V = (**)
Пусть радиусы оснований шарового слоя равны r1 и r2 (r1 > r2), а высота — H (см. рис. 230, a).
Тогда Н = b – a, = R2 – a2,
= R2 – b2.
Формулу (**) преобразуем к виду:
V = (3R2 – (b2 + ab + a2)) =
= ((R2 – b2) + (R2 – ab) + (R2 – a2)).
Из системы равенств (b – a)2 = H2, R2 – a2 = , R2 – b2 =
после почленного сложения их левых и правых частей находим:
R2 – ab = .
Тогда:
V = ((R2 – b2) + (R2 – ab) + (R2 – a2)) =
= .
Таким образом, объём шарового слоя с радиусами оснований r1 и r2 и высотой Н вычисляется по формуле
V = .(***)
в) Объём шара
Рис. 231
При вращении полукруга х2 + у2 = R2 (расположенного в плоскости Оху, рис. 231, а) вокруг оси Ох образуется шар радиуса R (рис. 231, б). Из уравнения окружности х2 + y2 = R2 данного полукруга имеем у2 = R2 – х2. Тогда, полагая a = –R, b = R в формуле (*) п. 1.1, находим объём V шара радиуса R:
Vш = =
= .
Таким образом, имеет место следующая теорема.
Теорема 3 (об объёме шара). Объём шара радиуса R вычисляется по формуле
Vш = .
г) Объём шарового сегмента
Если b = R (см. п. 1.2, б), то получаем криволинейную трапецию aAB (рис. 232, а), при вращении которой вокруг оси Ох образуется шаровой сегмент (рис. 232, б).
Рис. 232
Пусть высота шарового сегмента равна Н, тогда a = R – Н. Так как дуга AВ криволинейной трапеции aАВ является частью окружности x2 + y2 = R2 (в плоскости Оxу), то формулу объёма шарового сегмента получим по аналогии с выводом формулы для вычисления объёма шара, учитывая при этом, что пределы a и b интегрирования равны: a = R – H, b = R, т. е.
Vш. сегм = =
=
Таким образом, имеет место следующая теорема.
Теорема 4 (об объёме шарового сегмента). Объём шарового сегмента, отсекаемого от шара радиуса R и имеющего высоту Н, вычисляется по формуле
Vш. сегм =
Если в формуле (***) п. 1.2, б положить r2 = 0, r1 = r, то получим формулу для вычисления объёма шарового сегмента с радиусом основания r и высотой Н:
Vш. сегм = (3r2 + H2).
д) Объём шарового сектора
Рис. 233
Шаровой сектор состоит из конуса с вершиной в центре шара и шарового сегмента, имеющего с конусом общее основание (риc. 233). Пусть R = ОА — радиус шара; АС = r — радиус основания шарового сегмента, NC = H — его высота; N — точка сферы (рис. 233).
Найдём объёмы конуса и шарового сегмента, учитывая, что высота h конуса равна OC = ON – CN = R – Н.
Объём Vк конуса равен
π•АС2•ОС =
πr2 (R – Н).
Выразим r2 через R и H.
B прямоугольном треугольнике AOC находим r2 = AC2 = ОА2 – OC2 = R2 – (R – H)2 = H(2R – H).
Значит,
Vк = πH(2R – H)(R – H) =
(2R2 – 3RH + H2).
Для объёма шарового сегмента имеем:
Vш. сегм = (3AC2 + NC2) =
(3H(2R – H) + H2) =
= (3RН – H2).
Тогда для объёма шарового сектора получаем
Vш. сект = Vк + Vш. сегм =
= (2R2 – 3RH + H2) +
(3RH – H2) =
πR2H.
Таким образом, доказана следующая теорема.
Теорема 5 (об объёме шарового сектора). Объём шарового сектора шара радиуса R вычисляется по формуле
Vш. сект = R2H,
где Н — длина высоты шарового сегмента, соответствующего данному шаровому сектору.
В курсе математического анализа, который вам предстоит изучать в высшей школе, будет дано строгое обоснование применения определённого интеграла не только для нахождения объёмов тел, но и для нахождения площадей поверхностей и длин дуг линий. Решите самостоятельно следующие задачи.
1)Найдите объём тела, которое получается при вращении вокруг оси Ох криволинейной трапеции, ограниченной гиперболой у = , прямыми х = 3, х = 12 и осью абсцисс. (Ответ: 4π.)
2)Найдите объём тела, образованного вращением вокруг оси Oх фигуры, ограниченной одной полуволной синусоиды у = sin x и отрезком 0 ⩽ х ⩽ π оси абсцисс. (Ответ: 0,5π2.)
3)Найдите объём тела, полученного при вращении кривой у = 0,25х2 вокруг оси Оу в пределах от у = 1 до у = 5. (Ответ: 48π.)
4)Найдите объём тела, образованного вращением вокруг оси Ох фигуры, ограниченной кривыми у = 2х2 и у = x3.
На этой странице вы узнаете
- Как вода в кружке иллюстрирует сечение цилиндра?
- Как лист бумаги превратить в цилиндр?
Что общего у джентльмена 19 века, Вилли Вонка из «Чарли и шоколадная фабрика», Шерлока Холмса в экранизации «Безобразная невеста» и некоторых сценических костюмов? Цилиндр! О нем, вернее о фигуре цилиндра и поговорим в статье.
Понятие цилиндра
Сейчас мы говорим про мужской головной убор, который был популярен в 19 веке и стал достаточно узнаваем в массовой культуре. Оказывается, в математике также существует цилиндр. И они похожи по форме.
Цилиндр — тело вращения, полученное при вращении прямоугольника вокруг одной из его сторон.
Возможно, для уточнения некоторых терминов вам захочется заглянуть в статью «Тела вращения».
Если посмотреть на форму шляпы, то она действительно будет похожа на геометрическую фигуру. Встретить цилиндр можно и в наше время. Обычная кружка является цилиндром.
Прямая, вокруг которой мы крутили прямоугольник, чтобы получить цилиндр, — это ось цилиндра.
Также, как у Земли есть ось вращения, она есть и у цилиндра.
Наша кружка стоит на круглом дне. Это дно, как и самый верх кружки, будут называться основаниями цилиндра.
Снова посмотрим на стенки кружки. В цилиндре эта поверхность будет называться цилиндрической поверхностью. Ее также могут называть боковой поверхностью цилиндра.
Представим, что наша кружка раскрашена вертикальными линиями. Эти линии будут лежать на цилиндрической поверхности и перпендикулярны основаниям. У них есть название:
Образующая цилиндра — отрезок, соединяющий точки окружностей основания и перпендикулярный плоскостям оснований.
Все образующие, — а в цилиндре их очень-очень много, —лежат только на цилиндрической поверхности. Эта поверхность и состоит из множества образующих.
Узнаем ширину кружки. Для этого нужно измерить радиус дна. Этот же радиус будет радиусом основания, а в цилиндре он называется радиусом цилиндра.
Теперь найдем высоту кружки. Для этого нужно измерить расстояние от дна до самого верха кружки.
В математике это будет расстоянием между плоскостями, а ищется оно как длина перпендикуляра, опущенного из одной плоскости на другую. Подробнее про это можно прочесть в статье «Расстояния между фигурами».
Высота цилиндра — перпендикуляр, опущенный из плоскости одного основания на плоскость второго основания.
Свойства цилиндра
Рассмотрим, какими свойствами обладает цилиндр.
Свойство 1. Основания цилиндра равны и параллельны.
Это всегда два равных круга, лежащих в параллельных плоскостях.
Свойство 2. Образующие цилиндра равны и параллельны.
Поскольку все образующие перпендикулярны основаниям, то они параллельны между собой по свойству прямой и перпендикулярной ей плоскости. Подробнее про это свойство можно прочесть в статье «Углы в пространстве».
А равны они потому, что являются перпендикуляром к основаниям, то есть равны высоте цилиндра.
Свойство 3. Сечение цилиндра, проходящее через ось цилиндра, является прямоугольником. Такое сечение в цилиндре будет называться осевым сечением цилиндра.
Например, если разрезать тортик по диаметру, то место среза как раз будет прямоугольником.
Подробности про сечения фигур можно найти в статье «Сечения».
Свойство 4. Сечение цилиндра, проходящее параллельно оси цилиндра и перпендикулярно его основаниям, будет являться прямоугольником.
Свойство 5. Сечение цилиндра, перпендикулярное оси цилиндра, является кругом с радиусом, равным радиусу цилиндра. Такое сечение в цилиндре называется перпендикулярным сечением цилиндра.
Если налить в кружку воду, то ее поверхность примет круглую форму. При этом совершенно без разницы, сколько воды наливать: поверхность останется кругом.
Поскольку поверхность воды параллельна дну кружки, то есть основаниям цилиндра, то она является перпендикулярным сечением цилиндра.
Этим опытом можно подтвердить свойство 5.
Заметим, что все вышеописанные свойства относятся к прямому цилиндру.
Цилиндр также может быть наклонным. В этом случае ось цилиндра и его образующие не будут перпендикулярны основаниям.
Если мы разрежем поверхность цилиндра по одной из его образующих и как бы “развернем” ее, у нас получится прямоугольник.
Это также легко увидеть, если вспомнить художников с тубусами. Тубус имеет форму цилиндра, и свернутый прямоугольный лист принимает такую же форму.
Развертка боковой поверхности цилиндра — прямоугольник, одна сторона которого равна высоте цилиндра, а вторая — длине окружности его основания.
Поскольку развертка боковой поверхности цилиндра — это прямоугольник, то любой лист бумаги можно превратить в цилиндр. Для этого достаточно скрутить его в трубочку. При этом чем тоньше будет трубочка, тем меньше будет радиус цилиндра.
Формулы цилиндра
А если это прямоугольник, то мы знаем, как найти его площадь. Нам нужно умножить его длину на высоту. Так мы получаем площадь боковой поверхности цилиндра.
(S_{бок.} = 2 pi RH)
В этой формуле 2R — длина окружности основания, где R — его радиус, а Н — образующая (или высота) цилиндра. Подробнее про площадь прямоугольника и длину окружности (а также про площадь круга) можно прочесть в статьях «Параллелограмм» и «Окружность и круг».
Мы нашли площадь боковой поверхности. Как же теперь найти площадь полной поверхности?
Для этого нужно сложить площади боковой поверхности и оснований. Следовательно, мы получаем следующую формулу.
(S = S_{бок.} + 2S_{осн.} = 2 pi RH+2 pi R^2 = 2 pi R(H + R))
Допустим, мы решили сделать чашку очень вкусного чая, но чтобы правильно его заварить нам нужно знать точный объем воды. Для этого вычислим объем цилиндра. Воспользуемся следующей формулой:
(V = S_{осн.}H = pi R^2H)
В этой формуле R — радиус цилиндра, Н — высота.
Часто формулу объема можно применить для решения жизненных задач. Например, чтобы найти объем детали, погруженной в воду.
Пример 1. В цилиндрическом сосуде налито 1650 см3 жидкости. В этот сосуд опустили деталь. При этом уровень жидкости увеличился в 1,2 раза. Найдите объем детали. Ответ выразите в см3.
Решение.
Шаг 1. Выразим высоту жидкости в первый и второй раз. Пусть вначале уровень жидкости был равен х, значит после того, как в нее опустили деталь, он стал равен 1,2х.
Шаг 2. Вспомним физику и заметим, что объем жидкости в сосуде после того, как в него опустили деталь, будет равен сумме объемов жидкости и детали: V = Vж + Vд.
Шаг 3. С помощью объема жидкости выразим площадь основания сосуда:
Vж = Sосн.H
1650 = Sосн.x
(S_{осн} = frac{1650}{x})
Шаг 4. Подставим площадь основания в формулу объема жидкости после того, как в нее опустили деталь:
(V = S_{осн.}H = frac{1650}{x} * 1,2x = 1980)
Шаг 5. Тогда объем детали будет равен:
Vд = V — Vж
Vд = 1980 — 1650 =330
Ответ: 330 см3
Фактчек
- Цилиндр — тело вращения, полученное при вращении прямоугольника вокруг одной из его сторон. Цилиндр может быть прямым и наклонным. В наклонном цилиндре ось не перпендикулярна основаниям цилиндра.
- Цилиндр состоит из двух оснований и цилиндрической поверхности (боковой поверхности цилиндра). Основания имеют форму кругов, равны между собой и лежат в параллельных плоскостях. Развертка боковой поверхности имеет форму прямоугольника.
- Образующая цилиндра — отрезок, соединяющий точки окружностей основания и перпендикулярный плоскостям оснований. В прямом цилиндре образующая равна высоте цилиндра. Образующие равны и параллельны друг другу, а также образуют боковую поверхность цилиндра.
- Осевое сечение цилиндра проходит через его ось и является прямоугольником. Любое сечение, параллельное осевому, также будет являться прямоугольником. Перпендикулярное сечение проходит перпендикулярно оси цилиндра и параллельно его основаниям. Перпендикулярное сечение имеет форму круга.
Проверь себя
Задание 1.
Что такое образующая цилиндра?
- Ось вращения, с помощью которой получен цилиндр.
- Диаметр оснований цилиндра.
- Любой перпендикуляр, проведенный от одного основания к другому.
- Отрезок, соединяющий точки окружности основания.
Задание 2.
Площадь боковой поверхности цилиндра равняется 44. Его радиус равен 8. Найдите высоту цилиндра.
- 2,75
- 5,5
- (2,75 pi)
- 2
Задание 3.
Площадь основания цилиндра равна 16. Его высота равна 4. Найдите площадь полной поверхности цилиндра.
- 64
- (64 pi)
- 32
- (32 pi)
Задание 4.
Объем цилиндра равен 28, а его высота равняется 7. Найдите диаметр основания.
- 4
- 2
- 16
- 8
Ответы: 1. – 4 2. – 1 3. – 2 4. – 1
План урока:
Вычисление объема тела с помощью интеграла
Вычисление объема тел вращения
Объем наклонной призмы
Объем пирамиды
Объем конуса
Объем шара
Шаровой сегмент
Площадь сферы
Вычисление объема тела с помощью интеграла
Пусть у нас есть произвольная фигура, расположенная между двумя параллельными плоскостями:
Как найти ее объем? Поступим следующим образом. Проведем прямую, перпендикулярную этим плоскостям. Эта прямая будет осью координат х. Пусть одна из плоскостей пересекает эту ось в точке а, а другая – в точке b. Таким образом, на координатной прямой появляется отрезок [a; b]. Далее разобьем этот отрезок на n равных отрезков, длина каждого из них будет равна величина ∆х. Обозначим концы этих отрезков как х0, х1, х2…, хn, причем точке х0 будет совпадать с точкой а, а точка хn – с точкой b. Ниже показано такое построение для n = 10:
Далее через полученные точки проведем сечения, параллельные двум плоскостям, ограничивающим фигуру. Площадь сечения, проходящую через точку с номером i, обозначим как S(xi). Эти плоскости рассекут тело на n других тел. Обозначим объем тела, заключенного между сечениями с площадями S(xi) и S(xi+1) как V(xi). Можно приближенно считать, что эти тела имеют форму прямых цилиндров (напомним, что в общем случае цилиндром необязательно считается фигура, основанием которой является круг, основание может иметь и любую другую форму). Высота всех этих цилиндров будет равна величине ∆х. Тогда объем V(xi) может быть приближенно рассчитан так:
Общий же объем исследуемой фигуры будет суммой объемов этих прямых цилиндров:
Здесь знак ∑ означает сумму i слагаемых, каждое из которых равно величине S(xi)•∆х. Ясно, что чем больше мы возьмем число n, тем точнее будет полученная нами формула. Поэтому будет увеличивать число n до бесконечности, тогда приближенная формула станет точной:
В правой части стоит предел суммы бесконечного числа слагаемых. Мы уже сталкивались с такими пределами, когда изучали определенный интеграл в курсе алгебры. Так как х0 = a, а число хn-1 при бесконечном увеличении n приближается к числу хn, то есть к b, то можно записать следующее:
Здесь S(x) – это некоторая функция, которая устанавливает зависимость между площадью сечения объемной фигуры и координатой х, указывающей расположение этого сечения. Данная формула позволяет вычислять объем с помощью интеграла.
Итак, для вычисления объема тела необходимо:
1) выбрать в пространстве какую-то удобную ось координат Ох;
2) найти площадь произвольного сечения фигуры, проходящей перпендикулярно оси Ох через некоторую координату х;
3) найти значение чисел а и b – координат сечений, ограничивающих тело в пространстве;
4) выполнить интегрирование.
Понятно, что сразу понять, как используется эта формула, тяжело. Поэтому рассмотрим простой пример.
Задание. Фигура расположена в пространстве между двумя плоскостями, перпендикулярными оси Ох, причем координаты этих сечений равны 1 и 2. Каждое сечение фигуры с координатой х является квадратом, причем его сторона равна величине 1/х. Найдите объем тела.
Решение. В данной задаче ось Ох уже проведена. Известны и числа а и b – это 1 и 2, ведь именно плоскости, проходящие через точки х =1 и х = 2, ограничивают исследуемое тело. Теперь найдем площадь произвольного сечения с координатой х. Так как оно является квадратом со стороной 1/х, то его площадь будет квадратом этой стороны:
Вычисление объема тел вращения
Телом вращения называют тело, которое может быть получено вращением какой-то плоской фигуры относительно некоторой оси вращения. Например, цилиндр получают вращением прямоугольника вокруг одной из его сторон, а усеченный конус – вращением прямоугольной трапеции вокруг боковой стороны, перпендикулярной основанию.
В задачах на вычисление объемов таких тел ось координат Ох уже задана естественным образом – это ось вращения тела. Ясно, что каждое сечение тела, перпендикулярное оси вращения, будет являться кругом.
Рассмотрим случай, когда вокруг оси Ох поворачивают график некоторой функции у = f(x), ограниченный прямыми х = а и у = b. Тогда получится тело, сечениями которого являются круги, причем их радиусы будут равны величине f(x). Напомним, что площадь круга вычисляют по формуле:
Рассмотрим, как на практике используется эта формула.
Задание. Объемное тело получено вращением ветви параболы
вокруг оси Ох. Оно ограничено плоскостями х = 0 и х = 4. Каков объем такой фигуры?
Решение. Здесь пределами интегрирования, то есть числами а и b, будут 0 и 4. Используем формулу для тела вращения:
Объем наклонной призмы
Теперь, используя методы интегрирования, мы можем составить формулы для вычисления объема некоторых фигур. Начнем с треугольной наклонной призмы.
Пусть есть треугольная призма АВСА2В2С2. Проведем ось Ох так, чтобы точка О располагалась в плоскости АВС. Пусть Ох пересечет плоскость А2В2С2 в некоторой точке О2. Тогда отрезок ОО2 будет высотой призмы, ведь он окажется перпендикулярным к обоим основаниям.
Обозначим длину высоты ОО2 буквой h. Далее докажем, что всякое сечение А1В1С1 призмы, перпендикулярное оси Ох, будет равно ∆АВС. Действительно, если АВС⊥ОО2 и А1В1С1⊥ОО2, то АВС||А1В1С1. Прямые АВ и А1В1 принадлежат одной грани АВВ2А1, но не пересекаются, ведь они находятся в параллельных плоскостях. Аналогично АС||А1С1 и ВС||В1С1. Теперь посмотрим на четырехугольник АВВ1А1. АВ||A1В1 и АА1||ВВ1. Тогда АВВ1А1 по определению является параллелограммом. Это означает, что отрезки АВ и А1В1 одинаковы. Аналогично доказывается, что одинаковы отрезки АС и А1С1, а также ВС и В1С1. Но тогда одинаковы и ∆АВС и ∆А1В1С1.
Итак, площади всех сечений одинаковы и равны площади основания призмы. Обозначим ее как S. Так как S не зависит от координаты, то интегрирование будет выглядеть так:
Итак, объем треугольной наклонной призмы – это произведение площади ее основания на высоту. Теперь рассмотрим произвольную призму, в чьем основании находится n-угольник. Такой n-угольник можно разбить на треугольные призмы с общей высотой h и площадями оснований S1, S2, S3, …
Тогда площадь S основания всей призмы будет суммой этих чисел:
Задание. Основание призмы – это треугольник со сторонами 10, 10 и 12. Боковое ребро имеет длину 8 и образует с основанием угол в 60°. Вычислите объем призмы.
Решение. Пусть в основании призмы АВСА1В1С1 лежит ∆АВС со сторонами АВ = 12 и АС = ВС = 10. Его площадь можно найти разными способами, но быстрее всего применить формулу Герона. Сначала найдем полупериметр ∆АВС:
Далее надо найти высоту призмы. Опустим из точки В1 перпендикуляр В1О на плоскость АВС. Тогда в прямоугольном ∆ОВВ1 ∠В = 60° (по условию задачи и по определению угла между плоскостью и прямой). Зная длину бокового ребра ВВ1, найдем высоту ОВ1:
Объем пирамиды
Для начала рассмотрим треугольную пирамиду. Вершину пирамиды примем за начало координат точку О, а ось Ох проведем перпендикулярно основанию, причем ось будет направлена от вершины пирамиды к основанию.
Пусть ось Ох пересечет основание АВС в точке М. Тогда ОМ – это высота, чью длину мы обозначим как h.
Далее построим сечение А1В1С1, параллельное АВС. Это сечение пересечется с ОМ в точке ОМ1. Тогда ОМ1 – это координата х, характеризующая расположение сечения А1В1С1.
Осталось составить выражение для площади ∆А1В1С1. Так как АВ||A1B1, то ∠АВО и ∠А1В1О одинаковы как соответственные углы. Тогда у ∆АВО и ∆А1В1О есть два равных угла (ведь ∠АОВ у них общий), а потому эти треугольники подобны по первому признаку подобия. Это означает, что
Надо как-то найти значение коэффициента k, который, очевидно, как-то зависит от переменной х. Рассмотрим теперь ∆ОМВ и ∆ОМ1В1. Они прямоугольные, ведь ОМ перпендикулярен плоскостям этих треугольников. Также у них есть общий угол ∠ОВМ. Значит, они подобны, и поэтому
Итак, если пирамида имеет высоту h и площадь основания S, то объем пирамиды равен:
Выведенная нами формула справедлива для треугольной пирамиды. Однако если в основании пирамиды лежит произвольный многоугольник, то, разбив этот многоугольник на треугольники, мы разобьем и пирамиду на несколько треугольных пирамид. У них будет общая высота h и площади оснований S1, S2, S3…, которые в сумме составляют площадь многоугольника S.
Объем треугольных пирамид рассчитывается по выведенной нами формуле:
Задание. В основании пирамиды высотой 15 лежит квадрат со стороной 4. Вычислите ее объем.
Решение. Сначала находим площадь основания. Для этого надо сторону квадрата умножить саму на себя:
Задание. В кубе АВСDA1В1С1D1 отмечены точки Е и F – середины ребер ВС и CD соответственно. Во сколько раз объем пирамиды С1EFC меньше объема куба?
Решение. Обозначим длину ребра куба буквой а. Тогда его объем рассчитывается так:
Задание. Отрезок MN перпендикулярен плоскости пятиугольника АВСDE. Точка K, принадлежащая этой плоскости, делит отрезок MN в отношении 2:1. Во сколько раз объем пирамиды MABCDE больше объема пирамиды NABCDE?
Решение. Запишем формулы для объемов этих пирамид. При этом учтем, что MK – высота для MABCDE, а NK – это высота для NABCDE.
Далее рассмотрим такую фигуру, как усеченная пирамида. Ясно, что ее объем можно вычислить, если из объема исходной пирамиды вычесть объем отсеченной верхушки.
Снова рассмотрим пирамиду ОАВС, через которую проведено сечение А1В1С1, параллельное основанию.
Обозначим площадь нижнего основания пирамиды как S2, а площадь верхнего основания – как S1. Далее высоту усеченной пирамиды (отрезок ММ1) обозначим как h. Мы уже выяснили ранее, что основания АВС и А1В1С1 – это подобные треугольники, причем коэффициент их подобия k равен отношению высот ОМ и ОМ1. Тогда можно записать:
Далее используем основное свойство пропорции:
Далее числитель дроби мы раскладываем на множители, используя формулу разности кубов:
Задание. Основаниями усеченной пирамиды являются квадраты со сторонами 9 см и 5 см, а высота пирамиды составляет 6 см. Найдите ее объем.
Сначала вычислим площади оснований:
Объем конуса
Рассмотрим конус с высотой h и радиусом основания R. Совместим начало координат с вершиной конуса и направим ось Ох в сторону основания конуса. Тогда она пересечет основание в какой-то точке М c координатой h. Далее через точку М1 на оси Ох, имеющей координату х, проведем сечение, перпендикулярное оси Ох. Это сечение будет окружностью.
Также построим образующую ОА, которая будет проходить через сечение в точке А1. Теперь сравним ∆ОАМ и ∆ОА1М1. Они прямоугольные, и у них есть общий угол ∠АОМ. Это значит, что они подобны, и поэтому справедливо отношение:
Полученную формулу можно переписать в другом виде так, чтобы она содержала площадь основания, причем она будет похожа на аналогичную формулу для пирамиды:
Задание. Радиус конуса – 8 см, а его высота составляет 12 см. Определите его объем.
Решение. Здесь надо просто применить выведенную формулу:
Задание. В сосуде, имеющем форму перевернутого конуса, вода доходит до уровня, соответствующего 2/3 высоты сосуда. При этом ее объем составляет 192 мл. Каков объем всего сосуда?
Решение. В задаче фигурируют два конуса. Один из них – это сам сосуд, а второй – его часть, заполненная водой. При выведении формулы объема мы уже выяснили, что радиусы таких конусов пропорциональны их высотам:
Мы уже заметили, что формулы для объема пирамида и конуса идентичны. По сути, конус можно рассматривать как особый случай пирамиды, у которой в основании лежит не многоугольник, а окружность. Аналогично и усеченный конус можно считать особым случаем усеченной пирамиды, а поэтому для расчета его объема можно применять такую же формулу:
Задание. Вычислите объем усеченного конуса с высотой 9 и радиусами оснований 7 и 4.
Решение. Сначала находим площади оснований:
Объем шара
Пришло время разобраться и с таким телом, как шар. Здесь можно использовать тот же метод интегрирования, что и в случае с конусом и пирамидой. Но можно поступить и иначе – использовать выведенную нами для тел вращения формулу
Шар как раз является телом вращения. Он получается при вращении полуокружности вокруг диаметра, на который эта дуга опирается.
Напомним известное нам уравнение окружности, чей центр совпадает с началом координат:
Здесь надо уточнить, что если у получившейся функции впереди записан знак «+», то ее график соответствует полуокружности, находящейся над осью Ох. Если же используется знак «–», то получается уже нижняя полуокружность, расположенная под осью Ох:
В принципе мы можем поворачивать любую из этих полуокружностей вокруг Ох, но мы выберем верхнюю полуокружность. Заметим, что эта дуга начинается в точке х = – R и заканчивается в точке х = R, эти числа будут пределами интегрирования. Тогда объем шара равен:
Задание. Найдите объем шара с радиусом 6.
Решение. Подставляем радиус из условия в формулу:
Задание. В цилиндр вписан шар. Во сколько раз объем цилиндра больше объема такого шара?
Решение. Ясно, что так как шар вписан в цилиндр, то радиусы этих тел одинаковы. Обозначим этот радиус как R. Также ясно, что раз шар касается оснований цилиндра, то расстояние между ними (то есть высота цилиндра) равно двум радиусам шара:
Шаровой сегмент
Когда плоскость проходит через шар, она рассекает его на две фигуры, которые именуются шаровым сегментом. Если из центра шара О провести радиус ОА длиной R в направлении плоскости сечения, который перпендикулярен этой плоскости, то он пересечет ее какой-то точке В. Длину отрезка АВ называют высотой шарового сегмента и обозначают буквой h:
Ясно, что при этом отрезок ОВ – это расстояние от секущей плоскости (или от основания сегмента) до центра шара, причем этот отрезок имеет длину R –h.
Можно считать, что шаровой сегмент, как и шар, получается при вращении дуги окружности вокруг оси Ох. Однако если сам шар при этом ограничен плоскостями x = R и х = – R, то сегмент ограничен другими плоскостями: х = R и х = R – h. Это значит, что его объем можно вычислить с помощью интеграла также, как и объем шара, отличаться будет лишь нижний предел интегрирования:
Заметим, что шар можно рассматривать как шаровой сегмент, чья высота вдвое больше его радиуса. И действительно, если в выведенную формулу мы подставим значение h = 2R, то получим уже известную нам формулу объема шара.
Задание. Найдите объем шарового сегмента высотой 6, если он отсечен от шара радиусом 15.
Решение. Используем выведенную формулу:
Задание. Диаметр шара разделили на три равных отрезка. Через концы этих отрезков провели секущие плоскости, перпендикулярные диаметру. Чему равен объем тела, заключенного между этими двумя плоскостями (оно называется шаровым слоем), если радиус шара обозначен буквой R?
Решение. Ясно, что для вычисления объема шарового слоя достаточно вычесть из объема шара объемы двух шаровых сегментов, образующихся при проведении секущих плоскостей. Так как они разделили диаметр на три одинаковых отрезка, то высота этих сегментов будет в три раза меньше диаметра шара:
Площадь сферы
В предыдущих уроках мы уже узнали формулу для вычисления площади сферы, однако тогда мы ее не доказывали. Однако теперь мы можем ее доказать, используя формулу объема шара. Но сначала напомним саму формулу:
Впишем сферу в многогранник с n гранями. Ясно, что расстояние от граней этого многогранника до центра сферы равно радиусы сферы R. Далее построим пирамиды, чьи вершины находятся в центре сферы, а основания – это грани многогранника. Заметим, что такие пирамиды будут иметь одинаковые высоты длиной R.
Обозначим площади граней многогранника как S1, S2, S3,…Sn. Тогда объемы пирамид, построенных на этих гранях, вычисляются так:
Заметим, что в сумме эти объемы дают объем всего многогранника, а сумма площадей S1, S2, S3,…Sn – это площадь всей его поверхности. Тогда можно записать:
Теперь начнем неограниченно уменьшать размеры граней многогранника. Тогда число n будет расти, объем многогранника будет приближаться к объему шара, а площадь многогранника – к площади к сфере. Тогда и доказанное равенство можно будет записать так:
Задание. Необходимо изготовить закрытый сосуд с заранее заданным объемом V. Предлагается два варианта формы этого сосуда – шар и куб. Так как поверхность сосуда покрывается очень дорогой краской, то необходимо выбрать вариант с меньшей площадью поверхности. Какую форму для сосуда следует выбрать?
Решение. Обозначим радиус шара как R, а ребро куба как а. Тогда можно записать:
Теперь надо выяснить, какое из полученных значений больше. Для этого поделим площадь куба на площадь сферы. Если получится число, большее единицы, то площадь куба больше:
Получившееся число больше единицы, ведь 6 больше числа π, равного 3,1415926… Значит, и площадь куба больше, а потому необходимо выбрать сосуд, имеющий форму шара.
Ответ: шар.
Примечание. Более сложными математическими методами можно доказать, что если второй сосуд имеет не форму куба, а вообще любую форму, отличную от шара, то всё равно следует выбирать именно сосуд в форме шара. То есть из всех поверхностей, ограничивающих определенный объем, именно сфера имеет наименьшую площадь. Этот факт имеет и физическое следствие – капли дождя и мыльные пузыри стремятся принять форму шара, также как и любые жидкости, находящиеся в невесомости.
Итак, мы научились вычислять объемы таких тел, как конус, пирамида, шар, призма. Также помощью интегрирования можно находить объемы и ещё более сложных тел, если мы можем составить функцию, описывающую площадь их сечения.