Как найти натуральную величину четырехугольника

Содержание

  1. Определение натуральной величины фигуры сечения
  2. 58. Способ замены плоскостей проекций
  3. Метод замены плоскостей проекций
  4. Замена одной плоскости проекции
  5. Замена двух плоскостей проекций
  6. Использование метода замены при решении задач
  7. Определение расстояния между параллельными плоскостями

Определение натуральной величины фигуры сечения

Нередко практический интерес представляет задача определения натуральной величины фигуры сечения.

Определим натуральную величину сечения (четырехугольника), полученного на рис. 3.11. Так как четырехугольник 1234 занимает общее положение в пространстве, то его натуральную величину можно определить двумя переменами плоскостей проекций, сначала построив плоскость, перпендикулярную четырехугольнику 1234, а затем – параллельную ему. Чтобы не загромождать чертеж (рис. 3.11), вынесем построения на отдельный рисунок 3.12. Для построения плоскости, перпендикулярной плоскости четырехугольника 1234, необходимо начертить одну из главных линий, например, горизонталь. Ее фронтальная проекция h2 должна быть параллельна оси П1/П2. По точкам пересечения 2 и 4 с четырехугольником 1234 находим и горизонтальную проекцию h1 горизонтали.

Новая ось П4/П1, разделяющая П1 и новую плоскость П4, должна быть перпендикулярна h1. Затем получаем проекцию 14243444 в виде прямой. И наконец, вычертив вторую новую ось П5/П4, параллельно 1434, построим проекцию 15253545 четырехугольника в плоскости П5. Это и есть натуральная величина четырехугольника 1234. Сечение заштрихуем под углом 45° к горизонтальной прямой.

Чаще приходится решать более простую задачу – определение натуральной величины сечения многогранника плоскостью частного положения. В этом случае достаточно сделать всего одну замену плоскостей проекций. Рассмотрим на примере сечения пирамиды горизонтально–проецирующей плоскостью S (рис 3.13). Пусть задана горизонтальная проекция S1. Необходимо найти линию пересечения плоскости S с пирамидой и определить натуральную величину сечения. Таким образом, задача разбивается на две части: сначала надо построить сечение в плоскостях П1и П2, а затем определить его натуральную величину.

Рис. 3.13. Построение линии пересечения и определение натуральной величины сечения пирамиды плоскостью.

Чтобы решить первую часть задачи нужно найти все точки пересечения плоскости S с ребрами пирамиды и соединить их отрезками прямой. Горизонтальная проекция S1 пересекает ребра пирамиды в точках 11, 21, 31, 41 (рис. 3.13, а). По линиям связи находим их фронтальные проекции 12, 22, 32, 42 на фронтальных проекциях соответствующих ребер. Соединяя найденные точки, получаем линию пересечения 12223242 заданной плоскости с пирамидой. Отрезок 1242 этой линии будет невидимым, так как он лежит на невидимой грани A2S2C2. Плоская фигура, ограниченная полученной линией (на рис. 5.9, а заштрихована), и является сечением пирамиды плоскостью. В нашем примере это четырехугольник 1234.

Для определения натуральной величины четырехугольника 1234 способом замены плоскостей проекций не обязательно строить новую ось параллельно S1 (или 11214131), ввиду ограниченности площади чертежа. Достаточно соблюдать основные принципы построения. Начертим новую ось на свободном поле чертежа. Перенесем на нее точки 11,21,41,31, не меняя расстояния между ними. Проведем через них перпендикуляры к оси. Затем отложим на построенных перпендикулярах отрезки, равные расстояниям от оси П2/П1, которую считаем расположенной на основании А2В2С2 пирамиды, до соответствующих проекций 12, 22, 42, 32. Соединив указанные точки, получим натуральную величину сечения пирамиды заданной плоскостью S (рис. 3.13, б).

Как видим, сечение в натуральную величину отличается от 12223242 лишь тем, что оно вытянуто вдоль S1.

Источник

58. Способ замены плоскостей проекций

Сущность этого способа заключается в том, что заменяют одну из плоскостей на новую плоскость, расположенную под любым углом к ней, но перпендикулярную к незаменяемой плоскости проекции. Новая плоскость должна быть выбрана так, чтобы по отношению к ней геометрическая фигура занимала положение, обеспечивающее получение проекций, в наибольшей степени удовлетворяющих требованиям условий решаемой задачи. Для решения одних задач достаточно заменить одну плоскость, но если это решение не обеспечивает требуемого расположения геометрической фигуры, можно провести замену двух плоскостей.

Применение этого способа характеризуется тем, что пространственное положение заданных элементов остается неизменным, а изменяется система плоскостей проекций, на которых строятся новые изображения геометрических образов. Дополнительные плоскости проекций вводятся таким образом, чтобы на них интересующие нас элементы изображались в удобном для конкретной задачи положений.

Рассмотрим решение четырех исходных задач способом замены плоскостей проекций.

1. Преобразовать чертеж прямой общего положения так, чтобы относительно новой плоскости проекций прямая общего положения заняла положение прямой уровня.

Новую проекцию прямой, отвечающей поставленной задаче, можно построить на новой плоскости проекций П4, расположив ее параллельно самой прямой и перпендикулярно одной из основных плоскостей проекций, т. е. от системы плоскостей П1_|_П2 перейти к системе П4 _|_ П1 или П4 _|_ П2. На чертеже новая ось проекций должна быть параллельна одной из основных проекций прямой. На рис. 108 построено изображение прямой l (А, В) общего положения в системе плоскостей П1 _|_ П4, причем П4 || l. Новые линии связи A1A4 и В1В4проведены

перпендикулярно новой оси —П14 параллельной горизонтальной проекции l1.

Новая проекция прямой дает истинную величину А4В4отрезка АВ (см. § 11) и позволяет определить наклон прямой к горизонтальной плоскости проекций (а = L1П1). Угол наклона прямой к фронтальной плоскости проекций (b = L1П2) можно определить, построив изображение прямой на другой дополнительной плоскости П4_|_П2 (рис. 109).

2. Преобразовать чертеж прямой уровня так, чтобы относительно новой плоскости проекций она заняла проецирующее положение.

Чтобы на новой плоскости проекций изображение прямой было точкой (см. § 10), новую плоскость проекций нужно расположить перпендикулярно данной прямой уровня. Горизонталь будет иметь своей проекцией точку на плоскости П4_|_ П1. (рис. 110), а фронталь f— на П4_|_ П2

Если требуется построить вырожденную в точку проекцию прямой общего положения, то для преобразования чертежа потребуется произвести две последовательные замены плоскостей проекций. На рис. 111 исходный чертеж прямой l (А,В) преобразован следующим образом: сначала построено изображение прямой на плоскости П4_|_ П2, расположенной параллельно самой прямой l. В системе плоскостей П2_|_ П4, прямая заняла положение линии l уровня 2А4 _|_П21;

П4 _|_П5, причем вторая новая плоскость проекций П5 перпендикулярна самой прямой l. Так как точки А и В прямой находятся на одинаковом расстоянии от плоскости П4, то на плоскости П5 получаем изображение прямой в виде точки 5 = B5 = l5).

3. Преобразовать чертеж плоскости общего положения так, чтобы относительно новой плоскости она заняла проецирующее положение.

Для решения этой задачи новую плоскость проекций нужно расположить перпендикулярно данной плоскости общего положения и перпендикулярно одной из основных плоскостей проекций. Это возможно сделать, если учесть, что направление ортогонального проецирования на новую плоскость проекций должно совпадать с направлением соответствующих линий уровня данной плоскости общего положения. Тогда все линии этого уровня на новой плоскости проекций изобразятся точками, которые и дадут «вырожденную» в прямую проекцию плоскости (см. § 47).

На рис. 112 дано построение нового изображения плоскости 0 (ABC) в системе плоскостей П4 _|_П1. Для этого в плоскости 0 построена горизонталь h(A, 1), и новая плоскость проекций П4 расположена перпендикулярно горизонтали h. Графическое решение третьей исходной задачи приводят к построению изображения плоскости в виде прямой линии, угол наклона которой к новой оси проекции П14, определяет угол наклона а плоскости Q(ABC) к горизонтальной плоскости проекций (а = Q ^ П1).

Построив изображение плоскости общего положения в системе П2 _|_П4, (П4 расположить перпендикулярно фронтали плоскости),

можно определить угол наклона Р этой плоскости к фронтальной плоскости проекций.

4. Преобразовать чертеж проецирующей плоскости так, чтобы относительно новой плоскости она заняла положение плоскости уровня.

Решение этой задачи позволяет определить величину плоских фигур.

Новую плоскость проекций нужно расположить параллельно заданной плоскости. Если исходное положение плоскости было фронтально проецирующим, то новое изображение строят в системе и П2 _|_П4, а если горизонтально проецирующим, то в системе П1 _|_П4. Новая ось проекций будет расположена параллельно вырожденной проекции проецирующей плоскости (см. § 47). На рис. 113 построена новая проекция А4В4С4горизонтально проецирующей плоскости Sum (ABC) на плоскости П4 _|_П1

Если в исходном положении плоскость занимает общее положение, а нужно получить изображение ее как плоскости уровня, то прибегают к двойной замене плоскостей проекций, решая последовательно задачу 3; а затем задачу 4. При первой замене плоскость становится проецирующей, а при второй — плоскостью уровня (рис. 114).

В плоскости А(DEF) проведена горизонталь h (D — 1). По отношению к горизонтали проведена первая ось П1 / П4 _|_h1. Вторая новая ось

проекций параллельна вырожденной проекции плоскости, а новые линии связи — перпендикулярны вырожденной проекции плоскости. Расстояния для построения проекций точек на плоскости П5 нужно замерить на плоскости П1от оси П1 / П2и откладывать по новым линиям связи от новой оси П45. Проекция D5E5F5треугольника DEF конгруэнтна самому треугольнику ABC.

С применением способа замены плоскостей можно решать ряд других задач как самостоятельных, так и отдельных частей задач, включающих большой объем графических решений.

Источник

Метод замены плоскостей проекций

Для решения целого ряда задач начертательной геометрии наиболее рациональным является метод замены плоскостей проекций. Например, с его помощью можно определить натуральную величину плоской фигуры, расстояние между параллельными прямыми, опорные точки пересечения поверхностей.

Замена одной плоскости проекции

Сущность метода заключается в замене одной из плоскостей проекций на дополнительную плоскость, выбранную так, чтобы в новой системе плоскостей решение поставленной задачи значительно упрощалось. Положение фигур в пространстве при этом не меняется.

Рассмотрим на примере точек A и B, как осуществляются построения на комплексном чертеже. Изначально точка A находится в системе плоскостей П1, П2. Введем дополнительную горизонтальную пл. П4. Она будет перпендикулярна фронтальной плоскости проекций П2 и пересечет её по оси x1. Эту ось необходимо провести на комплексном чертеже с учётом цели построения. Здесь мы расположили её произвольно.

В новой системе плоскостей положение точки A» не изменится. Чтобы найти точку A’1, которая является проекцией т. А на плоскость П4, проведем из A» перпендикуляр к оси x1. На этом перпендикуляре от точки его пересечения с осью x1 отложим отрезок Ax1А’1, равный отрезку AxA’.

Данные построения основаны на равенстве ординат точек A’ и А’1. Действительно, в системе плоскостей П1, П2 и в системе П2, П4 точка A удалена от фронтальной плоскости проекций П2 на одно и то же расстояние.

Теперь осуществим перевод точки B в новую систему плоскостей П1, П4 (рис. ниже). Для этого введем произвольную фронтальную пл. П4, которая будет перпендикулярна горизонтальной плоскости проекций П1 и пересечет её по оси x1.

В системе П1, П4 положение точки B’ останется неизменным. Чтобы найти точку B»1, проведем из B’ перпендикуляр к оси x1. На этом перпендикуляре от точки его пересечения с осью x1 отложим отрезок Bx11 равный отрезку BxB». Описанные построения основаны на равенстве аппликат точек B» и B»1.

Замена двух плоскостей проекций

Иногда для решения поставленной задачи требуется замена двух плоскостей проекций (рис. ниже). Пусть A’ и A» – исходные проекции точки A, находящейся в системе пл. П1, П2. Введем первую дополнительную плоскость П4 и определим новую горизонтальную проекцию A’1 точки A, как это было описано ранее.

Для осуществления второй замены плоскости проекций будем рассматривать систему пл. П2, П4 в качестве исходной. Введем новую фронтальную плоскость П5 перпендикулярно горизонтальной пл. П4. Для этого на произвольном месте чертежа проведем ось x2 = П4 ∩ П5. Из точки A’1, положение которой останется неизменным, восстановим перпендикуляр к оси x2. На нем от точки Ax2 отложим отрезок Ax21 равный отрезку A»Ax1.

Использование метода замены при решении задач

Владея методом замены применительно к одной точке, можно построить дополнительные проекции любых фигур, поскольку они представляют собой множество точек. На рисунке ниже показан перевод отрезка AB в частное положение. Новая плоскость П4 проведена параллельно AB, поэтому отрезок проецируется на неё в натуральную величину.

На следующем рисунке показана плоскость общего положения α, заданная следами. Переведем её в новую систему плоскостей П1, П4 так, чтобы α занимала проецирующее положение. Для этого перпендикулярно горизонтальному следу h0α введем дополнительную фронтальную плоскость П4.

Новый фронтальный след f0α1 строится по двум точкам. Одна из них, Xα1, лежит на пересечении h0α с осью x1. Дополнительно возьмем точку N, принадлежащую α, и укажем её фронтальную проекцию N»1 на плоскости П4.

Определение расстояния между параллельными плоскостями

Параллельные плоскости α и β расположены так, как показано на рисунке. Чтобы найти расстояние между ними, необходимо из произвольной точки A, взятой на пл. α, опустить перпендикуляр AB на пл. β и определить его настоящую длину.

Для уменьшения количества геометрических построений α и β предварительно переводятся в проецирующее положение с помощью метода замены плоскостей проекций. Вспомогательная точка M используется для определения направления следов f0β1 и f0α1, параллельных друг другу.

Источник

Лекция 4. Способы преобразования ортогонального чертежа

4.1. Способ перемены плоскостей проекций

Чаще всего геометрические объекты расположены относительно плоскостей проекций в общем положении, и при решении задач для достижения поставленной цели необходимо выполнять много построений.

Количество построений можно значительно сократить, если геометрические элементы будут расположены в частном положении относительно плоскостей проекций.

Существуют два основных способа преобразования чертежа, при которых:

  1. Объект остаётся неподвижным, при этом меняется аппарат проецирования;
  2. Условия проецирования не меняются, но изменяется положение объекта в пространстве.

К первому способу относится способ перемены плоскостей проекций.

Ко второму – способ вращения (вращение вокруг линии уровня и вращение вокруг проецирующей прямой); способ плоскопараллельного перемещения.

Рассмотрим наиболее часто используемые способы при решении задач.

Способ перемены плоскостей проекций или способ введения дополнительных плоскостей проекций (ДПП) позволяет перейти от заданной системы плоскостей проекций к новой системе, более удобной для решения той или иной задачи.

Рассмотрим положение точки А относительно известной системы плоскостей проекций π2⊥π1 (Рисунок 4.1, а и б).

Введём π4⊥π1, при этом получим новую систему двух взаимно перпендикулярных плоскостей. Положение точки А на эпюре будет в этом случае задано проекциями А1 и А4.

Правила перемены плоскостей проекций:

  1. Новая плоскость проекций вводится перпендикулярно, по крайней мере, одной из заданных на чертеже плоскостей проекций;
  2. ДПП располагается относительно проецируемого объекта в частном положении, удобном для решения поставленной задачи;
  3. Новую плоскость совмещаем вращением вокруг новой оси проекций с плоскостью, которой она перпендикулярна на свободное место так, чтобы проекции не накладывались друг на друга.


а б

Рисунок 4.1 – Способ перемены плоскостей проекций

  1. На чертеже новая проекция геометрического элемента находится на линии связи, перпендикулярной новой оси проекций:
  1. Расстояние от А4 до π14 равно расстоянию от А2 до π21, так как величина этих отрезков (отмечены ○) определяет расстояние от точки А до плоскости проекций π1.

При решении задачи необходимо заранее обдумать, как расположить новую плоскость проекций относительно заданных геометрических объектов (прямой, плоскости и др.), и как на чертеже провести новую ось проекций, чтобы в новой системе плоскостей заданные объекты заняли бы частные положения по отношению к новой плоскости проекций.

Упражнение

1. Спроецировать отрезок общего положения АВ в точку.

  1. Введём ДПП π4//А1В1 и π4⊥π1 (Рисунок 4.2). В новой системе двух взаимно перпендикулярных плоскостей проекций π14 отрезок АВспроецируется на π4 в натуральную величину и по этой проекции можем определить угол наклона отрезка к плоскости проекций π1

Упражнение

2. Дана плоскость общего положения – σ, заданная треугольником АВС (Рисунок 4.3).

Определить истинную величину треугольника.

  1. Введём ДПП π4⊥σ и π4⊥π1, для чего построим горизонталь в плоскости треугольника и проведём новую ось проекций π14⊥g1согласно теореме о перпендикуляре к плоскости. На π4 плоскость σ спроецируется в прямую, что означает σ⊥πp4.
  2. Введём ДПП π5//σ (π45//А4В4С4) и π4⊥π5. На π5 проекция А5В5С5 – есть истинная величина треугольника.

4.2. Способ вращения

Сущность способа вращения состоит в том, что положение системы плоскостей проекций считается неизменным в пространстве, а положение проецируемого объекта относительно неподвижных плоскостей изменяется.

Из сравнения сущности обоих способов видно, что решение задач, которые требуют применения преобразования ортогонального чертежа, может быть выполнено любым из этих способов, результат при этом должен получиться одинаковым. Основа выбора того или иного способа – рациональность решения.

Вращение заданных элементов будем осуществлять вокруг проецирующей прямой, то есть прямой, перпендикулярной какой-либо плоскости проекций, при этом все точки заданных элементов поворачиваются в одну и ту же сторону на один и тот же угол (Рисунок 4.4, а и б). Ось вращения и объект вращения составляют твёрдое тело.

А – точка в пространстве;

О – центр вращения точки А;

АО – радиус вращения


а б

Рисунок 4.4 – Способ вращения вокруг прямой, перпендикулярной π2

Точка описывает в пространстве окружность радиусом АО. Плоскость окружности перпендикулярна оси вращения (σ⊥m).

Так как m⊥π2 , то σ//π2, следовательно, σ⊥π1, ⇒ σ1m1, и поэтому σ проецируется на π1 в виде прямой, перпендикулярной проекции оси вращения, а на π2 траектория вращающейся точки проецируется в виде окружности с центром О2m2.

Пусть ось вращения m⊥π1 (Рисунок 4.5, а и б). Плоскость окружности σ⊥m.


а б
Рисунок 4.5 – Вращение вокруг прямой, перпендикулярной π1
left.beginsigmaparallelpi_1\sigmaperp pi_2\endright> npu;mperppi_1Longrightarrowsigma_2perp m_2
Свойства проекций

  1. На плоскость проекций, перпендикулярную оси вращения, траектория вращающейся вокруг этой оси точки проецируется без искажения, то есть в окружность с центром, совпадающим с проекцией оси вращения на эту плоскость и радиусом, равным расстоянию от вращаемой точки до оси вращения.
  2. На плоскость проекций, параллельную оси вращения, траектория вращающейся точки проецируется в отрезок, перпендикулярный проекции оси вращения на эту плоскость.
  3. На плоскость проекций, перпендикулярную оси вращения, проекция вращаемого объекта своих размеров и формы не меняет.

Упражнение

Дано : отрезок общего положения – АВ.

Определить : способом вращения истинную величину отрезка и углы наклона его к плоскостям проекций.

1. Выберем ось вращения m⊥π1 и проходящую через точку В (Рисунок 4.6).

На плоскости проекций π2 проекция траектории перемещения точки А – прямая,

A_2 overlineperp m_2;u;A_2overlineparallelpi_2/pi_1

На плоскости проекций π1 проекция траектории перемещения точки А – окружность радиусом |А1В1|.

Повернем отрезок до положения, параллельного плоскости проекций π2. Получим натуральную величину отрезка.

Угол наклона отрезка АВ к плоскости проекций π1 будет угол
alpha=anglewidehat_2> .

Для того, чтобы определить угол наклона АВ к плоскости проекций π2, надо ввести новую ось вращения перпендикулярно π2 и повторить построения.

4.3. Определение истинной величины треугольника способом вращения

Пусть плоскость σ задана треугольником. Необходимо определить истинную величину треугольника (Рисунок 4.7).

Одним поворотом вокруг оси, перпендикулярной к плоскости проекций, истинную форму треугольника получить нельзя (так же как и введением одной ДПП).

Вращая вокруг оси m, перпендикулярной π1 можно расположить плоскость ΔАВС⊥π2 (а вращая вокруг оси n⊥π2 можно расположить плоскость ΔАВС⊥π1).


Рисунок 4.7

  1. Положим σ’ должна быть перпендикулярна π2. Для чего построим CD – горизонталь h плоскости σ. Введём первую ось вращения m⊥π1, например, через точку С.
  2. Повернём треугольник вокруг m до положения, когда
    overlineperppi_2Rightarrowoverline_1overline_1perppi_2/pi_1
    На основании 3-го свойства, новая горизонтальная проекция треугольника overline по величине должна равняться A1B1C1, а фронтальная проекция треугольника будет представлять отрезок.
  3. Введём вторую ось вращения n⊥π2 через точку overline_2 . Повернём фронтальную проекцию overline в новое положение overline<overlineoverlineoverline>parallelpi_2/pi_1 . На π1 получим треугольник overline<overlineoverlineoverline> , равный истинной величине треугольника АВС.

4.4. Задачи для самостоятельной работы

Двумя способами преобразования ортогонального чертежа:

1. Определить расстояние от точки D до отрезка АВ – общего положения (Рисунок 4.8).


Рисунок 4.8

2. Определить расстояние между двумя параллельными прямыми общего положения (АВ//CD) (Рисунок 4.9).


Рисунок 4.9

3. Определить расстояние между двумя скрещивающимися прямыми, заданными отрезками АВ и CD (Рисунок 4.10).


Рисунок 4.10

4. Построить недостающую проекцию точки D при условии, что задана σ=ΔАВС – общего положения и первая проекция точки D1, Dотстоит от плоскости σ на 30 мм (Рисунок 4.11).


Рисунок 4.11

5. Дан отрезок АВ – общего положения. Ось вращения не проходит через АВ (Рисунок 4.12). Определить способом вращения истинную величину АВ.


Рисунок 4.12

6. Задана прямая общего положения m и точка А вне прямой. Построить плоскость, проходящую через точку А и перпендикулярную прямой m (Рисунок 4.13).


Рисунок 4.13

Решение метрических задач в начертательной геометрии с примерами

Содержание:

К метрическим задачам относятся задачи на определение натуральной величины отрезков, расстояний углов, площадей плоских фигур.

Определение натуральной величины отрезка и углов наклона к плоскостям проекций методом прямоугольною треугольника Натуральная величина отрезка равна гипотенузе прямоугольного треугольника, одним катетом которого является проекция отрезка, а вторым — разность расстояний концов отрезка от той плоскости, на которой ведется построение. При этом угол между гипотенузой и катетом проекций является углом наклона отрезка к той плоскости, ряльной величины выполнено на горизонтальной проекции. Поэтому одним катетом прямоугольного треугольника, является горизонтальная проекция

Если необходимо определить угол наклона отрезка АВ к плоскости то построение прямоугольного треугольника ведется на фронтальной проекции.

Решение метрических задач методами преобразовании проекций

Положении геометрических образов, при которых расстоянии и углы не искажаются на плоскостях проекций

Метрические характеристики объектов на чертежах не искажаются, если геометрические образы занимают частное положение относительно плоскостей проекций.

Приведем некоторые из них.

1. Прямая проецируется в натуральную величину, если она параллельна плоскости проекций (рисунок 3.2).

— угол наклона к плоскости

2. Расстояние от точки до прямой проецируется в натуральную величину, если прямая проецирующая (рисунок 3.3).

3. Расстояние между параллельными прямыми проецируется в натуральную величину, если прямые проецирующие (рисунок 3.4).

4. Расстояние между скрещивающимися прямыми проецируется в натуральную величину, если одна из прямых проецирующая (рисунок 3.5).

5. Угол между плоскостями (двугранный угол) проецируется в натуральную величину, если ребро угла проецирующее (рисунок 3.6).

6. Угол наклона плоскости к плоскости проекций проецируется в натуральную величину, если плоскость проецирующая (рисунок 3.7)

7. Расстояние от точки до плоскости проецируется в натуральную величину, если плоскость проецирующая (рисунок 3.8)

8. Любая плоская фигура проецируется в натуральную величину, если она параллельна плоскости проекций (рисунок 3.9а,б)

Таким образом, для решения метрических задач целесообразно данный объект привести в частное положение с тем, чтобы на одной из новых проекций получить более простое решение задачи.

Для такого перехода и служат способы преобразования проекций.

Существует несколько способов преобразовании проекций: способ вращения вокруг осей перпендикулярных плоскостям проекций, способ плоскопараллельного перемещения, способ замены плоскостей проекций и др.

Четыре основных задачи преобразовании проекций

Этими способами решаются четыре основные задачи:

  • Задача 1. Прямую общего положения преобразуем в линию уровня (одно преобразование).
  • Задача 2. Прямую общего положения преобразуем в проецирующую (два преобразования)
  • Задача 3. Плоскость общего положения преобразуем в проецирующую (одно преобразование)
  • Задача 4. Плоскость общего положения преобразуем в плоскость уровня (два преобразования)

Решение 1-ой и 2-ой задачи преобразовании проекций методом вращении, плоскопараллельного перемещении и замены плоскостей проекций

Способ вращения

Способ вращения заключается в том, что геометрические образы вращаются вокруг осей перпендикулярных плоскостям проекций до занятия ими какого-либо частного положения относительно плоскостей проекций. При этом одна проекция точки перемещается по окружности, вторая — но прямой параллельной оси проекций.

На рисунке 3.10 вокруг осивращаем отрезок ЛВ до положения параллельного плоскости(1 задача). Далее вращением вокруг осиполученный отрезок до положения перпендикулярного плоскости На отрезок с проецируется в точку

Способ плоскопараллельного перемещения

Способ плоскопараллельного перемещения является разновидностью способа вращения (вращение без закрепленных осей), т.е. положение объекта можно преобразовывать путем перемещения его параллельно одной плоскости проекций, одновременно изменяя его положение относительно другой плоскости проекций до занятия им какого-либо частного положения.

На рисунке 3.11 сначала АВ переводим из общего положения в положение горизонтальное. При этом должно быть равно по величина находим в пересечении вертикальных линий связи и линий параллельных оси (1 задача). Далее отрезок перемещаем до положения перпендикулярного оси При этом На фронтальной проекции отрезок с проецируется в точку (2 задача).

Способ замены плоскостей проекций

Сущность способа замены плоскостей проекций заключается в том, что старая система плоскостей проекций заменяется на новую, с таким расчетом, чтобы относительно новой системы плоскостей, геометрический образ занял какое-то частное положение. При этом нужно помнить, что линии связи будут перпендикулярны относительно новой оси проекций и расстояния от новой оси проекций до новой проекции точки равно расстоянию от старой проекции точки до старой оси.

На рисунке 3.12 произведена первая замена плоскость заменена на новую фронтальную плоскость параллельную прямой АВ. При этом новая ось проводится параллельно проекции Линии связи проводятся перпендикулярно оси и на них от откладываются координаты z точек А и В (1 задача).

Далее прямую АВ преобразуем в проецирующую. Для этого проводим новую ось перпендикулярно проекции. Т.к. параллельна оси , расстояние до проекций будет одинаковое и прямая спроецируется в точку (2 задача)

Решение 3-ой и 4-ой задачи преобразовании проекций методом плоскопараллельного перемещения и замены плоскостей проекций

Так как метод вращения является более громоздким, рассмотрим решение 3-ей и 4-ой задачи преобразования методом плоскопараллельного перемещения и методом замены плоскостей проекций.

Способ плоскопараллельного перемещения

Для того чтобы плоскость из общего положения перевести в проецирующее, нужно иметь ввиду, что при этом ее горизонталь или фронталь должна быть перпендикулярна плоскости проекций. Поэтому на рисунке 3.13 проведена горизонталь Далее располагаем перпендикулярно оси Откладываем на ней отрезок и циркулем строим треугольник равный по величине На фронтальной проекции треугольник проецируется в линию (3 задача).

Чтобы плоскость треугольника перевести в положение плоскости уровня, достаточно полученную фронтальную проекцию расположить параллельно оси при этом на горизонтальной проекции треугольник проецируется в натуральную величину (4-я задача)

Способ замены плоскостей проекций

При решении задачи методом замены (рисунок 3.14) новую ось проводим перпендикулярно горизонтали тогда на новую фронтальную плоскость треугольник спроецируется в линию, т.е. станет перпендикулярным (3-я задача). Чтобы плоскость перевести в положение плоскости уровня, необходимо новую ось провести параллельно плоскости На новую плоскость треугольник спроецируется в натуральную величину.

Для того, чтобы методами преобразования решить любую метрическую задачу, необходимо определить какую из четырех основных задач преобразования необходимо решать в каждом конкретном случае.

Метрические задачи

Метрические задачи — это задачи на определение линейных или угловых размеров геометрических объектов, а также расстояний и углов между ними.

Главным вопросом метрических задач является вопрос о построении перпендикуляра к прямой или плоскости. Построение взаимно перпендикулярных прямых было рассмотрено ранее.

Из элементарной геометрии известно, что прямая перпендикулярна к плоскости, если она перпендикулярна двум пересекающимся прямым, принадлежащим этой плоскости. В качестве этих пересекающихся прямых наиболее целесообразно использовать горизонталь и фронталь плоскости. Это объясняется тем, что только в этом случае прямой угол будет проецироваться в натуральную величину на соответствующие плоскости проекций. На рисунке 5.1 приведен пространственный чертеж, на котором из плоскости а (из точки А) восстановлен перпендикуляр АВ. Из приведенного изображения можно выяснить методику построения проекций перпендикуляра к плоскости: горизонтальная проекция перпендикуляра к плоскости проводится перпендикулярно горизонтальной проекции горизонтали или горизонтальному следу плоскости, а фронтальная проекция перпендикуляра проводится перпендикулярно фронтальной проекции фронтали или фронтальному следу плоскости. Таким образом, необходимо выполнить следующий алгоритм проведения проекций перпендикуляра к плоскости:

Построение перпендикуляра к плоскость и восстановление перпендикуляра из плоскости называется прямой задачей, а построение плоскости, перпендикулярной к прямой — обратной задачей. Обе задачи решаются по одному и тому же вышеописанному алгоритму. При этом плоскость, перпендикулярную заданной прямой, можно задать следами или пересекающимися горизонталью и фронталью.

На рисунке 5.2 показано решение прямой (а) и обратной (б) задач. В прямой задаче из точки A треугольника AВС восстановлен перпендикуляр, в обратной задаче через точку К проведена плоскость, перпендикулярная прямой АВ. Плоскость задана пересекающимися горизонталью и фронталью.

Здесь же приведены примеры прямой и обратной задач, если плоскость задана следами. В прямой задаче (в) из точки Л построен перпендикуляр на плоскость, в обратной (г) — через точку К проведена плоскость перпендикулярно прямой АВ.

Определение расстояний между геометрическими объектами

Среди этих задач можно выделить следующие задачи: расстояние от точки до плоскости, расстояние от точки до прямой, расстояние между двумя параллельными прямыми, расстояние между двумя скрещивающимися прямыми, расстояние между двумя параллельными плоскостями и другие. В общем случае все задачи сводятся к определению расстояний между двумя точками.

Чтобы определить расстояние от точки до плоскости, необходимо выполнить ряд логических действий:

  1. Из точки опустить перпендикуляр на заданную плоскость;
  2. Найти точку встречи перпендикуляра с плоскостью;
  3. Определить НВ расстояния между заданной и найденной точками.

Задача на определение расстояния от точки до прямой решается по следующему плану:

  1. Через точку к провести плоскость, перпендикулярную заданной прямой;
  2. Найти точку встречи М заданной прямой с проведенной плоскостью;
  3. Соединить полученные точки (это будет перпендикуляр из точки на прямую);
  4. Определить НВ перпендикуляра.

Пространственная модель решения второй задачи представлена на рисунке 5.3. Рассмотренная задача относится также к задачам на перпендикулярность двух прямых.

Другие упомянутые задачи на определение расстояний легче решаются методами преобразования эпюра, которые будут рассмотрены в последующих разделах.

Перпендикулярность плоскостей

Плоскость перпендикулярна другой плоскости, если она содержит прямую, перпендикулярную другой плоскости (рисунок 5.4а). Таким образом, для того, чтобы провести плоскость, перпендикулярную другой, необходимо сначала провести перпендикуляр к заданной плоскости, а затем через него провести искомую плоскость. На рисунке 5.46 представлена задача: через точку К провести плоскость, перпендикулярную плоскости треугольника AВС. Искомая плоскость задана двумя пересекающимися прямыми, одна из которых перпендикулярна заданной плоскости.

Если две плоскости являются одноименными плоскостями частного положения (например, горизонтально- или фронтально-проецирующими), то при перпендикулярности плоскостей их собирательные следы будут перпендикулярны друг другу (рисунок 5.4в,г).

Если плоскости являются плоскостями общего положения, то при их перпендикулярности одноименные следы не будут взаимно перпендикулярны. Другими словами, перпендикулярность одноименных следов плоскостей общего положения не является достаточным условием для перпендикулярности самих плоскостей.

Определение углов между прямой и плоскостью и между двумя плоскостями

Определение углов между геометрическими объектами является трудоемкой задачей, если её решать традиционными геометрическими способами. Так, например, задачу на определение угла между прямой и плоскостью (рисунок 5.5) можно решить способом, алгоритм которого содержит следующие операции:

  1. Определить точку встречи прямой АВ с плоскостью а;
  2. Из точки В построить перпендикуляр на плоскость;
  3. Найти точку встречи перпендикуляра с плоскостью;
  4. Точки К и N соединить и определить НВ угла BKN.

Однако задача может быть значительно упрощена, если использовать способ решения задачи с помощью дополнительного угла. Дополнительным углом назовем угол между заданной прямой АВ и перпендикуляром BN, обозначенный через Из приведенного рисунка видно, что, если из точки В прямой построить на плоскость перпендикуляр, определить НВ дополнительного угла то искомый угол определится по формуле:

которую можно решить графически, достроив угол до 90°.

То же самое можно сказать о задаче на определение двугранного угла, то есть угла между двумя плоскостями (рисунок 5.66). Первый способ (геометрический) достаточно трудоемок. Он заключается в пересечении угла вспомогательной плоскостью а, перпендикулярной ребру АВ, построении линий пересечения KN и KL и определении натуральной величины угла NKL.

С помощью дополнительного угла задача решается следующим образом. В растворе двугранного угла (рисунок 5.6в) берут любую точку К и строят из неё перпендикуляры на обе плоскости двугранного угла, которые образуют дополнительный угол Далее определяют НВ дополнительного угла и дополняют его (графически) до 180 градусов, исходя из формулы:

Дополненный угол будет искомым.

Натуральную величину дополнительного угла в обеих задачах наиболее целесообразно определять методом вращения вокруг горизонтали или фронтали, который будет изложен в последующих темах.

Пример: Из любой вершины треугольника АВС восстановить перпендикуляр длиной 40 мм.

Решение: Сначала необходимо в плоскости треугольника АВС провести горизонталь и фронталь для того, чтобы построить проекции восстановленного перпендикуляра. Далее из точки С проводим проекции перпендикуляра согласно рассмотренному выше алгоритму о перпендикуляре к плоскости. Для того, чтобы отложить 40 мм, необходимо определить НВ ограниченного отрезка перпендикуляра CF (точку F берем произвольно). НВ отрезка CF определяем методом прямоугольного треугольника на горизонтальной проекции CF. Полученную точку К возвращаем на проекции по теореме Фалеса. Получаем проекции перпендикуляра длиной 40 мм (рисунок. 5.7).

Пример: Найти расстояние от точки А до плоскости, заданной следами

Решение: Из точки А строим перпендикуляр на заданную плоскость. Проекции перпендикуляра проводим перпендикулярно следам. Далее находим точку встречи перпендикуляра с заданной плоскостью с помощью вспомогательной фронтально-проецирующей плоскости Находим линию пересечения плоскостей (линия 1-2) и точку встречи в месте пересечения горизонтальной проекции перпендикуляра с линией 1-2. Методом прямоугольного треугольника определяем НВ расстояния АК (рисунок 5.8).

Пример: Определить расстояние от точки К до прямой AВ.

Решение: Через точку К проводим плоскость, перпендикулярную заданной прямой. Плоскость задаем пересекающимися горизонталью и фронталью. Их проекции проводим согласно алгоритму о перпендикуляре к плоскости (обратная задача). Далее находим точку встречи прямой с проведенной плоскостью (точка М). Определяем натуральную величину КМ методом прямоугольного треугольника (рисунок 5.9).

Примеры метрических задач

Задачи, в которых определяются различные геометрические величины -расстояния между объектами, длины отрезков, углы, площади и т.д. называются метрическими. Решение многих метрических задач, например задач на определение кратчайших расстояний, требует построения перпендикулярных прямых и плоскостей.

Перпендикулярность является частным случаем пересечения прямых, прямой и плоскости или двух плоскостей. Необходимо установить соотношения, по которым строятся проекции перпендикулярных прямых и плоскостей.

Теорема о проекциях прямого угла

Прямой угол проецируется на плоскость без искажения, если одна из его сторон параллельна этой плоскости (рис. 10.1).

Рис. 10.1. Теорема о проекциях прямого угла

Дано :BAC = 90°; AB || П’

Доказать, что C’A’A’B’

Доказательство: если AB||П’, то A’B’||AB, но AA’П’^AA’A’B’ значит ABAA,AB плоскости CAA’C’, тогда и A’B’ CAA’C’. Следовательно,CA’A’B’.

На основании этой теоремы две взаимно перпендикулярные прямые (пересекающиеся или скрещивающиеся) проецируются на П1 в виде взаимно перпендикулярных прямых, если одна из них горизонталь, на П2 — если одна из них фронталь (рис. 10.2,а).

Условие перпендикулярности скрещивающихся прямых (рис. 10.2,б) сводятся к условиям перпендикулярности пересекающихся прямых, поведенных через произвольную точку и соответственно параллельных скрещивающимся прямым. Таким образом, понятие перпендикулярности можно отнести как к пересекающимся, так и к скрещивающимся прямым.

Рис. 10.2. Перпендикулярные прямые:
а -пересекающиеся a1 h1 a h ;
б -скрещивающиеся b2 2 b

Линии наибольшего наклона плоскости

Прямые, лежащие в плоскости и перпендикулярные линиям уровня этой плоскости, называются линиями наибольшего наклона к соответствующей плоскости проекций (рис. 10.3). Так, прямая, лежащая в плоскости и перпендикулярная горизонтали плоскости, называется линией наибольшего наклона к горизонтальной плоскости проекций, а прямая, перпендикулярная фронтали — линией наибольшего наклона к фронтальной плоскости проекций.

Угол между линией наибольшего наклона и ее проекцией на соответствующую плоскость равен углу наклона плоскости к плоскости проекций (см. рис. 9.15).

Рис. 10.3. Линия наибольшего наклона плоскости а к П1:
а — плоскость общего положения; h ∈α — горизонталь плоскости а; AB h — линия наибольшего наклона;
φ = AB, AB 1 — угол наклона плоскости а к П1

Перпендикулярность прямой и плоскости

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым этой плоскости. На основании теоремы о проекциях прямого угла можно получить условие перпендикулярности прямой общего положения и плоскости общего положения:
Если прямая а перпендикулярна плоскости α(ABC), то ее горизонтальная проекция перпендикулярна горизонтальной проекции горизонтали плоскости, а фронтальная проекция — фронтальной проекции фронтали плоскости.

Например, при построении прямой а, перпендикулярной плоскости α(ABC) (рис. 10.4,а), в плоскости строятся линии уровня — горизонталь и фронталь, затем через произвольную точку в плоскости, в данном случае точку K(h×), строится прямая, горизонтальная проекция которой перпендикулярна горизонтальной проекции горизонтали плоскости α(ABC), а фронтальная проекция — фронтальной проекции фронтали плоскости.

Рис. 10.4. Перпендикулярность прямой и плоскости:

а -построение прямой, перпендикулярной плоскости:

б -построение плоскости, перпендикулярной прямой:

Аналогично решается задача о построении плоскости, перпендикулярной прямой общего положения (рис. 10.4,б)

Если плоскость проецирующая, проекции линий уровня совпадают со следом плоскости, перпендикулярность устанавливается по отношению к следу плоскости. Горизонтальная проекция перпендикуляра к горизонтально-проецирующей плоскости строится перпендикулярно горизонтальному следу плоскости (рис. 10.5,а). Прямая, перпендикулярная горизонтально-проецирующей плоскости, занимает положение горизонтальной линии уровня.
Аналогично, фронтальная проекция перпендикуляра к фронтально-проецирующей плоскости строится перпендикулярно фронтальному следу плоскости (рис. 10.5,б). Прямая, перпендикулярная фронтально-проецирующей плоскости, занимает положение фронтали.

Рис. 10.5. Перпендикулярность прямой и проецирующей плоскости:
а -построение прямой, перпендикулярной плоскости;
б -построение плоскости, перпендикулярной прямой

Взаимная перпендикулярность плоскостей

Две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Таким образом, построение взаимно перпендикулярных плоскостей сводится к построению перпендикулярных прямой и плоскости. Например, чтобы через произвольную точку А провести плоскость, перпендикулярную плоскости a(× h) (рис. 10.6), достаточно построить прямую n,перпендикулярную плоскости α(×h): n1h1; n22. Вторая прямая m, определяющая искомую плоскость, может быть задана произвольно — как пересекающая прямую n или параллельная ей.

Рис. 10.6. Перпендикулярность двух плоскостей

Дано: α(h × ) ; A (A1, A2).

Построить: A ∈ β α .

Определение метрических задач

Традиционно задачи, связанные с измерением длин, углов, площадей и объемов относят к метрическим. В основе решения этих задач лежит определение длины отрезка и, как производной от этого, площади плоской фигуры.

Определение длины отрезка

Одним из наиболее распространенных методов (рисунок 5.1) является метод прямоугольного треугольника (так его называют в начертательной геометрии) или метод ортогональных дополнений (название, принятое в линейной алгебре).

Идея метода базируется на следующем. Истинная величина отрезка AВ является гипотенузой прямоугольного треугольника, один из катетов которого, является проекцией отрезка AВ на плоскость проекции а второй катет -разница координат концов отрезка для оси, отсутствующей в рассматриваемой плоскости проекции (ортогональное дополнение). Угол между проекцией и гипотенузой этого треугольника (а) определяет наклон прямой к соответствующей плоскости проекции.

На комплексном чертеже возможно решение как на плоскости так и на плоскости При правильных построениях . Углы а и -углы наклона отрезка прямой АВ к плоскости соответственно.

Определение площади треугольника

Определение площади треугольника и величины плоского угла можно свести к известной задаче построения треугольника по трем сторонам.

Для этого достаточно, используя рассмотренный выше способ прямоугольного треугольника, найти по порядку истинные величины сторон (в соответствии с рисунком 5.2), а затем на свободном месте построить треугольник по трем сторонам.


Величина плоского угла между двумя любыми сторонами этой фигуры может быть измерена на истинной величине треугольника.

Проецирование прямого угла

Решение многих задач Начертательной геометрии связано с необходимостью построения на чертеже взаимно перпендикулярных прямых и плоскостей. Базой для этого служит умение строить прямые углы на комплексном чертеже.


Известная в теории чертежа теорема (приведем ее без доказательства) утверждает, что прямой угол (в соответствии с рисунком 5.3) проецируется на

соответствующую плоскость проекций вез искажения, если одна из его сторон параллельна этой плоскости проекций, а вторая — ей не перпендикулярна.

Перпендикулярность прямых и плоскостей

Выше уже отмечалось, что в трехмерном Евклидовом пространстве отсутствует полная параллельность, то же самое можно сказать и о перпендикулярности. Понятие перпендикулярности так же, как и параллельности, вводится через определение.

Перпендикулярность прямой и плоскости

Считают, что прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся (любым) прямым этой плоскости.

При решении задачи возможны два варианта: проведение перпендикулярной прямой к плоскости из внешней точки и из точки, лежащей в плоскости.
Рассмотрим возможность проведения перпендикуляра из точки К, лежащей в плоскости общего положения Р, заданной следами (рисунок 5.4).


Рисунок 5.4 — Перпендикулярность прямой и плоскости

В плоскости Р (через точку К) проводятся горизонталь h и фронталь f. Прямые, перпендикулярные соответствующим проекциям линий уровня в соответствии с теоремой о проецировании прямого угла и данным выше определением, могут быть приняты за проекции прямой .

В том случае, когда точка К не лежит в плоскости Р, решение задачи аналогично (рисунок 5.5).

Поскольку положение точки пересечения искомого перпендикуляра не определено, решение соответствует следующей схеме:

а) в плоскости проводятся горизонталь h (через точку В) и фронталь f (через точку A), в случае задания плоскости следами за фронталь и горизонталь принимаются соответствующие следы плоскости

Рисунок 5.5 — Перпендикуляр к плоскости

б) из внешней точки К к соответствующим проекциям линий уровня (следам) проводятся перпендикулярные прямые— Линия t принимается за перпендикуляр, опущенный из точки К к плоскости Р;

в) определяется точка S пересечения этого перпендикуляра t и плоскости.

Расстояние от точки до плоскости


Рисунок 5.6 — Расстояние от точки до плоскости

Задачу на определение расстояние от точки до плоскости (рисунок 5.6) можно свести к решению уже известных задач на построение перпендикуляра к плоскости (рисунок 5.5) и определения натуральной величины отрезка прямой (рисунок 5.1)

Перпендикулярность плоскостей

Считают, что две плоскости взаимно перпендикулярны, если одна из них проходит через прямую, перпендикулярную другой плоскости.

Задача может ставиться, как проведение плоскости, перпендикулярной заданной, проходящей через точку или прямую.

При проведении искомой плоскости через точку, как и в предыдущем случае, возможны два варианта проведения плоскости перпендикулярной заданной: через точку, лежащую в плоскости и через точку вне ее (рисунок 5.7).

Точно такой же вариант возникает и при проведении перпендикулярной плоскости через прямую (лежащую в исходной плоскости или не лежащую).

Рассмотрим вариант построения плоскости, проходящей через точку. Пусть точка А лежит в плоскости Р. Линии перпендикулярные соответствующим проекциям линий уровня (следам), определят перпендикуляр t к плоскости Р.


Рисунок 5.7 — Перпендикулярность плоскостей
Проведение через точку А произвольной прямой s позволяет определить плоскость Q, которая будет перпендикулярна плоскости Р.

Если точка А лежит вне плоскости Р, то решение аналогично. Проведение через точку А перпендикуляра t и произвольной прямой s определит плоскость Q, которая также, по определению, будет перпендикулярна плоскости Р.

Решение задачи на проведение плоскости через прямую аналогично решению задачи по проведению плоскости через точку. Достаточно вместо произвольной прямой s использовать заданную прямую АВ. И тогда, в соответствии с рисунком 5.8, задача сведется к проведению перпендикуляра t к плоскости Р (из точки, лежащей в плоскости или лежащей вне ее).

Рисунок 5.8 — Перпендикулярность плоскостей

Определение натуральных величин геометрических элементов

1. Определить натуральную величину отрезка общего положения:

  • способом прямоугольного треугольника;
  • способом замены плоскостей проекций преобразовать в прямую уровня;
  • способом вращения вокруг проецирующей оси преобразовать в прямую уровня.

2. Определить натуральную величину плоскости общего положения (замкнутого отсека):

  • способом замены плоскостей проекций преобразовать в плоскость уровня;
  • способом вращения вокруг линии уровня преобразовать в плоскость уровня;
  • способом плоскопараллельного перемещения преобразовать в плоскость уровня.

Определение расстояния между геометрическими элементами (образами)

1. Определить расстояние от точки до прямой общего положения:

  • способом замены плоскостей проекций преобразовать плоскость, заданную прямой и точкой, в плоскость уровня (задачи 3 и 4 преобразования; прямую и точку рассматривать как плоскость);
  • способом замены плоскостей проекций преобразовать прямую общего положения в проецирующую прямую (задачи 1 и 2 преобразования);
  • способом вращения вокруг линии уровня преобразовать плоскость, заданную прямой и точкой, в плоскость уровня;
  • способом плоскопараллельного перемещения преобразовать плоскость, заданную прямой и точкой, в плоскость уровня;
  • способом задания плоскости, перпендикулярной к прямой (3-й тип задач), построить через заданную точку плоскость, перпендикулярную к прямой, и определить точку пересечения последней с плоскостью.

2. Определить расстояние между параллельными прямыми:

  • способом замены плоскостей проекций преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня (задачи 3 и 4 преобразования);
  • способом замены плоскостей проекций преобразовать две параллельные общего положения в проецирующие прямые (задачи 1 и 2 преобразования);
  • способом вращения вокруг линии уровня преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня, ограничив ее замкнутым отсеком;
  • способом плоскопараллельного перемещения преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня;
  • способом задания плоскости, перпендикулярной к прямой (3-й тип задач), построить плоскость через любую точку, принадлежащую одной из прямых, перпендикулярную ко второй прямой, и определить точку пересечения этой плоскости со второй прямой.

3. Определить расстояние между скрещивающимися прямыми, преобразовав одну из прямых в проецирующую (задачи 1 и 2 преобразования).

4. Определить расстояние от точки до плоскости:

  • по теме «Перпендикулярность» – провести перпендикуляр к плоскости, построить точку пересечения этого перпендикуляра с заданной плоскостью и найти любым способом натуральную величину построенного отрезка (см. пункт 1);
  • способом замены плоскостей проекций преобразовать плоскость общего положения в плоскость проецирующую.

5. Определить расстояние от точки до поверхности вращения:

  • способом замены плоскостей проекций преобразовать плоскость, проведенную через точку и ось вращения поверхности, в плоскость уровня (задача 4 преобразования);
  • способом вращения вокруг проецирующей оси повернуть плоскость, проведенную через точку и ось вращения поверхности, в плоскость уровня.

Определение углов наклона геометрических элементов к плоскостям проекций H и V

1. Определить углы наклона прямой общего положения к плоскостям проекций H и V:

  • способом прямоугольного треугольника построить на двух проекциях натуральные величины отрезка и определить углы наклона прямой;
  • способом замены плоскостей проекций преобразовать прямую общего положения в горизонтальную, а затем во фронтальную прямую (задача 1 преобразования);
  • способом вращения вокруг соответствующей проецирующей оси преобразовать прямую общего положения в горизонтальную и во фронтальную прямые.

2. Определить угол наклона прямой к заданной плоскости общего положения:

  • из любой точки прямой опустить перпендикуляр к плоскости;
  • способом вращения вокруг линии уровня преобразовать построенную плоскость, заданную прямой и перпендикуляром, в плоскость уровня;
  • искомый угол будет дополнять построенный угол до 90°.

3. Определить величину двухгранного угла, если на чертеже есть линии пересечения плоскостей, образующих двухгранный угол (ребро):

  • способом замены плоскостей проекций преобразовать ребро двухгранного угла в проецирующую прямую (задачи 1 и 2 преобразования).

4. Определить угол между двумя плоскостями общего положения, если на чертеже нет линии пересечения заданных плоскостей (ребра):

  • задача решается косвенным путем, для чего из любой точки пространства следует опустить перпендикуляры к заданным плоскостям, которые, в свою очередь, задают вспомогательную плоскость, перпендикулярную к этим плоскостям;
  • эту вспомогательную плоскость способом вращения вокруг линии уровня следует преобразовать в плоскость уровня, определив угол между перпендикулярами (преобразование вспомогательной плоскости в плоскость уровня возможно и другими способами – ее плоскопараллельным перемещением или заменой плоскостей проекций);
  • искомый угол будет дополнять построенный угол до 180° (углом между плоскостями считают угол острый).

Структуризация материала тринадцатой лекции в рассмотренном объеме схематически представлена на рис. 13.1 (лист 1). На последующих листах 2–7 компактно приведены иллюстрации к этой схеме для визуального повторения изученного материала при его повторении (рис. 13.2–13.7).

Метрические задачи:

Определение натуральной величины геометрических элементов:

1. Определение длины отрезка

Способ прямоугольного треугольника

Способ замены плоскостей проекций (задача 1)

Способ вращения вокруг проецирующей оси

2. Определение площади замкнутого отсека

Способ замены плоскостей проекций (задачи 3 и 4)

Способ вращения вокруг прямой уровня (горизонтали)

Способ вращения вокруг проецирующей оси i(i V)

Способ плоско-параллельного перемещения (переноса)

Определение расстояний:

1. Расстояние между точками — определяется величиной отрезка, соединяющего эти точки

2. Расстояние от точки до прямой — определяется величиной перпендикуляра, опущенного из точки к прямой

а. Прямой путь (перпендикулярность)

б. Способ замены плоскостей проекций: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис. 13.2, г)

в. Способ вращения вокруг прямой уровня: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис.13.2, д)

г. Способ плоскопараллельного переноса: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис.13.2, ж)

3. Расстояние между параллельными прямыми — определяется величиной перпендикуляра, проведённого из произвольной точки одной прямой к другой прямой

а. Способ замены плоскостей проекции (рассматриваем две прямые) — задачи 1 и 2 (преобразовать прямые общего положения AB и CD в проецирующие)

б. Способ замены плоскостей проекции (рассматриваем плоскость, которую определяют параллельные прямые) — задачи 3 и 4 (определить натуральную величину плоскости ? (AB//СВ))

4. Расстояние между скрещивающимися прямыми — определяется величиной перпендикуляра, проведённого от одной из прямых, преобразованной в точку, к другой прямой (задачи 1 и 2 замены плоскостей проекции).

Способ замены плоскостей проекций — задачи 1 и 2

5. Расстояние от точки до плоскости — определяется величиной перпендикуляра, проведённого из точки на плоскость до точки его пересечения с этой плоскостью.

а. Прямой путь (перпендикулярность)

б. Способ замены плоскостей проекций (плоскость преобразовать в проецирующую — задача 3)

6. Расстояние между прямой и параллельной ей плоскостью — определяется величиной перпендикуляра, проведённого из произвольной точки на прямой к плоскости.

7. Расстояние между параллельными плоскостями — определяется величиной отрезка перпендикуляра, опущенного из точки одной плоскости на другую плоскость (до точки пересечения с другой плоскостью).

8. Расстояние от точки до поверхности

a. Cпособ вращения вокруг проецирующей оси

б. Способ замены плоскостей проекции

Определение величин углов:

1. Угол φ между скрещивающимися прямыми — определяется плоским углом, образованным двумя пересекающимися прямыми, проведёнными из произвольной точки пространства параллельно скрещивающимся прямым (рис. 13.6, а)

Способ вращения вокруг линии уровня

Дано:
а и b — скрещивающиеся прямые
Требуется:

φ — ?

Решение:
1.

2.φ — вращением вокруг фронтали, проведённой в построенной плоскости α(dс)

2. Угол φ между прямой и плоскостью — определяется углом между прямой и её проекцией на эту плоскость.

Дано:
α(h ∩ f);
AB — прямая общего положения
Требуется:
φ — ?

Решение:
1. l α(h ∩ f);
l» f»;
l h’;
2. ∠φ — вращением вокруг фронтали, проведённой в построенной плоскости β(AB∩l)

3. Угол φ между плоскостями α и β — определяется линейным углом, образованным двумя прямыми, по которым некоторая плоскость γ, перпендикулярная плоскостям (или их ребру), пересекает эти плоскости (углом между плоскостями считают острый угол).

а. Если на чертеже нет ребра (линии пересечения заданных плоскостей) — угол φ определяется способом вращения вокруг линии уровня (рис. а)

Дано:
(m // h); (а
b).
Требуется:
φ — ?
Решение:
1. провести в заданной плоскости фронтали и горизонтали;

2. из произвольной точки пространства D (D’, D») провести перпендикуляры l1 и l2 к заданными плоскостям, которые определяют плоскость γ(l1 l2);
3.
φ — вращением вокруг горизонтали h3, проведённой в построенной плоскости γ(l1 l2).

б. Если на чертеже есть ребро (линия пересечения заданных плоскостей) — угол φ определяется способом замены плоскостей проекций (задачи 1 и 2, рис. б)

ребро АВ двугранного угла преобразовать двумя заменами в проецирующую прямую.

Рекомендую подробно изучить предметы:
  1. Инженерная графика
  2. Начертательная геометрия
  3. Компас
  4. Автокад
  5. Черчение
  6. Проекционное черчение
  7. Аксонометрическое черчение
  8. Строительное черчение
  9. Техническое черчение
  10. Геометрическое черчение
Ещё лекции с примерами решения и объяснением:
  • Тени в ортогональных проекциях
  • Кривые поверхности
  • Пересечения криволинейных поверхностей
  • Пересечения поверхностей с прямой и плоскостью
  • Пересечение поверхности плоскостью и прямой
  • Развертки поверхностей
  • Способы преобразования проекций
  • Взаимное положение прямой и плоскости

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Метод вращения вокруг оси

Одним из наиболее эффективных методов определения метрических характеристик плоских фигур является вращение вокруг оси, в качестве которой обычно используют линию уровня или проецирующую прямую.

Способ вращения вокруг проецирующей прямой

Перемещение точки при её вращении вокруг проецирующей прямой является частным случаем параллельного перемещения и подчиняется следующим правилам.

  1. Траектория движения точки – дуга окружности с центром, расположенным на оси вращения. Радиус окружности равен расстоянию между точкой и осью вращения.
  2. При вращении точки вокруг прямой, перпендикулярной фронтальной плоскости проекции, фронтальная проекция точки перемещается по дуге окружности, а горизонтальная – параллельно оси X.
  3. При вращении точки вокруг прямой, перпендикулярной горизонтальной плоскости проекции, горизонтальная проекция точки перемещается по дуге окружности, а фронтальная – параллельно оси X.

Руководствуясь рассмотренными правилами, повернем отрезок CD в положение, параллельное фронтальной плоскости проекции. В качестве оси вращения i будем использовать горизонтально проецирующую прямую, проведенную через точку D.

При повороте отрезка положение точки D не изменится, поскольку она лежит на оси i. Точку C’ переместим по дуге окружности радиусом C’D’ в положение C’1 так, чтобы выполнялось условие C’1D’1 || X. Для нахождения точки C»1 из C» проведем прямую, параллельную оси X, до пересечения её с линией связи, восстановленной из т. C’1.

На следующем рисунке показан способ перевода отрезка в горизонтально проецирующее положение. Построения выполнены в два этапа и описаны ниже.

Сначала вращением вокруг оси i1 CD перемещают в положение C1D1, параллельное фронтальной плоскости проекции. После этого вращением вокруг оси i2 отрезок переводится в искомое положение C2D2, где он перпендикулярен горизонтальной плоскости проекции.

Расположение осей вращения выбирают исходя из удобства дальнейших построений. В нашей задаче горизонтально проецирующая прямая i1 проходит через точку D, а проекция i»2 фронтально проецирующей прямой i2 лежит на продолжении отрезка C»11.

Способ вращения вокруг линии уровня

Действенным и наиболее рациональным приемом решения задач, в которых требуется определить натуральную величину угла, является способ вращения вокруг линии уровня.

Основные правила построения

  1. Радиус вращения точки равен расстоянию между точкой и линией уровня, выполняющей роль оси. Натуральную величину радиуса определяют методом прямоугольного треугольника.
  2. При вращении вокруг горизонтали h точка перемещается по окружности, которая проецируется на горизонтальную плоскость в отрезок прямой, перпендикулярный горизонтальной проекции горизонтали h’. На фронтальную плоскость окружность, по которой движется точка, проецируется в эллипс. Строить его нет необходимости.
  3. При вращении вокруг фронтали f точка перемещается по окружности, которая проецируется на фронтальную плоскость в отрезок прямой, перпендикулярный фронтальной проекции фронтали f». Вместе с тем горизонтальная проекция линии перемещения представляет собой эллипс, строить который не обязательно.

Рассмотрим, как определить действительную величину угла между прямыми a и b, пересекающимися в точке A. Построения представлены на рисунке и выполнены согласно алгоритму, который описан ниже.

  1. Проводим фронтальную проекцию h» горизонтали h. Она пересекает прямые a» и b» в точках 1» и 2». Определяем горизонтальные проекции 1′ и 2′ и через них проводим h’.
  2. Находим центр вращения O. Его горизонтальная проекция O’ лежит на пересечении прямой h’ с перпендикуляром, проведенным из A’ к h’.
  3. Определяем натуральную величину радиуса вращения R = O’A’0. Для этого строим прямоугольный треугольник O’A’A’0, катет которого A’A’0 равен расстоянию от A» до h».
  4. Проводим дугу окружности радиусом R до пересечения её с прямой O’A’ в точке A’1. Соединяем A’1 с точками 1′ и 2′. Искомый угол ϕ построен.
источники:

http://www.evkova.org/reshenie-metricheskih-zadach

http://ngeometry.ru/metod-vrashcheniya-vokrug-osi.html

Вращение вокруг горизонтали

Определить натуральную величину четырехугольника ABCD способом вращения вокруг горизонтали

На горизонтальной проекции четырехугольника ABCD через вершины проведены перпендикуляры к горизонтали.
Методом прямоугольного треугольника определены натуральные величины этих перпендикуляров,
которые определены на своих горизонтальных проекциях. Полученные координаты вершин определяют натуральную величину
четырехугольника ABCD.

Замена плоскостей

Определить натуральную величину четырехугольника ABCD методом замены плоскостей проекций

Замена плоскостей проекций
П12→П42, П4⊥h определяет проецирующее
положение плоскости четырехугольника ABCD. Вторая замена
П25→П56, П6║ABCD определяет
условие проецирования плоской фигуры в натуральную величину и находит натуральную величину ABCD.


Как найти натуральную величину цилиндра.
Как строить натуральную величину сечения.


Определение натуральной величины.

Решение задач по начертательной геометрии.

Добавил:

Upload

Опубликованный материал нарушает ваши авторские права? Сообщите нам.

Вуз:

Предмет:

Файл:

Пособие НГИГ цвет 2014.pdf

Скачиваний:

331

Добавлен:

11.05.2015

Размер:

10.18 Mб

Скачать

Метрическими называются задачи на измерение величин отрезков, углов натуральных величин плоских фигур.

При изображении различных геометрических фигур всегда стремятся располагать их по отношению к плоскостям проекций так, чтобы они занимали частные положения. Это позволяет непосредственно по проекциям судить о размерах и форме изображаемых фигур, определять взаимное положение фигур, а также решать другие метрические задачи.

В тех случаях, когда не удаётся расположить изображаемую фигуру или отдельные её части (например рёбра, грани) в частных положениях, для решения метрических задач прибегают к преобразованию проекций. Одним из способов преобразования проекций является перемена плоскостей проекций.

1.4.1 Перемена плоскостей проекций. Способ заключается в том, что изображаемую фигуру (отрезок прямой, многоугольник, тело), не меняя её положения в пространстве, проецируют на новую дополнительную плоскость проекций, заменившую одну из основных плоскостей Н или V. Дополнительная плоскость проекций образует с плоскостями Н или V новые системы двух взаимно перпендикулярных плоскостей проекций. Положение дополнительной плоскости проекций выбирают в зависимости от поставленной задачи.

Сущность способа перемены плоскостей проекций рассмотрим на примере определения длины отрезка АВ прямой общего положения (рисунок 11).

Рисунок 11 – Построение вспомогательной проекции отрезка

Известно, что отрезок прямой проецируется на плоскость проекций без искажения, если он ей параллелен. Поэтому для определения длины отрезка прямой необходимо задать дополнительную плоскость, например V*, параллельную отрезку АВ. Плоскость V* должна быть также перпендикулярна плоскости Н. Расстояние от плоскости V* до отрезка АВ выбирают произвольно.

16

Плоскости проекций Н и V* образуют новую систему двух взаимно перпендикулярных плоскостей проекций H V*. Плоскости Н и V* пересекаются по прямой x1 – новой оси проекций. В данном примере новая ось x1 || А’В’.

Проекцию отрезка АВ на дополнительную плоскость V* строят обычным путём. Через точки А и В проводят прямые, перпендикулярные плоскости V*, и в пересечении этих прямых с плоскостью V* получают новые проекции точек А и В. Их обозначают А* и В*. Соединив точки А* и В* прямой линией, получают новую проекцию отрезка А*В*.

1.4.2Определение натуральной величины отрезка. На рисунке 11

видно, что отрезок общего положения AB является отрезком уровня в новых плоскостях проекций H V*. Так как отрезок AB параллелен плоскости проекций V*, то он проецируется на неё без искажения. Это значит, что длина полученной проекции А*В* равна длине самого отрезка АВ. При этом угол φ является натуральной величиной угла между отрезком АВ и плоскостью проекций H.

1.4.3Определение натуральной величины плоского многоугольника.

Плоская фигура проецируется на плоскость проекций без искажения, если она расположена параллельно этой плоскости. Поэтому, чтобы определить натуральную величину плоской фигуры, надо спроецировать её на дополнительную плоскость, параллельную заданной фигуре.

Например, определим натуральную величину четырёхугольника ABCD (рисунок 12), который расположен перпендикулярно плоскости V и наклонен к

Рисунок 12 – Определение натуральной величины многоугольника

плоскости Н. Вначале воспользуемся дополнительной плоскостью Н*, которую зададим параллельно плоскости четырёхугольника и перпендикулярно плоскости V, т. е. проведём ось проекций х1 || А’С’.

Для построения проекции четырёхугольника на плоскости Н* проведём через точки А», , С», линии связи, перпендикулярные оси x. На этих линиях от оси x1 отложим отрезки, взятые с горизонтальной проекции, и получим точки А*, B*, С* и D*. Эти точки последовательно соединим прямыми линиями и получим четырёхугольник А*B*С*D*, равный натуральной величине четырёхугольника ABCD.

Определение натуральных величин неплоских геометрических фигур определяется методом построения развёртки и более подробно рассмотрено в подразделе 1.6 настоящего пособия.

17

1.5 Решение позиционных задач

В позиционных задачах определяется положение геометрических фигур (точек, прямых, плоскостей и других геометрических тел) относительно плоскости проекций, а также устанавливается их взаимное расположение.

1.5.1 Взаимное положение прямой (отрезка) и точки. Если точка при-

надлежит прямой (отрезку), то её проекции лежат на одноименных проекциях этой прямой и на одной линии проекционной связи. На рисунке 13, а показано построение точки С, лежащей на отрезке AB.

а – прямая общего положения; б – профильная прямая Рисунок 13 – Точка, принадлежащая отрезку

На рисунке 13, б показан частный случай расположения точки и прямой, когда только две проекции точки лежат на одноименных проекциях прямой, и сама точка не принадлежит прямой, т. к. третья проекция точки не лежит на проекции прямой.

1.5.2 Взаимное положение прямых линий (отрезков). Прямые линии или их отрезки могут занимать относительно друг друга следующие положения: быть параллельными, пересекаться или скрещиваться. О взаимном положении двух прямых (отрезков) судят по расположению их проекций.

Если прямые параллельны, то их одноименные проекции параллельны между собой. Если две прямые пересекаются, то их одноименные проекции также пересекаются и точки пересечения любой пары одноименных проекций располагаются на общей для них линии связи.

Если две прямые не параллельны друг другу и не пересекаются, то, следовательно, они скрещиваются. Одноименные проекции скрещивающихся прямых могут пересекаться, но в отличие от пересекающихся прямых пара точек пересечения одноименных проекций не лежит на общей линии связи. Это происходит потому, что точка пересечения одноименных проекций скрещивающихся прямых представляет собой проекцию двух точек.

18

Рисунок 15 – Пересечение прямой и плоскости частного положения

Рисунок 14 – Принадлежность прямой плоскости

1.5.3 Взаимное положение прямой (от-

резка) и плоскости. При определении взаимного положения прямой и плоскости возможны следующие варианты: прямая принадлежит плоскости, прямая параллельна плоскости, прямая пересекает плоскость.

Прямая принадлежит плоскости, если выполняется хотя бы одно из условий:

она проходит через две точки, принадлежащие данной плоскости;

она проходит через точку, принадлежа-

щую данной плоскости, и параллельна прямой, находящейся в этой плоскости.

На рисунке 14 проекции прямой m проходят через проекции А – проекции вершины А треугольника ABC – и проекции Е – проекции точки пересечения прямой АЕ со стороной ВС треугольника АВС. Прямая АЕ имеет с треугольником AВС две общие точки А и Е, следовательно, прямая АЕ принадлежит плоскости, которая задана треугольником ABC.

На рисунке 14 проекции прямой n параллельны проекциям стороны АВ треугольника ABC (n’ || А’В’ и || A»B») и проходят через одноименные проекции точки С, принадлежащей треугольнику ABC. Следовательно, прямая n принадлежит плоскости, которая задана треугольником ABC, т. к. она проходит через точку, принадлежащую треугольнику, и параллельна одной из его сторон.

1.5.4 Параллельность прямой и плоско-

сти. Прямая параллельна плоскости, если она параллельна прямой, лежащей в этой плоскости.

1.5.5 Пересечение прямой (отрезка) с плоскостью частного положения. Плоскость частного положения (проецирующая плоскость), перпендикулярная к плоскости

проекций, проецируется на плоскость в виде прямой линии. На этой прямой (проекции плоскости) должна находиться соответствующая проекция точки, в которой некоторая прямая пересекает такую плоскость.

На рисунке 15 фронтальная проекция точки пересечения прямой АВ с треугольником CDE определяется в пересечении проекций A»В» и С»Е», т. к. треугольник проецируется на плоскость П» в виде прямой линии. Найдя точку определяем положение проекции K’. Так как прямая АВ в направлении от K к В находится под треугольником, то на чертеже часть горизонтальной проекции прямой проведена штриховой линией.

19

Рисунок 16 – Пересечение прямой и плоскости общего положения

1.5.6 Пересечение прямой (отрезка) с плоскостью общего положения.

Для построения точки пересечения прямой с плоскостью общего положения пользуются следующим алгоритмом:

а) через данную прямую проводят некоторую вспомогательную плоскость α;

б) строят прямую пересечения данной плоскости и вспомогательной α;

в) определяют положение точки пересечения прямых – данной прямой и построенной прямой.

На рисунке 16 показано построение точки пересечения прямой m с плоскостью общего положения, заданной треугольником ABC.

Через прямую m проведена вспомогательная горизонтально-проецирующая плоскость α, в данном случае указанная только одним следом, проходящим через проекцию m’. Плоскость α пе-

ресекает AВС по прямой DE. По точкам D’E’ найдены фронтальные проекции E»D» и тем самым определена прямая ED, по которой вспомогательная плоскость α пересекает данную плоскость AВС. Затем найдена точка , в которой фронтальная проекция прямой, непосредственно пересекает проекцию E»D». После этого остаётся найти горизонтальную проекцию точки пересечения – точку K’.

1.5.7Взаимное положение плоскостей. При определении взаимного по-

ложения плоскостей возможны следующие варианты: плоскости параллельны друг другу (частный случай – плоскости совпадают), плоскости пересекаются (частный случай – плоскости перпендикулярны). Результатом пересечения плоскостей является прямая, называемая линией пересечения.

Построение линии пересечения двух плоскостей сводится к нахождению двух точек, общих для этих двух плоскостей. Для построения линии пересечения этого достаточно, т. к. линия пересечения (прямая) задаётся двумя точками. При пересечении проецирующей плоскости с плоскостью общего положения одна из проекций линии пересечения совпадает со следом плоскости, находящимся в той плоскости проекций, к которой перпендикулярна проецирующая плоскость.

1.5.8Пересечение плоскостей общего положения. Чаще всего плоскости общего положения задаются проекциями треугольников, лежащих в этих плоскостях. Алгоритм построения линии пересечения плоскостей, заданных проекциями треугольников имеет следующий вид:

а) определяем точку M пересечения отрезка АС с плоскостью треугольника DEF, применив горизонтально-проецирующую плоскость α. Для выполнения этой операции используем алгоритм пункта 1.5.5 (см. рисунок 16);

20

б) определяем точку N пересечения отрезка BC с плоскостью треугольника DEF, применив горизонтально-проецирующую плоскость β. Для выполнения этой операции используем алгоритм пункта 1.5.5 (см. рисунок 16);

в) строим линию пересечения двух треугольников MN и определяем видимость. Точки M и N при решении задачи могут оказаться за пределами треугольников, их соединяют прямой линией (при необходимости продлевают). Линией пересечения является та часть линии MN, которая принадлежит двум треугольникам одновременно.

На рисунке 17 дано построение линии пересечения двух треугольников ABC и DEF с указанием видимых и невидимых участков этих треугольников.

Рисунок 17 – Пересечение плоскостей общего положения

1.5.9 Сечение многогранников плоскостью. Основная форма геометри-

ческих тел может быть изменена путём плоских срезов. При пересечении многогранника плоскостью получается плоская фигура, множество точек которой принадлежит как плоскости, называемой секущей плоскостью, так и геометрическому телу. Плоская фигура называется сечением, а ограничивающая её замкну-

тая линия – линией сечения.

Число сторон сечения равно числу пересечённых граней. Стороны сечения представляют собой линии пересечения граней многогранника и секущей плоскости, а его вершины – точки пересечения рёбер многогранника с секущей плоскостью. Таким образом, для решения задачи на построение сечения многогранника плоскостью необходимо уметь: 1) строить линии пересечения двух плоскостей; 2) определять точки пересечения прямой с плоскостью.

21

Рисунок 18 – Сечение пирамиды плоскостью частного положения

1.5.10 Сечение многогранников плоскостью частного положения. Рас-

смотрим данную ситуацию на примере построения пирамиды, усечённой гори- зонтально-проецирующей плоскостью α (рисунок 18).

Горизонтальные проекции фигуры сечения и плоскости α совпадают. По ним можно заключить, что плоскость α пересекает основание пирамиды по отрезку АВ, а три её боковые грани – по отрезкам ВС, CD и AD, т. е. фигура сечения представляет собой четырёхугольник ABCD. Фронтальную проекцию фигуры сечения получают, проведя через точки A’, B’, C’ и D’ линии связи и продолжив их до пересечения с фронтальными проекциями соответствующих рёбер пирамиды в точках , и D». Фронтальную проекцию точки С, принадлежащей ребру, параллельному плоскости W, находят, построив вначале её профильную проекцию – точку С»’. Профильные проекции точек А, В и D строят по двум име-

ющимся проекциям. Соединив одноимённые проекции вершин четырёхугольника ABCD и отметив видимые и невидимые его стороны, получают проекции четырёхугольника на плоскостях V и W.

Для определения натуральной величины сечения ABCD используют дополнительную плоскость проекций, параллельную секущей плоскости α.

1.5.11 Сечение тел вращения плоскостью общего положения. Особен-

ностью таких тел является наличие неплоской поверхности. Чаще всего для построения линии пересечения такой поверхности плоскостью общего положения следует применять вспомогательные плоскости. Точки искомой линии определяются в пересечении линий, по которым вспомогательные секущие плоскости пересекают данные поверхность и плоскость.

В качестве примера рассмотрим пересечение прямого конуса с фронтальной плоскостью α.

На рисунке 19, а представлен общий принцип применения вспомогательной плоскости. Фронтальные проекции случайных точек и усечённого конуса принадлежат секущей плоскости и поверхности конуса одновременно (принадлежат линии пересечения). Для нахождения горизонтальных проекций этих

22

точек строится линия пересечения конуса с фронтальной вспомогательной плоскостью β, проведённой через точки C и D. Построив известную нам линию пересечения плоскости β с конусом (линия пересечения представляет собой окружность) с помощью линий связи, найдём горизонтальные проекции C’ и D’.

Точки А и B (см. рисунок 19) называются характерными – габаритные точки, определяющие наибольшие размеры линии сечения по высоте и ширине; точки, лежащие на крайних образующих и образующих, проекции которых совпадают с осевыми линиями. По расположению этих точек можно представить характер искомой линии пересечения.

Точки С и D (см. рисунок 19) называются промежуточными – точки, которые располагаются между характерными. Их количество может быть разным и зависит от построений.

На рисунке 19, б показано детальное построение линии пересечения прямого конуса фронтально-проецирующей плоскостью α и построение натуральной величины сечения.

Рисунок 19 – Сечение прямого конуса фронтально-проецирующей плоскостью

23

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти свое место на заводе
  • Как найти работу начинающему разработчику
  • Как найти значение тангенса острого угла
  • В гта как найти радио
  • Как составить график на троих сотрудников на месяц

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии