Как найти нормаль к параболе

Рассмотрим
кривую, уравнение которой имеет вид

Уравнение
касательной к данной кривой в точке
имеет вид:

(34)

Нормалью
к кривой в данной точке называется
прямая, проходящая через данную точку,
перпендикулярную к касательной в этой
точке.

Уравнение
нормали к данной кривой в точке
имеет вид:

(35)

Длина
отрезка касательной, заключенного между
точкой касания и осью абсцисс называется
длиной
касательной
,
проекция этого отрезка на ось абсцисс
называется
подкасательной.

Длина
отрезка нормали, заключенного между
точкой касания и осью абсцисс называется
длиной
нормали
,проекция
этого отрезка на ось абсцисс называется
поднормалью.

Пример
17

Написать
уравнения касательной и нормали к кривой
в точке, абсцисса которой равна.

Решение:

Найдем
значение функции в точке
:

Найдем
производную заданной функции в точке

Уравнение
касательной найдем по формуле (34):

Уравнение
нормали найдем по формуле (35):

Ответ:
Уравнение
касательной :

Уравнение
нормали :.

Пример
18

Написать
уравнения касательной и нормали, длины
касательной и подкасательной, длины
нормали и поднормали для эллипса

в
точке
,
для которой.

Решение:

Найдем
как производную функции, заданной
параметрически по формуле (10):

Найдем
координаты точки касания
:
и значение производной в точке касания
:

Уравнение
касательной найдем по формуле (34):

Найдем
координаты
точкипересечения
касательной с осью:

Длина
касательной равна длине отрезка
:

Согласно
определению, подкасательная
равна

Где
угол
– угол между касательной и осью. Поэтому,— угловой коэффициент касательной,
равный

Таким
образом, подкасательная
равна

Уравнение
нормали найдем по формуле (35):

Найдем
координатыточкипересечения нормали с осью:

Длина
нормали равна длине отрезка
:

Согласно
определению, поднормаль
равна

Где
угол
– угол между нормалью и осью. Поэтому,— угловой коэффициент нормали, равный

Поэтому,
поднормаль
равна:

Ответ:
Уравнение
касательной :

Уравнение
нормали :

Длина
касательной
;
подкасательная;

Длина
нормали
; поднормаль

Задания
7.
Написать
уравнения касательной и нормали:

1. К параболе в точке, абсцисса которой

.

2.
К окружности
в точках пересечения её с осью абсцисс

.

3.
К циклоиде
в точке, для которой

.

4.
В каких точках кривой
касательная параллельна:

а)
оси Оx; б) прямой

.

10.
Промежутки монотонности функции.
Экстремумы функции.

Условие
монотонности функции:

Для
того, чтобы дифференцируемая на
функцияне возрастала, необходимо и достаточно,
чтобы во всех точках, принадлежащихее производная была неположительна .

(36)

Для
того, чтобы дифференцируемая на
функцияне убывала, необходимо и достаточно,
чтобы во всех точках, принадлежащихее производная была неотрицательна.

(37)

Промежутки,
на которых производная функции сохраняет
определенный знак, называются промежутками
монотонности
функции

Пример
19

Найти
промежутки монотонности функции
.

Решение:

Найдем
производную функции
.

Найдем
промежутки знакопостоянства полученной
производной. Для этого

разложим полученный
квадратный трехчлен на множители:

.

Исследуем
знак полученного выражения, используя
метод интервалов.

Таким
образом, получаем согласно (36), (37),что
заданная функция возрастает на
и убывает на.

Ответ:
Заданная
функция
возрастает наи убывает на.

Определение
Функция
имеет в точкелокальный
максимум (минимум)
,
если существует такая окрестность
точки
,
что для всехвыполняется условие

().

Локальный
минимум или максимум функции
называетсялокальным
экстремумом.

Необходимое
условие существования экстремума
.

Пусть
функция
определена в некоторой окрестности
точки.
Если функцияимеет
в точкеэкстремумом, то производнаяв точкелибо равна нулю, либо не существует.

Точка
называетсякритической
точкой

функции
,
если производнаяв точкелибо равна нулю, либо не существует.

Достаточные
условия наличия экстремума в критической
точке
.

Пусть
точка
является критической.

Первое
достаточное условие экстремума:

Пусть
функция
непрерывна в некоторой окрестноститочкии дифференцируема в каждой точке.

Точка
является локальным максимумом, если
при переходе через

производная
функции меняет знак с плюса на минус.

Точка
является локальным минимумом, если при
переходе через

производная
функции меняет знак с минуса на плюс.

Пример
20

Найти
экстремумы функции
.

Решение:

Найдем
производную заданной функции

Приравнивая
в полученной производной к нулю числитель
и знаменатель, найдем критические точки:

Исследуем
знак производной, используя метод
интервалов.

Из
рисунка видно, что при переходе через
точку
производная меняет знак с плюса на
минус. Следовательно, в точке
локальный максимум.

При
переходе через точку
производная меняет знак с минуса на
плюс.

Следовательно,
в точке

локальный минимум.

При
переходе через точку
производная не меняет знак. Следовательно,
критическая точкане является экстремумом заданной
функции.

Ответ:

локальный максимум,

локальный минимум.

Второе
достаточное условие экстремума:

Если
первые
производные функциив точкеравны нулю, а-ная
производная функциив точкеотлична от нуля, то точкаявляется экстремумом функции,
причем,

если

,
(38)

то
-локальный
минимум

если

,
(39)

то
-локальный
максимум.

Пример
21

Найти
экстремумы функции, пользуясь второй
производной
.

Решение:

ОДЗ:
.

Найдем
первую производную заданной функции

Найдем
критические точки функции:

Точку
мы не рассматриваем, так как функция
определена только в левой окрестности.

Найдем
вторую производную

Находим

Таким
образом, на основании (39) делаем вывод
о том, что при
— локальный максимум.

Ответ:

локальный максимум.

Задания
8.

Исследовать
на возростание и убывание функции:

1.

2.

3.

4.

5.

6.

Исследовать
на экстремумы функции:

7.

8.

9.

10.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Назначение сервиса. Данный сервис предназначен для нахождения уравнения нормали к кривой. Решение оформляется в формате Word. Для получения уравнения необходимо выбрать вид заданной функции.

Функция задана в явном виде

Функция задана в неявном виде

Функция задана в параметрическом виде

Пример
Задание №1

Найти уравнение нормали к параболе y = 1/2*x2 в точке (-2;2).

Решение находим с помощью калькулятора.

Запишем уравнения нормали в общем виде:

уравнения нормали в общем виде

По условию задачи x0 = -2, тогда y0 = 2

Теперь найдем производную:

y’ = (1/2•x2)’ = x

следовательно:

f'(-2) = -2 = -2

В результате имеем:



или

yk = 1/2•x+3

Задание №2

Написать уравнения нормали к кривой y2-1/2*x3-8 в точке M0(0;2).

Решение.

Поскольку функция задана в неявном виде, то производную ищем по формуле:

Уравнение нормали для неявной функции

Для нашей функции:





Тогда:



или



следовательно:

Fx‘(0;2) = 3/4•02/2 = 0

В результате имеем:



или

x = 0

Задание №3

Написать уравнения нормали к эллипсу, заданному в параметрической форме: x = 5*sqrt(2)*cos(t);y = 3*sqrt(2)*sin(t) в точке M0(-5;3).

Решение.

Запишем уравнения нормали в для функции, заданной в параметрической форме:

(x — x0)x’ + (y — y0)y’ = 0

Данной точке M0(-5;3) соответствует значение t = 3/4•π

Для нашей функции:





следовательно:

Найдем производную, дифференцируя функцию $ y(x) $ по переменной $ x $:

$$ (x^2)’_x+ (2xy^2)’_x + (3y^4)’_x = (6)’_x $$

Учитывая, что $ y^2 $ и $ y^4 $ сложные функции продолжаем:

$$ 2x + 2y^2 + 4xyy’ + 12y^3 y’ = 0 $$

Выражаем $ y’ $ из полученного уравнения:

$$ 4xyy’ + 12y^3 y’ = -2x — 2y^2 $$

Выносим $ y’ $ за скобки:

$$ y'(4xy + 12y^3) = -2x — 2y^2 $$

Делим обе части уравнения на выражение $ 4xy+12y^3 $:

$$ y’ = -frac{2x+2y^2}{4xy + 12y^3} = -frac{x+y^2}{2xy+6y^3} $$

Теперь вычисляем значение $ y’ $:

$$ y’ = -frac{1 + (-1)^2}{2cdot 1 cdot (-1) + 6cdot (-1)^3} = -frac{2}{-8} = frac{1}{4} $$

Зная, что $ y’ = frac{1}{4} $ и $ y(x_0) = y(1) = -1 $ составляем уравнения касательной и нормали к кривой в точке $ M(1;-1) $.

Получаем уравнение касательной:

$$ y — (-1) = frac{1}{4} (x — 1) $$

Записываем в красивой форме:

$$ y = frac{1}{4} x — frac{3}{4} $$

Получаем уравнение нормали:

$$ y — (-1) = -frac{1}{frac{1}{4}} (x — 1) $$

Раскрываем скобки и записываем в красивой форме, полученное уравнение:

$$ y+1 = -4(x-1) $$

$$ y = -4x + 3 $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Вывод уравнения нормали к графику функции

Автор статьи

Евгений Николаевич Беляев

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Замечание 1

Нормаль — это прямая, которая образует с касательной к графику функции угол в $90°$.

Нормальный перпендикуляр к графику касательной. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Нормальный перпендикуляр к графику касательной. Автор24 — интернет-биржа студенческих работ

В связи с тем, что нормаль перпендикулярна к касательной, её угловой коэффициент будет величиной, обратной к угловому коэффициенту касательной:

$k_{норм}=- frac{1}{k_{к}}= -1 frac{1}{f’(x_0)}$.

Пользуясь полученным выводом, запишем уравнение нормали к графику функции:

$y – y_0 = — frac{1}{f’(x_0)} cdot (x – x_0) left(1right) $, здесь $x_0$ и $y_0$ — координаты точки для которой строится искомая линия, при этом производная в этой точке $f’(x_0) ≠ 0$.

Порядок действий при поиске уравнения нормальной прямой если задана координата $x_0$:

  1. Вычисляется, чему равен нулевой игрек $y(x_0)$ для функции.
  2. Затем нужно определить производную.
  3. Нужно высчитать затем, чему равен $f’(x)$ в точке $x_0$, найденное значение — коэффициент касательной.
  4. Все найденные значения подставляются в формулу $(1)$.

Напомним также как выглядит само уравнение касательной:

$y – y_0 = f’(x_0) cdot (x – x_0)$.

Пример 1

Найдите уравнение нормали для функции $y=x^2$ в точке $x_0=2$.

Решение:

Производная данной функции составит $y’(x) = 2x$, затем найдём, чему равен наш подопытный кролик-функция в заданной точке $y_0= x^2 = 2^2 = 4$.

Теперь нужно высчитать производную функции в точке $x_0$: $y’(2) = 2 x = 2 cdot 2= 4$.

Все полученные значения расставляем по своим местам в формулу $(1)$:

$y-4=-frac{1}{4} cdot (x – 2)$

Уравнение нормали найдено.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Дата последнего обновления статьи: 07.05.2023

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти координаты вектора по двум точкам
  • Как найти участника войны на халхин голе
  • Как найти запчасти на урал
  • Как исправить все ошибки city car driving
  • Как найти время движение точки по окружности

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии