Как найти объем солнца

Солнце является самым крупным и самым массивным объектом в Солнечной системе, но в масштабах Галактики наше светило — звезда среднего размера среди сотен миллиардов других звезд Млечного Пути.

93637eed.jpg

© photopixel | shutterstock

Радиус, диаметр и окружность

Солнце — почти идеальная сфера. Его экваториальный и полярный диаметры отличаются всего на 10 км. Средний радиус Солнца составляет 696 000 км, а его диаметр — около 1,392 млн. км. На его диске уместились бы в ряд 109 планет размером с нашу. Окружность Солнца составляет 4 366 813 км.

Солнце может быть самой большой звездой на своей территории, но по сравнению с другими звездами это светило среднего размера. Красный гигант Бетельгейзе примерно в 700 раз больше и в 14 000 раз ярче.

«Мы находили звезды, диаметр которых в 10 и в 100 раз больше, чем у нашего Солнца», — говорят ученые.

Возможно, что Солнце больше, чем считалось ранее. Ксавье Юбье, инженер и исследователь солнечного затмения, создает детализированные модели солнечных и лунных затмений, чтобы точно определить, куда упадет тень Луны во время солнечного затмения. Но когда он сопоставлял фактические фотографии и исторические наблюдения с моделями, то обнаружил, что точные формы затмения имеют смысл только в том случае, если он увеличил радиус Солнца на несколько сотен километров.

Даже Обсерватория солнечной динамики НАСА и измерения, выполненные при прохождении планет по диску Солнца, не дают абсолютно точной оценки радиуса звезды. По словам исследователя НАСА Эрни Райта, измерения, произведенные различными методами, дали результаты, которые отличаются на 1500 км.

Масса и объем

Общий объем Солнца составляет 1,4 × 10^27 кубических метров. По словам специалиста НАСА Алекса Янга, если бы Солнце было пустым внутри, то для его заполнения потребовалось бы около миллиона земных шаров.

Масса Солнца составляет 1,989 × 10^30 килограммов, что примерно в 333 000 раз больше массы Земли. На Солнце приходится 99,8 % массы всей Солнечной системы. Но вес Солнца не постоянный. Со временем солнечный ветер уносит частицы и, следовательно, уменьшает массу, удаляясь от звезды. По словам астронома Фила Плейта, каждую секунду солнечный ветер забирает в среднем 1,5 миллиона тонн материала.

Между тем, в сердце звезды масса превращается в энергию. Электростанция звезды преобразует более 4 миллионов тонн солнечного материала в энергию.

Как предполагает Плейт, Солнце потеряло в общей сложности 1024 тонны материала за 4,5 миллиарда лет жизни. На самом деле это совсем мало — всего 0,05 % от общей массы звезды.

Желтый карлик

Солнце классифицируется как звезда главной последовательности G-типа, или карликовая звезда G, или точнее, желтый карлик. В действительности Солнце — как и другие звезды G-типа — белое, но сквозь земную атмосферу кажется желтым.

Обычно звезды растут по мере взросления. Как полагают ученые, через 5 миллиардов лет Солнце начнет использовать весь водород в своем центре. Затем оно превратится в красного гиганта, который разрастется до орбит внутренних планет, включая Землю. Гелий будет достаточно горячим, чтобы сжигать углерод, а углерод будет связываться с гелием с образованием кислорода. Эти элементы будут собираться в центре Солнца. Позже оно сбросит свои внешние слои, образовав планетарную туманность и оставив после себя мертвое ядро в основном из углерода и кислорода — очень плотную и горячую белую карликовую звезду размером с Землю.

Хотя Солнце во многих отношениях типичная звезда, у него есть одна особенность, которая отличает его от большинства светил — это звезда-одиночка. У большинства звезд есть компаньон, а у некоторых даже два или три. Но, возможно, Солнце не всегда было одиноко. Новое исследование предполагает, что все звезды рождаются вместе с компаньоном. Спутник Солнца мог быть двойной звездой, расположенной в 17 раз дальше от Солнца, чем Нептун.

1. Общие сведения. Солнце занимает исключительное положение в жизни человека. Оно обеспечивает нас светом, теплом, является источником всех видов энергии, используемых людьми. Солнце влияет на магнитное поле и верхние слои атмосферы Земли, вызывая магнитные бури, ионизацию и циркуляцию атмосферы. Солнечная «погода» влияет на климат, биосферу и земную жизнь в целом.

Радиус Солнца в 109 раз больше радиуса Земли

Рисунок 109 — Соответствие между положением фраунгоферовых линий солнечного спектра и линиями химических элементов

Солнце — центральное тело Солнечной системы, типичная звезда, представляющая собой раскалённый плазменный шар. Солнце — одна из 200 млрд звёзд нашей Галактики. Детально изучая физическую природу Солнца, мы получаем важнейшие сведения о природе остальных звёзд. Диск Солнца, видимый с Земли, — ослепительно жёлтый круг со средним угловым диаметром 32′. Свет от него доходит до Земли за 8.33 мин.

Диаметр Солнца равен 1 млн 392 тыс. км (109 диаметров Земли). Объём Солнца, таким образом, более чем в миллион раз превосходит объём Земли, а его масса составляет М( bigodot ) = 1,99 • 1030 кг, что примерно равно 330 000 земных масс.

Измерения за пределами земной атмосферы показали, что на площадку 1 м2, расположенную перпендикулярно солнечным лучам, ежесекундно поступает энергия, практически не меняющаяся в течение длительного промежутка времени. Она получила название солнечной постоянной. Солнечная постоянная равна 1,37 кВт/м2.

Светимость Солнца, или полное количество энергии, излучаемое Солнцем по всем направлениям в единицу времени, определим следующим образом: величину солнечной постоянной умножим на площадь сферы с радиусом r в одну астрономическую единицу (1 а. е. =  149,6 • 109 м). Она получится равной: L( bigodot )= 4∙π∙r2∙1370 Вт/м2 = 3.85∙1026 Вт.

На Землю попадает ничтожная часть солнечной энергии, составляющая около половины миллиардной доли указанного выше значения.

2. Спектр и химический состав. Почти все наши знания о Солнце основаны на изучении его спектра. Химические элементы, которые присутствуют в атмосфере Солнца, поглощают из непрерывного спектра, излучаемого фотосферой, свет определённой частоты. В результате в непрерывном спектре появляются тёмные линии. Как мы уже отмечали, Й. Фраунгофер впервые изучил и зарисовал 576 тёмных линий солнечного спектра. Учёный правильно указал, что источник тёмных спектральных линий — солнечная атмосфера. По положениям в спектре (т. е. длинам волн) и интенсивностям этих фраунгоферовых линий можно установить, какие химические элементы присутствуют в солнечной атмосфере (рис. 109).

Уже отождествлено в видимой области спектра свыше 30 тыс. линий для 70 химических элементов, присутствующих в атмосфере Солнца. Фраунгоферовы линии по интенсивности и ширине чрезвычайно разнообразны. Анализ спектральных линий показал, что преобладающим элементом на Солнце является водород — на его долю приходится примерно 74 % массы Солнца, около 24 % приходится на гелий и около 2 % — на другие элементы.

Гравитация = давление

3. Внутреннее строение. Основываясь на данных о радиусе, массе, светимости Солнца, на физических законах (которые в силу своей универсальности применимы и в условиях других небесных тел), можно получить данные о давлении, плотности, температуре и химическом составе на разных расстояниях от центра Солнца.

Внутреннее строение Солнца

При приближении к центру Солнца растут, достигая максимальных значений, температура, давление и плотность. Химический состав Солнца тоже различается: процентное содержание водорода меньше всего в центре.

Высокое давление внутри Солнца обусловлено действием вышележащих слоёв. Силы тяготения стремятся сжать Солнце. Им противодействуют упругость горячего газа и давление излучения, идущие из недр. Эти силы стремятся расширить Солнце. Тяготение, с одной стороны, упругость газов и давление излучения, с другой стороны, уравновешивают друг друга. Равновесие имеет место во всех слоях от поверхности до центра Солнца. Такое состояние Солнца и звёзд называется гидростатическим равновесием. Эта простая идея была выдвинута в 1924 г. английским астрофизиком Артуром Эддингтоном. Она позволила составить уравнения, по которым рассчитывают модели внутреннего строения Солнца, а также других звёзд. Такие модели представляют собой совокупность параметров звёздного вещества (температура, давление, плотность и т. д.) на разных глубинах. В таблице 13 приведена так называемая модель внутреннего строения Солнца, т. е. зависимость его физических свойств от глубины.

Таблица 13 — Модель внутреннего строения Солнца

Расстояние от центра Температура Давление Плотность
R/R( bigodot ) T, K Р, Па r, х 10кг/м3
0 1,5 · 107 2,2 · 1016 150
0,2 1,0 · 107 4,6 · 1015 36
0,5 3,4 · 106 6,1 · 1013 1,3
0,8 1,3 · 106 6,2 · 1011 0,035
0,98 1,0 · 106 1,0 · 109 0,001

Рисунок 110 — Внутреннее строение Солнца

Как видно из таблицы, температура в центре Солнца (R/R( bigodot ) = 0) достигает 15 млн градусов. Именно в этой области, зоне ядерных реакций, генерируется энергия Солнца.

Рисунок 111 — Схема протон-протонной реакции: р — протон; n — нейтрон; 2D — ядро дейтерия; 3He, 4He — ядра изотопов гелия; е+ — позитрон; ν — нейтрино; γ — гамма-квант

Мы уже знаем, что солнечное вещество в основном состоит из водорода. При огромных давлениях и температурах протоны (ядра водорода) движутся со скоростями в сотни километров в секунду. Внутри Солнца (на расстояниях до 0,3 радиуса от центра) создаются условия, благоприятные для протекания термоядерных реакций превращения атомов лёгких химических элементов в атомы более тяжёлые (рис. 110).

Из ядер водорода образуется гелий. Для образования одного ядра гелия требуется 4 ядра водорода. На промежуточных стадиях образуются ядра тяжёлого водорода (дейтерия) и ядра изотопа Не3. Эта реакция называется протон-протонной (рис. 111). При реакции небольшое количество массы реагирующих ядер водорода теряется, преобразуясь в огромное количество энергии. Выделившаяся энергия поддерживает излучение Солнца. Через слои, окружающие центральную часть звезды, эта энергия передаётся наружу. В области от 0,3 до 0,7 радиуса от центра Солнца находится зона лучистого равновесия энергии, где энергия распространяется через поглощение и излучение у квантов.

Рисунок 112 — Энергия передаётся излучением от ядра Солнца. Главным переносчиком энергии у поверхности становится конвекция

Рождающиеся в центре Солнца гамма кванты имеют энергию в миллионы раз большую, чем энергия квантов видимого света. Длина волны гамма квантов очень мала. В процессе поглощения квантов атомами и дальнейшего их переизлучения происходит постепенное уменьшение их энергии и увеличение длины волны. Количество квантов во время этого процесса возрастает. Мощные гамма кванты постепенно дробятся на обладающие меньшей энергией: возникают рентгеновские, ультрафиолетовые и, наконец, видимые и инфракрасные лучи.

В области последней трети радиуса Солнца находится конвективная зона. Здесь энергия передаётся не излучением, а посредством конвекции (перемешивания, рис. 112). Причина возникновения конвекции в наружных слоях Солнца та же, что и в сосуде с кипящей водой: количество энергии, поступающее от нагревателя, гораздо больше того, которое отводится теплопроводностью. Поэтому вещество приходит в движение и само начинает переносить тепло. Конвективная зона простирается практически до самой видимой поверхности Солнца (фотосферы).

4. Источники энергии. Анализ химического состава земных, лунных пород и метеоритов указывает на то, что Солнечная система образовалась около 4,7 млрд лет назад. Солнце, по современным данным, существует около 5 млрд лет. За последние 3 млрд лет его светимость почти не изменилась. Полная энергия Солнца, выделенная за это время, равна E( bigodot )≈ L( bigodot )t = 3,5 • 1043 Дж. Разделив эту величину на полную массу Солнца, получим, что каждый килограмм солнечного вещества выделил около 1,8 • 1013 Дж энергии. Реально эта величина ещё больше, так как мы не учли первые 2 млрд лет. Ни одно химическое горючее не может обеспечить такую величину внутренней энергии, которую может выделить 1 кг солнечного вещества.

В среднем Солнце теряет примерно 4 млн тонн водорода в секунду. На первый взгляд эта величина может показаться огромной. Однако она ничтожна по сравнению с полной массой Солнца. Расчёты показывают, что водорода в недрах достаточно для поддержания свечения Солнца на современном уровне ещё на протяжении 5 млрд лет.

Главные выводы
1. Солнце — единственная звезда в Солнечной системе, представляющая собой горячий плазменный шар, диаметр которой больше диаметра Земли в 109 раз и масса которой в 330 тыс. раз больше массы Земли.
2. Количество лучистой энергии, ежесекундно поступающей от Солнца на единицу площади земной поверхности, — солнечная постоянная — практически не меняется на протяжении миллиардов лет.
3. Преобладающими химическими элементами на Солнце являются водород и гелий.
4. Источником энергии Солнца являются реакции термоядерного синтеза, протекающие в его недрах.

Контрольные вопросы и задания

1. Что такое солнечная постоянная? Как ее определили?
2. Что понимают под светимостью Солнца? Чему она равна?
3. Какие химические элементы являются преобладающими для Солнца?
4. Опишите внутреннее строение Солнца.
5. На какие зоны условно подразделяются недра Солнца? Какие процессы происходят в каждой из этих зон?
6. Что является источником солнечной энергии?
7. Зная солнечную постоянную для Земли, вычислите величину солнечной постоянной для Марса, если расстояние от Солнца до Марса 1,524 а. е.
8. В спектре Солнца большая интенсивность излучения приходится на длину волны λ = 550 нм. Определите соответствующую температуру поверхности Солнца.

Проверь себя

Выбор тем

Солнце

Основные параметры звезды. Внутреннее строение и устройство Солнца. Солнечные пятна. Воздействие солнечных вспышек на земную технику. Солнечные нейтрино.

  • 1. Основные параметры
  • 2. Строение солнца
  • 3. Устойчивость Солнца
  • 4. Внешняя структура Солнца
  • 5. Солнечные пятна
  • 6. Факельные поля
  • 7. Протуберанцы
  • 8. Солнечная грануляция
  • 9. Гелиосейсмология
  • 10. Вспышки и осцилляции
  • 11. Солнечные циклы
  • 12. Солнечная активность
  • 13. Эволюция Солнца
  • 14. Зона обитаемости
  • 15. Парадокс тусклого Солнца
  • 16. Вспышки на Солнце
  • 17. Частота мощных вспышек
  • 18. Прогноз мощных вспышек
  • 19. Воздействие вспышек на технику
  • 20. Солнечные нейтрино

Наша звезда, это тема очень благодатная с точки зрения физики. Вообще говоря, Солнце потенциально может помочь рассказать об очень разных областях физики. Все это безусловно в деталях охватить в рамках статьи в принципе не возможно, но можно очень много интересных вещей разобрать, связанных с какими-то глобальными свойствами Солнца. Поскольку, в первом приближении Солнце это газовый шар, который можно описывать в рамках ньютоновской механики и ньютоновской теории гравитации, поэтому объект такой достаточно хороший для изучения. Ещё Солнце, естественно близкий объект, поэтому достаточно хорошо изучен.

Основные параметры

Основные параметры нашей звезды очень важны в астрофизике, поскольку солнце это типичная звезда. Есть звезды в десять раз легче Солнца, есть звезды в десятки раз тяжелее Солнца, поэтому солнечные параметры: масса, светимость, радиус, иногда температура, являются стандартными. Астрофизики очень любят измерять параметры разных тел (не только звезд, но часто и галактик) именно в солнечных единицах.

Солнце - основные параметры

Масса

Масса Солнца это примерно ~2⋅1033 грамм или ~ 2⋅1030 килограмм. Светимость (мощность солнечного излучения) в эргах в секунду примерно ~4⋅1033 эрг/с.

Радиус

Радиус Солнца почти что 700 тысяч километров.

Плотность

Зная массу и радиус естественно можно посчитать среднюю плотность. Она не очень большая, чуть меньше полутора грамм в кубическом сантиметре (1.4 г/см3). Проще говоря чуть больше плотности воды. Солнце безусловно имеет достаточно неоднородное распределение плотности в зависимости от расстояния до центра звезды. В центре Солнца плотность гораздо выше, порядка 100 грамм в кубическом сантиметре (~100 г/см3), что например, в разы больше плотности самых плотных металлов на Земле.

Температура

Температура поверхности составляет примерно 6000К. Поэтому с одной стороны хочешь сказать солнце имеет такой цвет какой имеет, но важно понимать, что наше зрение в течение всей эволюции адаптировалось под излучение нашей звезды. Поэтому кривая чувствительности человеческого глаза очень похожа на спектр Солнца. Соответственно Солнце для нас кажется более ли менее белым (желтовато-белым). Это естественно отражает наше цветовосприятие. В недрах Солнца температура гораздо выше, поскольку нужна достаточная температура, для того чтобы обеспечить запуск термоядерных реакций, которые естественно и отвечают за солнечное энерговыделение и, следовательно, за устойчивость солнца.

Период вращения

Поскольку солнце это газовый шар, то вращается солнце не однородно. Недра солнца крутятся более-менее как твердое тело, а вот внешние слои крутятся с разной скоростью. Скорость вращения на экваторе и на полюсе солнца отличается и в среднем составляет около одного месяца. Люди это наблюдают уже 400 лет, благодаря присутствию пятен на поверхности солнца.

Состав

Солнце имеет достаточно стандартный состав, то есть состоит по большей части из водорода и гелия, как и вся наша вселенная в целом, если конечно мы говорим о барионом веществе. Тяжелые элементы (астрономы называют тяжелыми элементами, все элементы тяжелее гелия) приходится около 2%, может чуть меньше.

Возраст

Возраст нашего солнца чуть меньше пяти миллиардов лет (5⋅109). Полное время жизни обычно округляют до десяти миллиардов лет (~1010), но на самом деле оно немного побольше.

Строение солнца

Можно выделить три основные части во внутреннем строении солнца.

Строение Солнца

Ядро

Ядро в котором идут термоядерные реакции. Это существенный пункт который часто упускается из виду. Мы более-менее все знаем что солнце светит благодаря термоядерным реакциям, но можно спросить людей на улице. Иногда, как оказывается, люди думают что термоядерные реакции идут везде внутри солнца. И это неверно! Они идут только в ядре, которое естественно занимает лишь небольшую часть объема солнца. Это примерно четверть по радиусу. Естественно, если вы хотите пересчитать объем, то одну четвертую нужно будет возвести в третью степень и вы получите объем чуть больше одного процента от объема солнца.

Зона лучистого переноса энергии

Дальше выделившаяся в центральной части энергия должна быть перенесена наружу. Здесь уместно вспомнить основные типы теплопередачи. Теплопроводность достаточно низкая, поскольку солнце это газовый шар. Поэтому остается два других способа:

  • Перенос энергии излучением.
  • Перенос энергии конвекцией.

Что пересилит, зависит от нескольких параметров, в первую очередь от прозрачности вещества, от темпа энерговыделения. И непосредственно над ядром находится зона лучистого переноса энергии, там вещество достаточно прозрачно. Это лучистая зона, простирается примерно наполовину солнечного радиуса, от 0.25 примерно до 0.75 радиуса солнца.

При этом, не нужно себе представлять, что фотон какой-нибудь рождается в ядре и быстренько со скоростью света, от основания лучистой зоны добрался до вершины лучистой зоны. На самом деле происходит огромное количество процессов, поглощение, переизлучение фотонов. Фотон переизлучается в случайном направлении. Если мы попробуем оценить, какое время занимает средний путь, с учетом всех этих реинкарнаций фотона, от ядра до конвективной зоны, то мы получим очень большую величину, составляющей почти что 200 тысяч лет.

Конвективная зона

Во внешних слоях солнца прозрачность вещества падает, поэтому излучением передавать тепло уже не получается и внешние слои солнца конвективные. Это достаточно глубокая конвективная зона, которая занимает примерно четверть солнечного радиуса. И это очень важно! Вообще звезды, грубо можно разделить на два класса:

  • С конвективной зоной.
  • Без конвективной зоны.

Звезды чуть-чуть потяжелее солнца, внешнюю конвективную зону теряют. Это приводит к очень интересным следствиям: — Эти звезды фактически, не проявляют внешне никакой активности! Существует множество разнообразных процессов связанных с солнечной активностью: это вспышки на солнце, пятна на солнце и протуберанцы. Все эти явления связаны с присутствием конвективной зоны во внешних слоях этой звезды.

Устойчивость Солнца

Солнце — очень устойчивый объект, оно находится в состоянии гидростатического равновесия, то есть сила гравитации, уравновешена газовым давлением. О звездах говорят, что они проявляют свойства отрицательной теплоемкости. Что это означает? Если мы попробуем нагреть звезду, то температура её поверхности упадет. А если мы будем отбирать энергию у звезды, тогда температура поверхности возрастет.

Почему это происходит? Вообще в этом нет ничего удивительного, похожим образом ведут себя тела вращающиеся вокруг массивных тел под действием гравитации. Представьте крутиться спутник вокруг Земли, вокруг Луны, вокруг Солнца, неважно. И вы отбираете энергию спутника, то есть вы его тормозите и спутник переходит на более низкую орбиту, скорость вращения там будет выше. Получается что вы тормозите спутник, двигатели у вас работают против движения, но при этом скорость движения спутника возрастает.

Вот такое общее свойство систем находящихся в равновесии при участии, в данном случае сил гравитации, связано с так называемой теоремой Вириала, и звезды здесь являются очень ярким примером.

Устойчивость Солнца

Если по какой-то причине, возрастет энерговыделение в недрах солнца (что-то не так пошло с термоядерным реакциям), то как звезда на это отреагирует? В центре выделяется больше энергии, а звезда у нас газовый шар, газовый шар начнет расширяться. При этом газовый шар будет остывать. Температура внешних слоев упадет. Упадет температура и в недрах. Соответственно уменьшится энерговыделение в недрах. И таким образом, звезда быстро найдет новое положение равновесия.

Если темп термоядерных реакций упадет в недрах звезды, то произойдет обратное. То есть звезда немножко подожмётся и повысится температура в центре (может, и плотность повысится в центре) и соответственно возрастёт темп реакций. Звезда находится в таком состоянии саморегулирования. И в этом смысле, звезду типа Солнца, например очень трудно взорвать. Эволюционно наше Солнце взрываться не будет, но что существенно на такой короткой шкале времени, звезды подобные Солнцу, это хорошо саморегулирующаяся система.

Внешняя структура Солнца

Здесь можно выделить три основных внешних слоя:

Фотосфера

Фотосфера — это то что мы видим, сфера света. Эта область, где Солнце становится непрозрачным. Можно себе представить что мы смотрим снаружи, и наш взгляд упирается в поверхность Солнца. Солнце это газовый шар, никакой твердой поверхности там нет. Если вы возьмете какой-нибудь фантастически плотный тугоплавкий объект и бросите на Солнце, он без всякого стука будет падать до центра, но есть видимая поверхность солнца, и это Фотосфера.

Фотосфера Солнца
Фотосфера — видимый диск Солнца.

Хромосфера

Она находится над Фотосферой. Само название этой части солнечной атмосферы связано с тем, что при наблюдениях солнечных затмений, мы видим цвета в этом слое.

Хромосфера Солнца
Хромосфера — 0.0001 плотности фотосферы.

Солнечная корона

Солнечная корона — это самый внешний слой. Это очень большая протяженная область. Она характеризуется очень низкой плотностью, но при этом очень высокой температурой. Из-за того что плотность вещества в солнечной короне очень низкая, её плохо видно. На дневном небе солнечная корона просто так невидна, но она достаточно хорошо видна во время солнечных затмений. Кроме того, разработаны специальные приборы — хронографы, которые позволяют наблюдать солнечную корону и вне затмений. Но правда не так хорошо и красиво, как это получается когда лунный диск затмевает солнечный.

Солнечная корона
Солнечная корона разреженная, но очень горячая.

Фотосфера довольно тонкий слой, его толщина составляет несколько сотен километров, около 400 км. Хромосфера гораздо больше по своей протяженности, это тысячи километров, примерно 10 000 км. Температура поверхности Солнца (6 000K), это температура именно фотосферы. Дальше, если мы двигаемся выше в хромосферу, температура вначале немного падает (до 4 000K), а потом возрастает (до 35 000-50 000K). Температура начинает резко расти, когда мы попадаем в область солнечной короны. Там температура составляет несколько миллионов градусов, поэтому корона является, в том числе источником рентгеновского излучения.

Солнечные пятна

В фотосфере видно много интересных деталей. Самые известные детали на Солнце, это Солнечные пятна. Пятна бывают очень большие, размерами десятки тысяч километров и даже больше. Такие пятна в принципе видны невооруженным глазом, если солнце закрыто какой-нибудь дымкой. В летописях находили указания на то, что на Солнце наблюдали какие-то темные детали. Крупные пятна видимые невооружённым глазом появляются крайне редко. Поэтому таким элементом научного знания это не стало и солнечные пятна были открыты когда начались телескопические наблюдения.

Одновременно несколько астрономов, в разных странах, отметили присутствие чёрных образований на Солнце. То что эти детали находятся именно на Солнце, а ни где-то между Солнцем и Землёй было ясно потому, что можно наблюдать как эти детали смещаются, в процессе вращения Солнца вокруг своей оси. Пятна кажутся темными потому, что они холоднее. Если температура поверхности Солнца 6 000K, то температура пятна немножко ниже.

Пятна на солнце.

На самом деле пятна это очень яркие образования, но они нам кажутся черными на фоне яркого солнечного диска. Они темнее, потому что они холоднее. Холоднее, потому что области солнечных пятен, подавлен приток тепла из недр. Во внешних слоях Солнца, как мы помним, энергия переносится конвекцией. Если мы подавим конвекцию в какой-то области, то тепло подводиться к этой области не будет. Эта область начнёт остывать.

Пятна на Солнце и Магнитное поле.

В данном случае, подвод тепла за счет конвекции, подавляется магнитным полем. Пятна, обычно появляются парами. Они соединены магнитной трубкой, как на картинке ниже. Соответственно одно пятно, соответствует северному полюсу магнита, другое соответствует южному полюса магнита.

Пятна на солнце соединены магнитной трубкой.

Это магнитное поле продолжается вглубь конвективной зоны. Энергия магнитного поля в трубке оказывается достаточно большой, чтобы предотвратить конвективное перемешивание вещества. Поэтому в области пятен, не происходит притока теплого вещества из недр Солнца за счет излучения. В первую очередь температура вещества падает, и мы видим темные образования.

Ниже более детальная картина, где показана структура этой магнитной трубки и показана структура под пятном. Это очень плотная область, где есть пучок магнитных силовых линий. Соответственно подвод тепла сильно ограничен, и поэтому выше над этой областью, относительно холодное тёмное пятно.

Структура магнитной трубки солнечного пятна.

Процесс активно моделируется. В принципе, сама физика появления солнечных пятен, достаточно понятна. Другое дело, что магнитогидродинамические процессы очень сложны! Представьте, что люди погоду не могут предсказать на 7 дней вперед. А солнечная погода, усложнена еще влиянием магнитных полей. У нас на земле хорошо хоть магнитные поля не влияют на движение облаков или выпадения осадков. Магнитогидродинамические расчеты еще сложнее гидродинамических, поэтому в области исследований солнечных пятен и других форм солнечной активности есть очень много нерешенных загадок.

Благодаря обилию наблюдательных данных с наземных телескопов и со спутников, видно много интересных деталей, которые естественно нужно понять и воспроизвести в наблюдениях. Это очень интересная и очень активно развивающаяся область исследований.

На рисунке ниже показан результат численного моделирования. Цвет кодирует температуру. Сверху тёмное пятно. Под пятном — синяя область, где подвод тепла затруднён. Ниже естественно горячая область. Поскольку тепло из горячей области плохо уходят, нужно как-то по сторонам обтекать холодную область, где магнитное поле мешает нормальному переносу тепла (нормальному, с точки зрения обычного поведения внешних слоев Солнца).

Результат компьютерного моделирования солнечного пятна
Результат численного моделирования.

Ещё ниже показан процесс всплывания магнитных трубок (всплывания магнитного поля) во внешних слоях Солнца. Потихоньку такая трубка вылезает из фотосферы, и соответственно, появляются два пятна.

Солнце. Процесс всплывания магнитных трубок (всплывания магнитного поля).

И наконец изображение внешних слоев Солнца. Это данные наблюдений. Естественно это не в видимом диапазоне спектра, глазом так просто это увидеть нельзя. Но это реальное изображение, настоящей структуры. И эти аркообразные структуры вблизи солнечной поверхности, как раз объясняются присутствием магнитного поля. Более того мы привыкли к такой геометрии магнитных силовых линий.

Магнитные силовые линии на поверхности Солнца

Факельные поля

Существует интересный вопрос. Более или менее все знают, что в те периоды, когда Солнце активно, на нём образуется много пятен. Спрашивается, а что тогда светимость Солнца ниже, ведь на солнечном диске появляются темные образования? Получается немного парадоксальная ситуация. Когда Солнце более или менее активно, оно покрыто темными пятнами и светимость должна падать, но на самом деле нет! На самом деле есть яркие образования, которые называются Факельными полями. На следующей картинке вы видите изображение таких факельных полей. Они как раз хорошо видны ближе к краю солнечного диска.

Факельные поля на поверхности солнца

Картинка ещё ниже объясняет почему поля видны только на краю. Если у нас есть какие-то углубления с пониженной температурой в Солнце, то по стенкам тепло переносится достаточно интенсивно. И именно по поэтому, стенки получаются горячими. Соответственно если мы смотрим не в центр солнечного диска, а куда-то ближе к краю, то мы видим как раз эти горячие стенки.

Наблюдение Факельных полей на поверхности Солнца.

Поэтому несмотря на наличие темных областей, в период когда Солнце активно, даже в оптике, где светимость звезды очень стабильна, светимость не только не падает, но и может даже немного возрастать, что объясняется как раз присутствуем таких факельных полей.

Протуберанцы

Безусловно одними из самых красивых деталей наблюдаемых на Солнце являются гигантские протуберанцы. На картинке изображение одного из таких протуберанцев. Как описывалось выше, это арочная структура объясняется магнитным полем.

Протуберанцы на поверхности Солнца

На рисунке ниже показана динамика развития такого протуберанца. Начинает всплывать магнитное поле, поднимаются магнитные трубки, образуется пара пятен. Процесс идет дальше. Эти магнитные трубки поднимаются выше, и наконец происходит пересоединение. В результате отдельная область может окуклиться и произойдет выделение энергии. Может произойти солнечная вспышка. Произойдет выброс плазмы, которая оказалась запертой в этой области.

Образование Протуберанцев на поверхности Солнца

Такой процесс связывает воедино основные виды солнечной активности: это появления пятен, появление протуберанцев и солнечные вспышки.

Солнечная грануляция

На Солнце так же наблюдается структура грануляции. Проще говоря, Солнце постоянно кипит. Это обычно сравнивают с кипящей рисовой кашей. Отдельные зернышки имеют размеры сотни километров. Видно как на протяжении нескольких минут, рисунок расположенный ниже меняется. Если внимательно присмотреться к кадрам, которые сняты с интервалом 21 секунду, то видно что отдельные зернышки меняют свой вид. Соответственно за 2,5 минуты от первого кадра до последнего, некоторые из них исчезают и появляются новые. Яркие области (яркая часть гранулы) связаны с тем, что в этом месте поднимается конвективный поток из недр Солнца. То есть подходит более горячие вещество. А затем подойдя к поверхности, оно опускается как раз по краям гранулы. Опускается уже несколько остывшие вещество. Поэтому между яркими гранулами возникают темные прожилки, где вещество опускается вниз. И мы видим его при более низкой температуре.

Солнечная грануляция.

На следующей картинке показан очень красивый снимок солнечного пятна, на фоне грануляции. В одном масштабе вставлена Земля. То есть пятна действительно бывают крупные. Это далеко не самое крупное пятно. Напомню, что радиус солнечного диска, примерно в 107 раз больших размеров земного диска. Соответственно пятно, которое занимает по радиусу скажем один процент от солнечного диска, имеет размер немного больше чем у Земли.

Солнечное пятно на фоне солнечной грануляции (для сравнения масштаба - Земля)

Супергрануляция в хромосфере

Есть более крупное образование, называемое супергрануляция, которое связана также с конвективными процессами. Структура супергрануляции наблюдаются, при наблюдении хромосферы. Такие супер гранулы существуют дольше, это более крупные образования. Если гранула существует минуты, то здесь речь идет примерно об одном дне.

Гелиосейсмология

В последние годы появился новый метод исследования Солнца, который называется Гелиосейсмология. Этот метод удалось применить также к другим звездам. То есть, проще говоря — это звездная сейсмология. Люди могут наблюдать колебания поверхности солнца, причем не какие-то пульсации звезды в целом, а колебания на самых разных масштабах. Соответственно это могут быть более быстрые колебания и более медленные. Для Солнца, самое крупномасштабное колебание, имеет периоды около сотен секунд, но есть колебания и мелкомасштабные. И это дыхание поверхности Солнца и других звезд, позволяет очень эффективно исследовать их недры.

Возбуждение колебаний

Это всё существует благодаря тому, что существует конвекция во внешних слоях. За счёт конвекции во внешних слоях Солнца, возникают колебания, возникают пульсации и они начинают распространяться вглубь звезды. При движении вглубь, растет плотность, и поэтому растет скорость звука. Так что в какой-то момент, колебания отражаются и выходят на поверхность. В зависимости от начальных свойств колебаний, в зависимости от того как они распространялись, они выдут дальше или близко от того места где они возникали. Опустившись глубже в недра, они выдут на поверхность дальше от того маста, где они были возбуждены.

Гелиосейсмология - Возбуждение колебаний внутри Солнца

Поскольку конвекция охватывает все внешние слои и конвективные процессы имеют разные пространственные масштабы, то возбуждается большое количество колебаний во внешних частях звезды. Важно что эти колебания отражают процессы происходящие в недрах, поскольку волны распространялись вглубь Солнца, отразились и вышли наружу. Таким образом, как бы происходит зондирование солнечных недр. И моделируя процессы наблюдаемое снаружи, моделируя как движется солнечная поверхность на разных масштабах, можно узнавать как устроены солнечные недры.

По сути речь идет о том, как меняется скорость звука с глубиной. Но в данном случае данные по скорости звука, поскольку Солнце не такой уж безумно сложный объект, удается связать с более привычными физическими параметрами, и таким образом восстановить внутреннюю структуру солнца практически вплоть до ядра.

Магнитные поля в недрах Красных Гигантов

Астросейсмология, то есть сейсмология в применении уже не к Солнцу, а к другим звездам, в частности помогает измерять магнитные поля в недрах других звезд.

  • Наблюдался следующий эффект:
    • Наблюдались красные гиганты, то есть звезды уже про эволюционировавшие. Звезды в ядрах которых закончились реакции превращения водорода в гелий. Водород начинает гореть в слоевом источнике над ядром. Звезда распухает и ее радиус может превышать на этой стадии 100 миллионов километров. Такие звезды имеют огромные конвективные оболочки. Соответственно конвекция также возбуждает колебания во внешних слоях, колебания уходят внутрь, затем они должны отражаться и выходить наружу. Но оказалось что у некоторых красных гигантов не хватает вернувшихся колебаний, то есть какие-то колебания куда-то пропали.
  • Детальный анализ этой ситуации показал, что по всей видимости происходит следующий процесс:
    • Возбуждённые на поверхности волны, идут вглубь, в недра звезды. Внутри волны (поскольку это волны в плазме) могут взаимодействовать с магнитным полем. И здесь они превращаются в другой тип плазменных колебаний и выйти наружу уже не могут. Таким образом, часть этих колебаний оказывается как бы перехвачена внутренними слоями звезды. Процесс в первую очередь зависит от параметров магнитного поля в недрах звезды. Таким образом удается измерять, ну или по-крайней мере получать хорошие оценки, магнитного поля в недрах красных гигантов, наблюдая колебания поверхности этих объектов.
Магнитные поля в недрах Красных Гигантов

Вспышки и осцилляции

Кроме возбуждения солнечных осцилляции и конвекции, существуют может быть более интересные случаи. Естественно просто большое энерговыделение на поверхности Солнца, точно также будет приводить к возбуждению волн. Волны будут уходить в недра, отражаться во внутренних слоях, и выходить наружу более или менее далеко, от той точки из которой они были испущены. Таким мощным источником энергии, служат солнечные вспышки. Соответственно мощная вспышка вызывает распространение звуковых волн. Зная где и когда процесс начался, можно наблюдать как эти волны распространяются по Солнцу. В этом случае это действительно прямое зондирование недр Солнца.

Мощные вспышки на Солнце порождают волны во внешних слоях и осцилляции.

Это примерно как в 70-80 годы довольно много информации о земных недрах было получено благодаря проведению подземных ядерных взрывов. Подземные ядерные испытания проводившиеся в разных странах, о которых было принято заявлять, вызывали сейсмические волны, те в свою очередь распространялись в недра Земли. Далее, все сейсмостанции в разных точках Земли, регистрировали время прихода этих волн, их интенсивность. Это позволяло проводить, в каком-то роде томографию земных недр. На Солнце все это происходит благодаря солнечным вспышкам.

Солнечные циклы

Солнечные вспышки один из видов солнечной активности. Достаточно давно наблюдения начали показывать, что солнечная активность имеет период. Это не очень строгий период, речь идёт об 11-летнем основном цикле солнечной активности. Но иногда период длится 11 лет, а иногда 10 и 12. Могут быть и более существенные отклонения. Цикл один не похож на цикл другой и кроме того квазипериодический процесс солнечной активности просто выключается.

Солнечная активность

Солнечная активность выражается в большом количестве феноменов. Наверное самое известное это солнечные пятна, в то время, когда солнце активно пятен больше. Соответственно будет больше вспышек на солнце. Будет больше протуберанцев. Будет больше выбросов. Именно поэтому во время максимума солнечной активности, земная магнитосфера подвергается более существенному влиянию со стороны Солнца. Происходят яркие полярные сияния.

Распространяясь в межпланетной среде выбрасываемые сгустки плазмы (корональные выбросы) могут воздействовать на космические аппараты. На Земле, наша магнитосфера в существенной степени защищает нас от данного воздействия солнца. Космические аппараты на низких орбитах точно также защищены магнитным полем земли.

Но если вы отправляете пилотируемую экспедицию на Марс, то нужно заранее подумать о том, что корабль может попасть в зону коронального выброса. В этом случаи не только аппаратура, но и экипаж на борту будут подвергаться радиационному влиянию. Это действительно обсуждаемая проблема. Кроме понятной идеи лететь во время солнечных минимумов (когда вероятность такой вспышки наименьшая), продумываются на случай экстренной ситуации какие-то дополнительные средств защиты на борту. Где экипаж может укрыться на какое-то время пока они не пролетят сам корональный выброс.

Ниже на картинке Солнце во время максимума и минимума солнечной активности. Соответственно во время минимума пятен практически нет, во время максимум пятен на Солнце много.

Солнечные пятна на солнечном максимуме и минимуме.
Источник: NASA
Ультрафиолетовое излучение чуть выше поверхности Солнца на солнечном максимуме и минимуме.
Источник: NASA

Ещё ниже картинка на которой показан цикл, как раз 11 лет солнечной активности. Два верхних снимка, это два минимума. В центре — максимум солнечной активности. Размер диска естественно всё время одного и того же размера. Так что размеры солнечного диска здесь меняются только для красоты. Существенно то, что появляется большое количество активных областей на Солнце, во время солнечного максимума.

11-летний цикл жизни Солнца
Источник: NASA

Переворачивание магнитного поля

Практически все проявления солнечной активности, так или иначе связаны с магнитным полем. Сложное поведение магнитного поля, появление областей с очень большой напряженностью магнитного поля (как в области пятен), связано с существованием внешней конвективной зоны. Соответственно если бы не было этой зоны, то никакой активности не было бы. У звезд у которых эта зона еще глубже, например красные карлики, могут быть целиком конвективным. Несмотря на то что звезды сами меньше, светимость их может быть в сотни раз меньше светимости Солнца, там возможны очень активные процессы. Там возможны более мощные вспышки чем на нашей звезде.

За время солнечного цикла, который на самом деле не 11-летний, а 22-летний происходит переворот магнитного поля во внешних слоях Солнца. 11 лет северный магнитный полюс меняется с южным, и еще 11 лет полюса возвращаются в исходное состояние. На активности этот переход (север-юг, юг-север) проявляется примерно идентична. По внешним индикаторам (например: по количеству вспышек, по количеству пятен, по потоку в радиодиапазоне) мы видим именно 11-летний цикл. Но если мы проводим измерения не просто величины магнитного поля, но и направление, то тогда мы будем видеть 22-летний цикл. На картинке показаны результаты компьютерного моделирования этого процесса.

Инверсия магнитного поля Солнца
Источник: NASA

Маундеровский минимум

Благодаря наблюдениям пятен в течение нескольких веков, удается достаточно хорошо оценить солнечную активность на масштабе времени сотен лет. Ниже показан график солнечной активности. По вертикальной оси отложено количество солнечных пятен. Если посмотреть на период ближе к нашему времени, то можно увидеть 11-летний цикл. Причем видно, что отдельные циклы могут заметно отличаться друг от друга.

Видно периоды времени, когда пятен на Солнце было крайне мало. Особенно выделяется так называемые Маундеровский минимум (Maunder Minimum) который имел место во второй половине 17 века, когда на Солнце практически не было пятен. Вообще, людям повезло, что телескоп был изобретен в начале 17 века. Если бы его изобрели на 40-50 лет попозже, то открытие солнечных пятен пришлось бы ждать еще примерно полвека, пока они достаточно большом количестве не начали бы там появляться.

Есть менее выраженные периоды подавленной активности — минимум Дальтона в начале 19 века. Сейчас мы наоборот находимся в эпоху относительного максимума солнечной активности. Как все это сказывается на Земле? — на самом деле большой вопрос. Безусловно это сказывается на процессах в магнитосфере. Если бы в 17 веке летали искусственные спутники Земли, то они подвергались бы меньшему влиянию. Можно было бы более безопасно слетать на Марс.

Если мы говорим об отклике климата на такие изменения солнечной активности, то здесь остается очень много вопросов. Хотя например, любят обращать внимание на то, что во время минимума Маундера, температура на Земле была ниже. Были действительно, очень холодные зимы, достаточно прохладно лето. На самом деле, эти данные в основном касаются Европы.

Как вел себя глобальный климат, известным гораздо хуже. Есть довольно противоречивые данные по этому поводу. Так что прямо сказать, что мы имеем очень четкую информацию о том, как солнечная активность влияет на земной климат нельзя. Влияние это — относительно невелико. Всё-таки у нас есть более существенные процессы, связанные именно с самой нашей климатической системой, но и может быть с нашим влиянием на неё.

Активность на тысячелетних масштабах

Пятна наблюдают четыре века, но можно попробовать восстановить активность солнца на гораздо более протяженном периоде времени. Тогда конечно речь не идет об 11 летних циклах, а речь идет о периодах относительно повышенной активности и пониженной. То есть, мы можем искать аналоги Маундеровских минимумов, или современного относительного максимума — на масштабе в тысячи лет.

Связано это с изотопным анализом. Дело в том, что некоторые редкие нетипичные изотопы химических элементов, образуются в земной атмосфере благодаря взаимодействию с частицами космических лучей. Это так называемый — галактические космические лучи. Они прилетают в солнечную систему из вне. Солнечная активность препятствует проникновению этих космических лучей вглубь солнечной системы. Соответственно, если солнечная активность повышена, то тогда земная атмосфера подвергается меньшему воздействию этих самых — галактических космических лучей. Наоборот, когда солнечная активность понижена, то поток галактических космических лучей, на орбите земли возрастает. Это сказывается на количестве соответствующих изотопов.

Эти изотопы можно изучать например по ледяным кернам, которые где-нибудь в Гренландии или в Антарктиде достаются. Лёд накапливался постепенно, слоями. Люди знают какой слой, какому времени соответствует. Проанализировав количество соответствующих изотопов, люди могут понять как менялась солнечная активность, на масштабе времени в тысячи лет. На графиках ниже, вы увидите, что было довольно много периодов пониженной солнечной активности, и какое-то меньшее количество периодов повышенной солнечной активности.

Эволюция Солнца

На самых больших масштабах — миллиардах лет, поведение Солнца связано с изменением темпа термоядерных реакций, с исчерпанием запасов водорода в недрах Солнца. На двух графиках ниже как раз это показано. Первый график это диаграмма Герцшпрунга — Рассела (одна из основных астрономических диаграмм). По горизонтальной оси, отложена температура звезды, причем отложена в обратную сторону. Астрономы люди странные, вот и температуру они откладывают так, что та растет влево, а ни вправо. А по вертикальной оси, отложена светимость.

Звезда рождается на главной последовательности (здесь это черная линия), соответственно звезда рождается в какой-то точке. Начинаются реакции превращения водорода в гелий в ядре. Звезда довольно долго (наше солнце около 10 миллиардов лет) сидит в этой точке практически неподвижно. Когда водород в ядре заканчивается, то начинают происходить всякие превращения. Наше солнце будет превращаться в Красного гиганта. Резко возрастет его радиус и размеры Солнца станут примерно равны радиусу земной орбиты. Естественно при этом возрастает светимость звезды. Возрастает в сотни раз. То есть температура на Земле сильно повысится. Соответственно примерно будет равна температуре поверхности разбухшего Солнца, то есть нескольким тысячам градусов. Естественно никакая жизнь будет невозможна. Интересная новость состоит в том, что жизнь на Земле исчезнет немножко раньше.

Давайте разберёмся почему! На самом деле, пока звезда сидит на главной последовательности — её параметры немного меняются. Следующий график как раз это отражает. По горизонтальной оси отложено время в миллиардах лет. От рождения солнца отмечен современный момент. Три кривые показывают изменение светимости, радиуса Солнца и температуру. Нас больше всего интересует светимость. Светимость Солнца немного растет со временем, потому что растет радиус. Температура при этом практически не меняется, в течение многих миллиардов лет. Но важно, что на масштабе миллиардов лет, Солнце становятся более мощным. Это понемногу, на масштабах как минимум сотен миллионов лет сказывается на Земле. За счёт изменения светимости Солнца на Земле понемногу растет температура.

Если смотреть от очень раннего периода эволюции Солнца, то светимость Солнца выросла почти в полтора раза. То есть светимость молодого Солнца, составляла 70% от современной. Процесс будет продолжаться и дальше. Земля находятся близко к границе зоны обитаемости. Поэтому дальнейшее повышение температуры Солнца, приведет к радикальному изменению земного климата, которое сделает существование жизни как мы ее знаем сейчас — невозможным.

Зона обитаемости

Зона обитаемости — это довольно условная область вокруг звезды, где на землеподобной планете с атмосферой, возможно существование жидкой воды. Для существования мощной биосферы, не спрятанной где-то на глубине или в каких нибудь подземных озерах, нужно чтобы на поверхности планеты могла существовать жидкая вода. Планета с наличием жидкой воды на поверхности не можем находиться слишком далеко от звезды, иначе температура окажется слишком низкой, и вода замерзнет. И наоборот если она будет находиться ближе — вода испарится, начнутся необратимые процессы в атмосфере, запустится очень мощный парниковый эффект, так называемый — неудержимый парниковый эффект. В Солнечной системе примером такого поведения является Венера. Это планета которая во многих отношениях похожа на Землю, но имеет совершенно жуткие климатические условия на поверхности, что связано как раз с тем, что Венера немного ближе к Солнцу чем Земля.

Зона обитаемости в окрестностях звезды

Соответственно у более слабых звезд — зона обитаемости находятся ближе к звезде. У более массивных, более горячих звезд — она находится дальше. Размеры зоны обитаемости, если известно как она расположена в Солнечной системе, можно в первом приближении легко посчитать. С ростом светимости звезды, нужно отодвинуть зону обитаемости так, чтобы поток упал в такое же количество раз, во сколько раз возросла светимость звезды. Если это необходимо перевести в расстояние от планеты до звезды, то нужно извлечь корень, потому что поток излучения падает с ростом расстояния как квадрат этой величины (квадрат расстояния).

Расстояние от звезды до зоны обитаемости

Ниже простая формула для расчета потока. «R*» — это радиус звезды в единицах солнечного радиуса. «T*» это температура звезды (поток очень сильно зависит от температуры). «a» это расстояние планеты от звезды. Кружок с крестиком — это символ Земли, соответственно — это расстояние от Земли до Солнца.

Формула для расчета потока (зона обитаемости)

Сейчас людям известно довольно большое количество планет у других звезд — экзопланет в зонах обитаемости. Расчет зоны обитаемости это очень непростое дело, на графике ниже нарисовано два варианта зоны обитаемости. Но как бы то ни было, даже если мы используем довольно консервативный подход, то достаточно большое количество известных планет попадает в зону обитаемости вокруг своих звезд.

Экзопланеты - зона обитаемости (NASA Kepler Mission)

Парадокс тусклого Солнца

Существует интересный парадокс в Солнечной системе, то есть прямо на Земле. Связан он с тем, что молодое Солнце излучало гораздо меньше, но при этом на земле уже миллиарды лет назад существовала жидкая вода. Это на самом деле до конца нерешенная проблема, которая называется парадокс тусклого Солнца. Скорее всего решение проблемы связано с наличием каких-то парниковых газов в атмосфере древней Земли, которые позволяли иметь достаточно высокую температуру поверхности для того, чтобы на земле могла существовать жидкая вода. Поэтому собственно, мы и наслаждаемся сейчас не только хорошим климатом, но и достаточно развитой биосферой, у которой было больше трёх миллиардов лет для биологической эволюции. Но закончится все это примерно через миллиард лет, когда температура на Земле из-за светимости Солнца возрастет настолько, что запустятся необратимые климатические изменения, которые приведут к резкому повышению температуры на поверхности нашей планеты.

Вспышки на Солнце

Существует большое количество самых разнообразных негативных сценариев — называемых страшилками, которые связаны с каким-нибудь вредным космическим воздействием на Землю: взрыв близкой звезды, падение астероида. На самом деле, всё это — события редкие. Маловероятно, что достаточно крупный астероид, упадет куда-нибудь не середину Тихого океана, а на достаточно населённую область. Но есть процессы которые совершенно точно происходят. Происходят довольно часто. Это как раз мощные солнечные вспышки. На картинке ниже, ультрафиолетовое изображение одной из недавних мощных вспышек.

Корональные выбросы

Вспышки, часто приводят к коронарным выбросам. Следующее изображение — мощного коронального выброса. Достаточно большой объем плазмы при этом выбрасывается — 1015 грамм. Это масса небольшого астероида или масса кометы. До земли такой вопрос добирается за несколько дней. Поэтому в принципе у нас будет время, чтобы подготовиться.

Существенно понимать, что выбросов происходит много, но далеко не все они попадают на Землю. Поэтому не любая солнечная активность, обязательно потенциально опасна для нас. Тем не менее, бывают мощные вспышки, которые порождают выбросы попадающие на Землю. А те в свою очередь вызывают всякие неприятные последствия. Эти последствия связаны практически только с поведением технических систем. То есть человечество, до недавнего времени, счастливо жило и по всей видимости переживало очень мощные солнечные вспышки, ничего об этом не зная. Причём не зная вообще о том, что что-то подобное происходит. Но когда начали появляться, достаточно глобальные технические устройства, то люди стали это замечать.

Событие Кэррингтона

Первое такое событие произошло в 1859 году. Вспышку на солнце, просто в белом свете яркую вспышку, увидели несколько астрономов-любителей. Один из астрономов — был Кэррингтон. Соответственно событие, в честь него называется — событием Кэррингтона. На Солнце наблюдался рост очень крупной группы пятен, затем в области этой группы произошла мощная вспышка. На Земле в этот момент, существовали достаточно протяжённые телеграфные линии. Грубо говоря это просто длинный провод. То есть, есть длинный проводник. А такой мощный корональный выброс начинает влиять на магнитосферу Земли, то есть у нас начинается изменение глобального магнитного поля Земли. Изменение магнитного поля, естественно приводит к появлению тока в проводниках. И чем длиннее у нас проводник, тем заметнее будет эффект.

Соответственно в телеграфных линиях пошел большой ток, на которой они не были рассчитаны. И это приводило к авариям. Телеграфная связь прервалась и погорели телеграфные аппараты, потому что по этому проводу протекал очень мощный электрический ток. Телеграфисты получали мощные удары током, если не соблюдали технику безопасности, а остальные жители земли, наслаждались очень яркими, красивыми полярными сияниями, в том числе и там, где их никогда не видели. То есть почти что, в экваториальных областях, где-нибудь в области Карибского моря. Это очень мощная вспышка. С тех пор на Солнце, такие мощные вспышки не наблюдались. На солнце это происходит редко, зато есть большое количество звезд, более-менее похожих на Солнце.

Мощные вспышки у других звёзд

В последние годы, удавалось проводить мониторинг очень большого количества звезд на предмет вспышек. Большой вклад внес спутник Кеплер. Он был предназначен для поиска экзопланет, но искал он их путем отслеживания изменений блеска большого количества звёзд. Это примерно около 200 тысяч звезд разных спектральных классов, разных типов. В большом числе случаев он регистрировал мощные вспышки на звездах. На графике ниже очень мощные вспышки на одной из звезд.

Мощные вспышки на поверхности звезды. Данные спутника Кеплер.

Чем легче звезда тем она активнее, что связано с наличием более протяженной конвективной оболочки. Соответственно там могут генерироваться более сильные магнитные поля на поверхности. Эти поля связаны с более мощными токами. И грубо говоря, короткое замыкание в этой системе токов, приводят к очень мощному выделению энергии — к яркой вспышке.

Частота мощных вспышек

Вернемся к солнцу. Насколько часто, такие вспышки происходят? На графике по горизонтальной оси отложена энергия вспышек в эргах (erg). По вертикальной оси частота. Правая нижняя часть графика это данные не по Солнцу, а по супер вспышкам на других звездах. Видно что данные по Солнцу (это все остальные пунктирные линии) и данные по другим звездам, умеренно не плохо укладываются на прямую линию в двойном логарифмическом масштабе. То есть степенная зависимость количества вспышек от энергии вспышки. Пропорциональность показана: частота вспышек пропорциональна энергии в степени -1.8 примерно. Для Солнца, для меньших энергий, обнаружена похожая зависимость, там показатель степени -1.53.

Соответственно если верить этой зависимости, то можно посчитать как часто на Солнце происходят вспышки, в том числе и очень большой мощности. И ответ, получается такой: — очень мощные вспышки на Солнце, должны происходить примерно раз в тысячу лет. Вообще говоря, это не такое уж безумно редкое событие. У нас технические устройства существуют уже в полторы сотни лет. С достаточно большой вероятностью за это время должна была произойти одна мощная вспышка. Последнее такое мощное событие — это событие Кэррингтона.

Прогноз мощных вспышек

Существенно что вспышки не могут возникать на пустом месте. Должна возникнуть мощная группа солнечных пятен. И чем больше эта группа пятен накапливает в себе магнитной энергии, тем мощнее будет вспышка. У Солнца есть, по крайней мере сейчас, некий естественный предел, связанный с 11-летним циклом активности. Сейчас Солнце по всей видимости не способно произвести очень мощную вспышку просто потому, что динамика магнитного поля в Солнца не позволит долго накапливать энергию.

Поэтому сценарий когда внезапно на Солнце происходит такая вспышка совершенно невозможен. Для того, чтобы это стало возможным, должны появится существенные отклонения в поведении солнечной активности на масштабах десятка лет. Затем люди должны увидеть, что на Солнце начинает расти большая группа пятен, она может расти десятки лет. И вот тогда, можно будет предположить, что произойдет достаточно мощная вспышка. Ещё один повод немножко успокоиться состоит в том, что выброс может не попасть на Землю — вероятность попасть не очень велика. С этой точки зрения, хотя в принципе это реалистичный сценарий, по всей видимости в ближайшие годы очень мощные вспышки на Солнце нам не грозят.

Тем не менее вспышки на звездах более или менее похожих на Солнце наблюдаются, и в вопросе генерации таких мощных вспышек остается много неясностей. В этом направлении продолжается работа. Как бы то ни было, не будет лишним повторить, что люди должны увидеть рост больших групп пятен. Это похоже подтверждается в наблюдениях других звезд.

Воздействие вспышек на технику

Менее мощные, происходящее на Солнце вспышки, периодически влияют на земную технику. Но многие влияния мы не замечаем, поскольку последние десятилетия люди знают о том, что это может происходить. Поэтому человечество до некоторой степени к этому готово. Различные крупномасштабные системы: энергоснабжения, газопроводов, нефтепроводов, то есть все большие очень длинные железки, как правило, более ли менее подготовлены к таким событиям. Последний крупный сбой, произошел лет двадцать назад в Канаде. Как раз один из магнитных полюсов Земли находится примерно там, поэтому север Канады подвергается очень мощному воздействию во время солнечных вспышек. Неудивительно, что именно там наблюдался очень крупный сбой. После этого все соответствующие системы страны были адаптированы для того, чтобы такие вспышки переживать.

Нарушения в электросетях США, связанные с геомагнитной активностью Солнца
Возмущения в электросетях США. Источник: arxiv.org

Вспышка в 8 веке

Анализ содержания углерода-14 (редкого изотопа) показывает, что чуть больше тысячи лет назад, возможно произошла мощная вспышка на Солнце. Если оценки события верны, то это действительно должна была быть вспышка в десятки раз мощнее чем те, что люди сейчас наблюдают на Солнце. И это соответствует тому, что наблюдают на звёздах похожих на Солнце.

Анализ содержаний углерода-14, в 774-775 гг.

Солнечные нейтрино

Мы начали с того, что источником энергии Солнца являются термоядерные реакции. На сегодняшний день это не просто модель, а это экспериментально установленный факт. Превращение водорода в гелий, это не единомоментный процесс, так как нужно начать с четырех протонов и получить ядро гелия. Соответственно должна пройти целая цепочка реакций. Есть несколько вариантов протекания этой реакции. В ходе некоторых процессов, испускаются электронные нейтрино. Это частицы которые легко покидают недра Солнца.

В последние десятилетия экспериментаторы на земле научились их довольно хорошо и эффективно ловить. Таким образом, у людей есть метод, для непосредственной регистрации частиц, которые были испущены в недрах Солнца. Причем эти частицы, не так как фотоны 170 тысяч лет выбираются из солнечных недр, а мгновенно. Частицы легкие, двигаются они практически со скоростью света — мгновенно покидают Солнце. Произошла реакция в недрах Солнца — меньше чем через 9 минут нейтрино будет у нас на земле, на детекторе. Его можно поймать и идентифицировать как нейтрино от Солнца. Таким образом можно измерять темп разных реакций в недрах Солнца. На данный момент получены данные о всех типах солнечных реакций.

Регистрация нейтрино

Нейтрино регистрирует в экспериментах самых разных типов. На графике ниже по горизонтальной оси — энергия нейтрино, по вертикальной оси — поток нейтрино. У разных кривых и линий, написаны реакции в которых эти нейтрино испускаются. Например «pp» вверху слева — это самая первая протон-протонная реакция с которой все и начинается. Такая реакция порождает нейтринной низкой энергии. Их очень трудно ловить. Их очень много появляется, поток большой, но энергия маленькая. Их совсем недавно удалось поймать. И наоборот есть нейтрино высоких энергий, которые научились регистрировать ещё 50 лет назад.

Детектирование нейтрино в зависимости от потока и энергии

Когда 50 лет назад начались эксперименты с солнечными нейтрино, возникла интересная проблема — проблема дефицита солнечных нейтрино. Она благополучно нашла свое решение, основанное на очень интересной физике нейтрино — нейтринных осцилляциях. Это в некотором смысле превращение нейтрино одного сорта в другой. Это было отмечено нобелевской премией по физике.

Интересно то, что есть способ получать как бы изображения (данные) из солнечных недр. На картинке ниже, наверное в кавычках «фотография Солнца в нейтрино». На самом деле пространственное разрешение здесь ни о чём не говорит, то есть нельзя сказать что из центра Солнца испускается больше нейтрино чем на расстоянии 0.2 солнечных радиуса от него. Но некоторые детекторы такие как Super-Kamiokande в Японии очень хорошо, прям по направлению идентифицируют, что частица прилетела от Солнца. Поэтому есть прямой способ изучения того, что происходит в солнечных недрах.

Нейтринное изображение Солнца (Super-Kamiokande)

Последним важным достижением несколько лет назад стала регистрация нейтрино низкой энергии, нейтрино самой первой протон-протонной реакции. Это было сделано с помощью детектора Борексино. С этим результатом возникла полная подтверждённая ясность того как устроены термоядерные реакции в недрах Солнца, с каким темпом они протекают, какие цепочки какой вклад вносят. Сейчас это хорошо восстановленная картина.

Существует много вопросов и задаток связанных с солнечной активностью, с поведением внешних слоев, с тем как происходит солнечные вспышки, как в деталях энергия закачивается в солнечную корону. Это очень бурная область исследований где важны: и наземные наблюдения, и спутниковые наблюдения. Совсем недавно был запущен спутник Паркер для изучения внешних слоев Солнца, который изучит ближе чем все другие спутники наше Солнце.

Солнечная физика, солнечная астрофизика, это очень активно развивающаяся область науки, интегрирующая в себе очень разные части физики. Поэтому это очень интересная область исследования.

Logo ISR-SCI

На чтение 16 мин Просмотров 18к.

Солнце – ближайшая звезда к Земле. Это также и источник жизни на планете. На заре развития цивилизаций у многих народов именно бог Солнца был самым главным, а все другие божества только подчинялись ему. Характерно, что мифы разных народов по своему объясняли происхождение дневной звезды и ее роль. Сегодня же, в ХХI веке, астрономия может рассказать о Солнце куда больше, чем древние мифы. Поэтому в статье мы расскажем что же происходит внутри звезды и, самое главное: что же будет с ней спустя миллионы лет.

Звезда Солнце

Содержание

  1. Общая характеристика
  2. Таблица основных физических характеристик Солнца
  3. Состав Солнца
  4. Строение Солнца
  5. Внутренние слои Солнца
  6. Ядро
  7. Зона лучистого переноса
  8. Зона конвективного переноса
  9. Атмосфера
  10. Фотосфера
  11. Хромосфера
  12. Корона
  13. Магнитное поле
  14. Жизненный цикл Солнца
  15. Орбита и место расположения Солнца в галактике Млечный Путь
  16. Солнечный ветер
  17. Солнечные циклы и активность
  18. Исследование Солнца
  19. Интересные факты о Солнце
  20. Как возникло Солнце и сколько ему лет
  21. Почему светит Солнце
  22. Солнечное затмение

Общая характеристика

Характеристики Солнца важны для понимания его места среди других подобных светил. Солнце являет собой огромный газовый шар, нагретый до невообразимо высоких температур. Диаметр Солнца – 1 млн. 392 тыс. 700 км. Эта величина в 109 раз больше земной. Масса Солнца внушительна и составляет около двух нонниллионов килограмм (1,98⋅1030 кг). Это в 332 946 раз больше земной массы. Интересно, что на массу всех планет, спутников, астероидов, комет, межпланетного газа и пыли, находящихся в Солнечной системе, приходится всего лишь 0,13%. Плотность Солнца несколько больше воды и равна 1,4 г/см3.

Мы наблюдаем Солнце как диск желтого цвета, но на самом деле оно так не выглядит. Звезда излучает белый цвет. Однако у поверхности Земли Солнце выглядит как диск желтого оттенка из-за рассеивания в атмосфере и поглощения части излучения.

В Млечном пути находятся сотни миллиардов таких же звезд, подобных Солнцу. Самая близкая к нашей планете звезда – Проксима Центавра находится на расстоянии свыше четырех световых лет (или около 40 трлн. км).

Солнце – это звезда класса «желтый карлик» — G2V. Это значит, что во Вселенной есть гораздо большие звезды. Так, в Галактике есть объекты, радиус которых в 2 тыс. раз больше солнечного. Радиус Бетельгейзе – ближайшего к нам красного сверхгиганта больше солнечного примерно в 1200 раз.

Если изобразить схему Солнечной системы и поместить внутри нее Бетельгейзе, то она будет простираться до орбиты Юпитера.

Размер Бетельгейзе

Бетельгейзе помещенная в центре Солнечной системы

Расстояние до Солнца от Земли в среднем составляет 150 млн. км — оно равняется одной астрономической единице. Видимый угловой диаметр для наблюдателя с земной поверхности немногим превышает половину градуса. Звезда находится примерно в 26 тыс. световых лет от центра Млечного Пути. Скорость вращения  Солнца вокруг центра галактики – 230 километров в секунду.

Источник тепла и света Солнца – термоядерные реакции. После слияния четырех протонов образуется один атом гелия и энергия. В недрах Солнца происходят и другие реакции, в результате которых, например, образуются атомы металлов.

Приблизительно до 150 астрономических единиц в космосе доминирует так называемый солнечный ветер.

Солнце обращается вокруг своей оси. Вращение это неодинаково. В районе экватора звезда делает один оборот за 25 суток, а в районе полюсов – за 34 суток.

Таблица основных физических характеристик Солнца

Значение Основные характеристики
Диаметр Солнца в километрах 1 миллион 392 тыс.
Протяженность экватора 4,37 млн. км
Масса приблизительно 2•1027 тонн
Площадь поверхности 6 трлн. кв. км
Объем Солнца 1,41•1018 км³
Температура поверхности 6000 °С
Температура в центре Солнца 15 700 000 °С
Экваториальный период вращения вокруг оси 25 суток
Период вращения вокруг оси на полюсах 34 суток
Наклон оси вращения к эклиптике 7,25°
Наименьшее удаление до Земли (перигелий) 147,098 млн. км
Наибольшее удаление до Земли (афелий) 152,098  млн. км
Вторая космическая скорость 617 км/с
Ускорение свободного падения 274 м/с2
Мощность излучения 3,828•1026 ватт

Состав Солнца

Солнце состоит из водорода (на его долю приходится  свыше 73 % массы) и гелия (около 25%). Другие вещества присутствуют в ничтожном количестве (около 1,5%). В числе этих полутора процентов – азот, кислород, железо, никель, магний и проч. Химический состав Солнца постоянно изменяется по причине постоянно происходящих реакций ядерного синтеза. Массовая доля водорода неуклонно уменьшается, превращаясь в гелий. Гелий также «выгорает», превращаясь в более тяжелые химические элементы.

Строение Солнца

Ошибочно мнение, будто дневная звезда состоит только из одного разогретого вещества. Строение Солнца довольно сложное. В нем различают шесть слоев. Причем 3 из них внутренние, а 3 образуют так называемую атмосферу. Узнаем подробнее, из чего состоит Солнце.

Внутренние слои Солнца

Внутреннее строение Солнца  долгое время было загадкой для астрономов. Только в ХХ веке ее удалось разгадать. Внутри Солнца находятся следующие слои.

Ядро

Это центральная часть звезды. Здесь происходят реакции ядерного синтеза. Радиус ядра – примерно 150 тыс. км.

Температура внутри Солнца доходит до невообразимых 15 миллионов градусов Кельвина. Давление же здесь составляет около 300 миллиардов атмосфер (свыше 30 000 трлн. Па). Из-за этого плотность солнечного ядра достигает 150 кг/см3 (что в 6,67 раз больше наиболее тяжелого металла на Земле – осмия).

Указанные параметры идеально подходят для реакций ядерного синтеза. Именно здесь появляется энергия, необходимая для поддержания жизни всего живого на нашей планете. Все другие участки Солнца имеют высокую температуру из-за перехода энергии из ядра. Сами они эту энергию не продуцируют.

Зона лучистого переноса

Ее еще называют зоной радиации. Она находится непосредственно над ядром. Радиус внешней границы лучистого переноса составляет 490 тыс. км. Температура медленно снижается до 2 миллионов градусов. Из-за снижения температуры уменьшается давление, в результате чего плотность солнечного вещества достигает 0,2 г/ см3. Конвекционного перемещения в этой зоне нет.

Энергия в зоне лучистого переноса распространяется путем постоянных поглощений, излучений фотонов протонами. Частицы могут двигаться в любом направлении. Этот процесс довольно медленный: из ядра фотон выходит наружу приблизительно 170 тысяч лет. Иными словами, мы сейчас видим свет, образовавшийся на Солнце, когда на Земле была ледниковая эпоха.

Зона конвективного переноса

Толщина конвективной зоны составляет около 200 тыс. километров. Плотность вещества здесь уже невелика, и оно активно перемещается. То есть разогретое вещество интенсивно поднимается вверх, отдает тепло, охлаждается и идет вниз. Скорость конвекции доходит до 6 километров в час. Эти процессы способствуют образованию солнечного магнитного поля.

На поверхности температура Солнца достигает 6 тысяч градусов, а вот плотность примерно в 1000 раз ниже, чем у земной атмосферы.

Солнечная поверхность неоднородна и имеет области с меньшей яркостью. Они называются пятнами. Продолжительность существования пятен – несколько дней. Интересно, что на Солнце могут быть пятна, которые превышают диаметр Земли. На поверхности Солнца также существуют:

  • факулы – объекты с повышенной яркостью;
  • гранулы – области, покрывающие фотосферу и различимы с Земли;
  • супергранулы – объекты большого размера (порядка 35 тыс. км), обволакивающие поверхность Солнца.

Данные современных исследований показывают, что значение конвективных переносов чрезвычайно высоко. Именно в конвективной зоне происходят всевозможные движения солнечного вещества.

Строение Солнца

Строение Солнца

Атмосфера

Когда говорят об атмосфере Солнца, как правило, выделяют следующие 3 слоя: фотосферу, хромосферу и корону.

Фотосфера

Это самый нижний слой солнечной атмосферы. Это та область, которую мы видим с Земли, ведь Солнце излучает свет и тепло, распространяющиеся на все объекты в Солнечной системе. Толщина этого участка атмосферы – до 400 км.

Из фотосферы, или внешней излучающей поверхности Солнца на Землю попадает большинство излучения. Лучи из глубоко расположенных слоев к нам не поступают. Температура фотосферы снижается с 6000 градусов Кельвина до 4400. Эффективная температура рассчитывается по закону Стефана-Больцмана: мощность излучения абсолютно черного тела прямо пропорциональна температуре тела, возведенной в четвертую степень.

Фотосфера являет видимую поверхность нашей дневной звезды. По ней мы можем определить размеры Солнца и прочие параметры.

Хромосфера

Этот слой расположен над фотосферой. Толщина солнечной хромосферы составляет около 2 тыс. км. С Земли ее наблюдать довольно сложно из-за незначительной яркости. Хромосфера доступна земному наблюдателю во время солнечного затмения. В это время она светится красным светом.

Цвет хромосферы – красный. Название «хромосфера» произошло, по-видимому, от ее цвета. Красный оттенок объясняется тем, что в спектре преобладает линия излучения водорода серии Бальмера.

В толщи этого слоя наблюдаются спикулы – плазменные столбы, которые выбрасываются из нижних слоев. Длина одного такого столба может достигать 20 тыс. км. По мере возрастания высоты температура хромосферы возрастает и достигает 20 тыс. градусов на верхней границе.

Корона

Это самый верхний слой солнечной атмосферы. Ее границы не определены. Солнечная корона характеризуется наличием крайне разреженного вещества. Температура этой области достигает нескольких миллионов градусов. В отдельных ее участках температура может достигать 20 миллионов градусов.

Солнечная корона видна только при полном затмении. Это объясняется тем, что плотность ее вещества крайне мала, а, следовательно, яркость слоя незначительна. Форма короны изменяется зависимо от фазы цикла. В максимум активности она приближается к кругу, а в минимум – вытягивается. Солнечная корона излучает ультрафиолетовые и рентгеновские лучи.

Строение атмосферы Солнца таит в себе много загадок. На сегодня неизвестно, почему температурные показатели солнечной короны достигают столь высоких значений. В короне иногда можно обнаружить протуберанцы. Высота одного такого «факела» может превышать полтора миллиона километров.

Проуберанец

Огромный протуберанец в форме Эйфелевой башни был зафиксирован в 2015 году. Он был высотой в несколько диаметров Земли и просуществовал около двух дней.
Источник: NASA GODDARD

Магнитное поле

Солнце имеет собственное магнитное поле. Различают глобальное и несколько локальных полей.

Глобальное магнитное поле Солнца имеет цикличность примерно в 11 лет. С ней связаны изменения частоты появления пятен. Это явление называется «цикл Швабе». Этот ученый еще в 19 веке приметил, что число пятен на поверхности Солнца подвержено периодическим изменениям. Несколько позже стало очевидно, что такие изменения связаны с колебаниями магнитного поля. Следовательно, необходимо два 11-летних цикла, чтобы состояние возвратилось к прежнему. Этот 22-летний цикл называется «цикл Хейла».

Кроме того, в различных участках Солнца наблюдаются локальные магнитные поля разной интенсивности. Их параметры могут быть разными. Редко когда время существования такого магнитного поля превышает 10 дней. Локальные поля чаще всего обнаруживаются возле солнечных пятен.

Магнитное поле Солнца

Горячая плазма показывает линии магнитного поля, выходящие из активных областей Солнца.
Источник: NASA GODDARD

Жизненный цикл Солнца

Эволюция Солнца – вопрос, интересующий не одно поколение астрономов. Ученые оценивают возраст Солнца в 4,5 миллиарда лет. Оно возникло из газопылевого облака, сжимающегося под воздействием сил гравитации. Из такого же облака возникли и все остальные объекты Солнечной системы, в том числе и наша планета. Из-за сжатия начинает возрастать плотность и температура. Когда температура и давление возросли до необходимых значений, начались термоядерные реакции. Так, собственно, и начался жизненный цикл Солнца.

Масса нашей дневной звезды постепенно снижается из-за реакций ядерного синтеза. Ежесекундно 4 миллиарда тонн вещества Солнца превращается в энергию. Однако запасов водорода для поддержания протекания протон-протонной термоядерной реакции хватит на несколько миллиардов лет.

Температура светила увеличивается на 10 процентов каждые 1,1 млрд. лет. Это дает основания предположить, что раньше температура воздуха на планете была ниже, а на Венере, вероятно, могла бы существовать вода в жидкой фазе (сейчас температура Венеры такова, что на ней может плавиться свинец). Поскольку в будущем светимость Солнца будет возрастать, это приведет к увеличению температуры на Земле. Из-за высокой температуры испарятся океаны, молекулы воды, увлекаемые движением, улетучатся в космическое пространство и разложатся на атомы кислорода и водорода, а сама Земля превратится в безжизненное космическое тело.

Жизненный цикл Солнца

Жизненный цикл Солнца

Из-за уменьшения количества водорода на Солнце будет уменьшаться ядро. Но сама звезда «раздуется». Примерно через 6,5 млрд лет водород на Солнце выгорит. Однако ядерные реакции синтеза на этом не остановятся: начнет выгорать гелий, причем этот процесс будет происходить не в ядре, а в оболочке Солнца. Вследствие этого размеры Солнца увеличатся, и оно достигнет орбиты Земли. В этой стадии оно будет красным гигантом.

Однако рано или поздно выгорит гелий. Это произойдет примерно за 110 миллионов лет. В результате пульсаций внешние слои Солнца постепенно отделятся от ядра. Солнечное ядро превратится в белый карлик, и его диаметр будет примерно соответствовать нынешнему земному. Это при том, что масса ядра будет только вдвое меньше нынешнего Солнца.

Белый карлик будет медленно охлаждаться. В этом объекте не протекают ядерные реакции. Приблизительно через 10 миллиардов лет из Солнца останется черный карлик.

Орбита и место расположения Солнца в галактике Млечный Путь

Солнце, как и вся Солнечная система, обращается вокруг центра Млечного пути. В этом центре расположена большая черная дыра. Солнечная система совершает оборот вокруг этого центра приблизительно за 250 миллионов лет.

Расположение в Галактике

Расположение Солнечной системы в галактике Млечный путь

Солнце и Солнечная система, а также наша галактика находятся в рукаве Ориона. Скорость вращения галактики равна скорости вращения спиральных рукавов. Из-за этого Солнечная система не попадает под их влияние. Спиральные рукава излучают лучи, уничтожающие все живое на планете.

Солнечный ветер

Так называется поток ионизированных частиц, исходящих от Солнца. Его скорость может достигать 1200 километров в секунду. Потоки солнечного ветра пронизывают все пространство Солнца. Состав частиц в солнечном ветре – протоны, электроны и альфа-частицы.

Существует медленный и быстрый солнечный ветер. Медленный ветер движется со скоростью примерно 400 км/ч и нагрет примерно до полутора миллионов градусов. Его состав примерно отвечает солнечной короне. Быстрый ветер движется с большей скоростью, имеет более низкую температуру, его плотность вдвое выше.

Солнечный ветер

Распространение солнечного ветра

Ежесекундно Солнцем излучается примерно 1,3⋅1036 частиц, уносимых солнечным ветром. Следовательно, за год звезда теряет в массе примерно 2⋅10−14 массы. На Земле регулярно происходят природные явления, которые связаны с распространением солнечного ветра и его возмущениями (например, магнитные бури и северные сияния).

Солнечные циклы и активность

Солнечная активность – это совокупность явлений, связанных с образованием сильных магнитных полей. Их проявление видно в фотосфере как солнечные пятна. Магнитные поля провоцируют вспышки, потоки быстрых частиц, корональные выбросы, возмущения в солнечном ветре, изменения электромагнитного излучение, потоков космических лучей. На Земле эти поля провоцируют магнитные бури и другие явления.

Показателем уровня активности Солнца является число Вольфа. Оно показывает количество пятен на видимой с Земли части звезды. Оно меняется с периодом примерно 11 лет. За последние 300 лет длительность цикла находился в более широких пределах. Им приписывают последовательные номера. В декабре 2019 года начался 11-летний цикл, который продлится предположительно до 2030 года.

Ученые определяют также 22-летний цикл. Фактически, это изменение полярности магнитного поля. Вековой цикл длится примерно 70 – 100 лет. Наконец, радиоуглеродный анализ указывает на наличие 2300-летнего цикла.

Исследование Солнца

Человечество начало интересоваться Солнцем с незапамятных времен. Оно почиталось как божество. Однако уже в античные времена появились первые научные взгляды на звезду. Уже тогда высказывались мнения, что Солнце – центр, вокруг которого вращаются планеты. Такая теория была возрождена Коперником только в 16 веке.

Впервые солнечные пятна стали наблюдать в Китае во времена династии Хань. В 12 веке появились первые рисунки солнечных пятен.

Инструментальное исследование Солнца началось в 1610 г благодаря изобретению телескопа, гелиоскопа. Астроном Кассини вычислил приблизительное расстояние от Земли до Солнца.

В 19 веке был установлен состав Солнца благодаря спектроскопии. В ХХ веке было установлено, что источником энергии Солнца является термоядерная реакция. Впоследствии было установлено, что подобные реакции происходят во всех звездах. В 2020 году были сделаны самые точные снимки нашей дневной звезды.

На фото силуэт Международной космической станции, которая проходит на фоне Солнца со скоростью 8 км/секунду.

Интересные факты о Солнце

Ниже подобраны наиболее интересные факты о нашей дневной звезде.

  1. На Солнце нет твердой поверхности.
  2. Солнечная гравитация в 28 раз превышает земную.
  3. Свет от Солнца идет в течение примерно восьми минут.
  4. Магнитное поле звезды лишь в 2 раза сильнее земного.
  5. На Солнце намного больше воды, чем на Земле. Ее молекулы находятся в основном в солнечных пятнах.
  6. Излучение Солнца опасно для всего живого. Однако земная атмосфера блокирует все виды смертельных лучей.
  7. Приблизительно через 1100 млн лет яркость Солнца возрастет настолько, что уничтожит все живое на нашей планете.
  8. Если бы Солнце было шаром, то потребовалось бы миллион планет, таких, как Земля, чтобы его заполнить.
  9. В Млечном пути 85% звезд менее яркие, чем Солнце.
  10. На Землю доходит всего лишь 40% солнечного излучения. Остальное отражается в космос.

Как возникло Солнце и сколько ему лет

Основная теория возникновения Солнца гласит, что оно образовалось из газопылевого облака. В свою очередь, оно появилось после взрыва сверхновой. Гравитация заставляла остатки облака соединяться, а затем вращаться. Вращение придало облаку форму диска. Из материала, собравшегося в центре, образовалась первая протозвезда. Это случилось около 4,5 млрд лет.

Почему светит Солнце

Этот вопрос стал актуальным в середине 19 века, после формулировки закона сохранения энергии. Стало очевидным, что химической энергии совершенно недостаточно для столь огромного её количества. Так, если бы оно состояло из угля, то энергии хватило бы всего на 4 тыс. лет.

Открытие радиоактивности способствовало распространению идеи радиоактивного источника энергии. Только методы точного измерения масс позволили обнаружить, что энергия Солнца образуется из-за слияния четырех протонов в ядро атома гелия. Оно легче четырех протонов на 4,6х10-26 грамма. Согласно формуле Е=mc2 эта масса превращается в энергию, равную 26,73 МэВ. Благодаря этой энергии и светит Солнце.

Солнечное затмение

Солнечными затмениями люди интересовались уже во времена античности. В средневековых хрониках описано больше всего сведений о затмениях.

Затмение

Варианты солнечных затмений

Это природное явление возникает из-за закрытия Луной Солнца для земного наблюдателя. Такое закрытие может быть полным или частичным. Затмение может быть лишь в период новолуния: тогда сторона Луны, которая обращена к Земле, не освещена и ночной спутник не виден.

Затмение является полным, если хотя бы в одной точке Земли наблюдатель видит полностью затмившийся солнечный диск. В это время человек, наблюдающий это явление природы, находится в тени Луны. Если конус тени Луны не касается земной поверхности, затмение называют частным: наблюдатель будет видеть только часть Солнца на небе.

Также на Земле бывают кольцеобразные затмения. В это время земной спутник проходит по солнечному диску, но его видимый диаметр меньше солнечного. Такое явление возможно в результате эллиптичности лунной орбиты.

Ежегодно на планете может быть от 2 до 5 солнечных затмений. Не более 2 из них могут быть полными или кольцеобразными. В определенной точке Земли полное затмение бывает очень редко.

Солнце – центральная звезда Солнечной системы, источник жизни на Земле. Люди всегда осознавали огромнейшее влияние Солнца на них и на природу. В древнее время оно было объектом поклонения. Сейчас же человечество открывает все больше тайн, которые скрывает Солнце. Изучение эволюции светила, солнечной активности позволит обеспечить человечество экологически чистой энергией, прогнозировать магнитные бури, контролировать климат.

В 1 600 000 раз

В 1 300 000 раз

В 1 800 000 раз

Солнце намного, очень намного больше нашей Земли. Это хорошо отражается в цифрах. Ученые рассчитали, что, например, если расположить планету Земля по экватору Солнца, то понадобится 109 таких планет, как наша! По-моему, очень образно.

Помимо этого размера есть и другие, в том числе рассчитано, во сколько раз Солнце по объему больше нашей Земли. Вот привожу такую информацию —

То есть получается, что по объему самая большая планета Солнце превышает нашу планету в 1 300 000 раз. Впечатляет!

И в ответе на вопрос викторины от четырнадцатого апреля я выбрала вариант под буквой «В» —

**

Ответ верный — в 1 300 000 раз.

система выбрала этот ответ лучшим

То, что Солнце больше планеты Земля, как, впрочем, и любой другой планеты, входящей в Солнечную систему, мы еще из школы знаем. Но вот математически выразить это преимущество не каждый сразу сможет. Мне тоже пришлось поискать в интернете. Спасибо редакции викторины, что просветили.

Так вот по объему Солнце такое огромное, что «внутри него поместятся 1300000 таких планет, как наша Земля. Эта цифра и станет правильным ответом на вопрос, во сколько раз Солнце больше по объему.

Ответ — в 1 300 000 раз.

Натал­ья100
[281K]

3 года назад 

Я не знаю, как назвать порядок цифр, выражающий объем главного светила нашей космической системы и источника нашей жизни.

Поэтому доверюсь мнению знатоков-астрономов, которые давно уже измерили и сопоставили линейные и объемные величины всех планет солнечной системы.

Достаточно лишь дать правильный ответ о соотношении объема Земли и Солнца — 1 300 000 раз.

Svetl­yacho­k zelen­ook
[192K]

3 года назад 

Когда мы смотрим на небосвод, то видим перед собой яркий раскаленный шар, на который нельзя долго смотреть без очков и который кажется небольшим, но диаметр Солнца в 109 раз больше диаметра Земли. Сравнивать размеры этих двух планет сложно, не видя их на изображении. А вот на картинке видно это наглядно. Для того, чтобы узнать во сколько раз объём Солнца превышает объём Земли, нам необходимо знать объемы этих двух систем. Итак, проведем сравнение. Объем Земли приблизительно равен 1 083 210 000 000 км³, а объем Солнца — 1,40927*10 в 27 степени м³ . Следовательно, объем Солнца в 1300000 раз больше объема Земли.

Ответ на вопрос — 1 300 000.

isa-isa
[73.9K]

3 года назад 

Солнце конечно же намного больше, чем Земля и любая планета Солнечной системы. Ученые измерили и Солнце и Землю и есть другие любопытные факты, кроме разницы в объемах. К примеру в Земле целых 109 диаметров Солнца, а еще оно тяжелее нашей маленькой планеты в 333 000 раз. Что же касается объемов, то настоящая разница равна 1 303 600 именно настолько объем Солнца больше, чем объем планеты Земля.

Тем не менее, от нас требуется ответ не точный, а подходящий по цифрам для викторины. Значит самым подходящим вариантом становится вариант номер 2 — в округленных 1 300 000 раз Солнце превосходит по объему Землю.

Vladi­mir 1215
[181K]

3 года назад 

Интересный очередной вопрос предлагает викторина Много/ру. Тема очень интересная и связана с планетами нашей солнечной системы, точнее сравнение нашей родной планеты и Солнца. Даже невооружённым глазом понятно, что Солнце огромно, но насколько? Сколько объемов нашей родной Земли, войдёт в небесное светило — Солнце? Астрономы давно рассчитали линейные размеры Земли и Солнца. Земля имеет радиус больше 6350 км, а радиус Солнца составляет почти 700000 км. Простая арифметика дает ответ, что радиус Солнца почти в 110 раз больше радиуса Земли. Ну а теперь формула геометрии дает ответ на поставленную задачу. Расчёты показывают, что объем Солнца в 1300000 раз больше объёма планеты Земля. Правильный ответ, поставленный в викторине — разница в объёмах Земли и Солнца составляет в пользу Солнца в 1300000 раз

AnnaG­e
[384K]

3 года назад 

Я приветствую вопросы про космос, про астрономию. Но наизусть я, конечно, не помню соотношение объемов Солнца и планеты Земля. Пришлось воспользоваться справочной литературой.Это очень сложно представить как огромно Солнце. А ведь размеры Солнца скромные по космическим масштабам. Солнце не самая большая звезда во Вселенной и даже в нашей галактике. Ведь даже родная планета представляется мне очень большой и я понимаю тщетность попыток побывать во всех ее уголках. Даже в тех из них, которые меня давно манят. Разве что облететь на самолете или космическом корабле и посмотреть сверху.

Ответ на вопрос В 1 300 000 раз.

Peres­vetik
[920K]

3 года назад 

Может быть каждый из нас задавался таким вопросом когда-то. Из справочной литературы известно, что радиус планеты Солнца равняется 696 000 километров, а радиус планеты Земля в среднем составляет 6371 километров. Солнце считается самой большой звездой в галактике.

И все объекты, которые находятся в галактике вращаются вокруг Солнца.

Значит Солнце больше Земли почти в сто девять раз. Это, что касается линейных данных.

А вот по объему, эта цифра больше в 1,3 миллиона раз.

Нам нужно выбрать правильный ответ на вопрос из трех предложенных. И верным будет — 1 300 000 раз. На столько объем Солнца больше.

Груст­ный Родже­р
[397K]

3 года назад 

Верен второй вариант — 1 300 000 раз.

Отношение линейных размеров Земли и Солнца — 109, ну вот возведите в куб…

MTety­ana
[173K]

3 года назад 

Продолжаются познавательные вопросы викторины на тему космоса.

И сегодня снова космический вопрос! И на этот раз придётся заняться математикой, потому, что у нас хотят узнать, во сколько раз объём Солнца больше объёма Земли.

Помню, ещё со школы, когда изучала астрономию, которую очень любила, этот вопрос тогда затрагивался.

О том, что диаметр Солнца больше диаметра Земли в 109 раз не забыла. Значит и объём Солнца больше объёма Земли во столько же раз и тогда получается, что объём Земли занимает в огромном объёме Солнца только 1,3 миллионную его часть!

Отсюда и вытекает ответ на заданный викториной вопрос — вариант 2.

Ответ: 1 300 000 раз.

timur­ovec
[273K]

3 года назад 

Очень странный вопрос, к тому же он лишен логического смысла. Никогда до сих пор никому в голову не приходило сравнивать объемы этих двух космических тел. Линейные размеры это да, но объем, зачем кому-то это понадобилось, ведь объем это вместимость!

Путем простого арифметического подсчета выходит цифра соотношения объемов Земли к Солнцу как 1 к 1 300 000. Выбираем ответ — 1 300 000.

Знаете ответ?

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти историю пробега авто
  • Skyrim как найти кузнеца
  • Как найти координаты вектора на координатной прямой
  • Как исправить ошибку в бланке ответов егэ
  • Как исправить таблицу в ворде если она не редактируется

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии