Рассмотрим
кривую, уравнение которой имеет вид
Уравнение
касательной к данной кривой в точке
имеет вид:
(34)
Нормалью
к кривой в данной точке называется
прямая, проходящая через данную точку,
перпендикулярную к касательной в этой
точке.
Уравнение
нормали к данной кривой в точке
имеет вид:
(35)
Длина
отрезка касательной, заключенного между
точкой касания и осью абсцисс называется
длиной
касательной,
проекция этого отрезка на ось абсцисс
называется подкасательной.
Длина
отрезка нормали, заключенного между
точкой касания и осью абсцисс называется
длиной
нормали,проекция
этого отрезка на ось абсцисс называется
поднормалью.
Пример
17
Написать
уравнения касательной и нормали к кривой
в точке, абсцисса которой равна
.
Решение:
Найдем
значение функции в точке
:
Найдем
производную заданной функции в точке
Уравнение
касательной найдем по формуле (34):
Уравнение
нормали найдем по формуле (35):
Ответ:
Уравнение
касательной :
Уравнение
нормали :.
Пример
18
Написать
уравнения касательной и нормали, длины
касательной и подкасательной, длины
нормали и поднормали для эллипса
в
точке
,
для которой.
Решение:
Найдем
как производную функции, заданной
параметрически по формуле (10):
Найдем
координаты точки касания
:
и значение производной в точке касания
:
Уравнение
касательной найдем по формуле (34):
Найдем
координаты
точки
пересечения
касательной с осью:
Длина
касательной равна длине отрезка
:
Согласно
определению, подкасательная
равна
Где
угол
– угол между касательной и осью
. Поэтому,
— угловой коэффициент касательной,
равный
Таким
образом, подкасательная
равна
Уравнение
нормали найдем по формуле (35):
Найдем
координатыточки
пересечения нормали с осью
:
Длина
нормали равна длине отрезка
:
Согласно
определению, поднормаль
равна
Где
угол
– угол между нормалью и осью
. Поэтому,
— угловой коэффициент нормали, равный
Поэтому,
поднормаль
равна:
Ответ:
Уравнение
касательной :
Уравнение
нормали :
Длина
касательной
;
подкасательная;
Длина
нормали
; поднормаль
Задания
7. Написать
уравнения касательной и нормали:
1. К параболе в точке, абсцисса которой
.
2.
К окружности
в точках пересечения её с осью абсцисс
.
3.
К циклоиде
в точке, для которой
.
4.
В каких точках кривой
касательная параллельна:
а)
оси Оx; б) прямой
.
10.
Промежутки монотонности функции.
Экстремумы функции.
Условие
монотонности функции:
Для
того, чтобы дифференцируемая на
функция
не возрастала, необходимо и достаточно,
чтобы во всех точках, принадлежащихее производная была неположительна .
(36)
Для
того, чтобы дифференцируемая на
функция
не убывала, необходимо и достаточно,
чтобы во всех точках, принадлежащихее производная была неотрицательна.
(37)
Промежутки,
на которых производная функции сохраняет
определенный знак, называются промежутками
монотонности
функции
Пример
19
Найти
промежутки монотонности функции
.
Решение:
Найдем
производную функции
.
Найдем
промежутки знакопостоянства полученной
производной. Для этого
разложим полученный
квадратный трехчлен на множители:
.
Исследуем
знак полученного выражения, используя
метод интервалов.
Таким
образом, получаем согласно (36), (37),что
заданная функция возрастает на
и убывает на
.
Ответ:
Заданная
функция
возрастает на
и убывает на
.
Определение
Функция
имеет в точке
локальный
максимум (минимум),
если существует такая окрестность
точки
,
что для всехвыполняется условие
().
Локальный
минимум или максимум функции
называетсялокальным
экстремумом.
Необходимое
условие существования экстремума.
Пусть
функция
определена в некоторой окрестности
точки.
Если функцияимеет
в точкеэкстремумом, то производная
в точке
либо равна нулю, либо не существует.
Точка
называетсякритической
точкой
функции
,
если производнаяв точке
либо равна нулю, либо не существует.
Достаточные
условия наличия экстремума в критической
точке
.
Пусть
точка
является критической.
Первое
достаточное условие экстремума:
Пусть
функция
непрерывна в некоторой окрестности
точки
и дифференцируема в каждой точке
.
Точка
является локальным максимумом, если
при переходе через
производная
функции меняет знак с плюса на минус.
Точка
является локальным минимумом, если при
переходе через
производная
функции меняет знак с минуса на плюс.
Пример
20
Найти
экстремумы функции
.
Решение:
Найдем
производную заданной функции
Приравнивая
в полученной производной к нулю числитель
и знаменатель, найдем критические точки:
Исследуем
знак производной, используя метод
интервалов.
Из
рисунка видно, что при переходе через
точку
производная меняет знак с плюса на
минус. Следовательно, в точке—
локальный максимум.
При
переходе через точку
производная меняет знак с минуса на
плюс.
Следовательно,
в точке
—
локальный минимум.
При
переходе через точку
производная не меняет знак. Следовательно,
критическая точкане является экстремумом заданной
функции.
Ответ:
—
локальный максимум,
—
локальный минимум.
Второе
достаточное условие экстремума:
Если
первые
производные функции
в точке
равны нулю, а
-ная
производная функциив точке
отлична от нуля, то точка
является экстремумом функции
,
причем,
если
,
(38)
то
-локальный
минимум
если
,
(39)
то
-локальный
максимум.
Пример
21
Найти
экстремумы функции, пользуясь второй
производной
.
Решение:
ОДЗ:
.
Найдем
первую производную заданной функции
Найдем
критические точки функции:
Точку
мы не рассматриваем, так как функция
определена только в левой окрестности.
Найдем
вторую производную
Находим
Таким
образом, на основании (39) делаем вывод
о том, что при
— локальный максимум.
Ответ:
—
локальный максимум.
Задания
8.
Исследовать
на возростание и убывание функции:
1. |
2. |
3. |
4. |
5. |
6. |
Исследовать
на экстремумы функции:
7. |
|
|
8. |
|
|
9. |
|
|
10. |
|
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Назначение сервиса. Данный сервис предназначен для нахождения уравнения нормали к кривой. Решение оформляется в формате Word. Для получения уравнения необходимо выбрать вид заданной функции.
Функция задана в явном виде
Функция задана в неявном виде
Функция задана в параметрическом виде
Пример
Задание №1
Найти уравнение нормали к параболе y = 1/2*x2 в точке (-2;2).
Решение находим с помощью калькулятора.
Запишем уравнения нормали в общем виде:
По условию задачи x0 = -2, тогда y0 = 2
Теперь найдем производную:
y’ = (1/2•x2)’ = x
следовательно:
f'(-2) = -2 = -2
В результате имеем:
или
yk = 1/2•x+3
Задание №2
Написать уравнения нормали к кривой y2-1/2*x3-8 в точке M0(0;2).
Решение.
Поскольку функция задана в неявном виде, то производную ищем по формуле:
Для нашей функции:
Тогда:
или
следовательно:
Fx‘(0;2) = 3/4•02/2 = 0
В результате имеем:
или
x = 0
Задание №3
Написать уравнения нормали к эллипсу, заданному в параметрической форме: x = 5*sqrt(2)*cos(t);y = 3*sqrt(2)*sin(t) в точке M0(-5;3).
Решение.
Запишем уравнения нормали в для функции, заданной в параметрической форме:
(x — x0)x’ + (y — y0)y’ = 0
Данной точке M0(-5;3) соответствует значение t = 3/4•π
Для нашей функции:
следовательно:
Найдем производную, дифференцируя функцию $ y(x) $ по переменной $ x $:
$$ (x^2)’_x+ (2xy^2)’_x + (3y^4)’_x = (6)’_x $$
Учитывая, что $ y^2 $ и $ y^4 $ сложные функции продолжаем:
$$ 2x + 2y^2 + 4xyy’ + 12y^3 y’ = 0 $$
Выражаем $ y’ $ из полученного уравнения:
$$ 4xyy’ + 12y^3 y’ = -2x — 2y^2 $$
Выносим $ y’ $ за скобки:
$$ y'(4xy + 12y^3) = -2x — 2y^2 $$
Делим обе части уравнения на выражение $ 4xy+12y^3 $:
$$ y’ = -frac{2x+2y^2}{4xy + 12y^3} = -frac{x+y^2}{2xy+6y^3} $$
Теперь вычисляем значение $ y’ $:
$$ y’ = -frac{1 + (-1)^2}{2cdot 1 cdot (-1) + 6cdot (-1)^3} = -frac{2}{-8} = frac{1}{4} $$
Зная, что $ y’ = frac{1}{4} $ и $ y(x_0) = y(1) = -1 $ составляем уравнения касательной и нормали к кривой в точке $ M(1;-1) $.
Получаем уравнение касательной:
$$ y — (-1) = frac{1}{4} (x — 1) $$
Записываем в красивой форме:
$$ y = frac{1}{4} x — frac{3}{4} $$
Получаем уравнение нормали:
$$ y — (-1) = -frac{1}{frac{1}{4}} (x — 1) $$
Раскрываем скобки и записываем в красивой форме, полученное уравнение:
$$ y+1 = -4(x-1) $$
$$ y = -4x + 3 $$
Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!
Вывод уравнения нормали к графику функции
Евгений Николаевич Беляев
Эксперт по предмету «Математика»
Задать вопрос автору статьи
Замечание 1
Нормаль — это прямая, которая образует с касательной к графику функции угол в $90°$.
Рисунок 1. Нормальный перпендикуляр к графику касательной. Автор24 — интернет-биржа студенческих работ
В связи с тем, что нормаль перпендикулярна к касательной, её угловой коэффициент будет величиной, обратной к угловому коэффициенту касательной:
$k_{норм}=- frac{1}{k_{к}}= -1 frac{1}{f’(x_0)}$.
Пользуясь полученным выводом, запишем уравнение нормали к графику функции:
$y – y_0 = — frac{1}{f’(x_0)} cdot (x – x_0) left(1right) $, здесь $x_0$ и $y_0$ — координаты точки для которой строится искомая линия, при этом производная в этой точке $f’(x_0) ≠ 0$.
Порядок действий при поиске уравнения нормальной прямой если задана координата $x_0$:
- Вычисляется, чему равен нулевой игрек $y(x_0)$ для функции.
- Затем нужно определить производную.
- Нужно высчитать затем, чему равен $f’(x)$ в точке $x_0$, найденное значение — коэффициент касательной.
- Все найденные значения подставляются в формулу $(1)$.
Напомним также как выглядит само уравнение касательной:
$y – y_0 = f’(x_0) cdot (x – x_0)$.
Пример 1
Найдите уравнение нормали для функции $y=x^2$ в точке $x_0=2$.
Решение:
Производная данной функции составит $y’(x) = 2x$, затем найдём, чему равен наш подопытный кролик-функция в заданной точке $y_0= x^2 = 2^2 = 4$.
Теперь нужно высчитать производную функции в точке $x_0$: $y’(2) = 2 x = 2 cdot 2= 4$.
Все полученные значения расставляем по своим местам в формулу $(1)$:
$y-4=-frac{1}{4} cdot (x – 2)$
Уравнение нормали найдено.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Дата последнего обновления статьи: 07.05.2023