Особенности расчета нагревательных элементов электропечи
Одним из наиболее значимых элементов электропечи является ее нагреватель. Именно он напрямую влияет на мощность, рабочую температуру и общие функциональные характеристики оборудования. Абсолютно неважно, о каких типах приборов идет речь — трубчатых электропечах, шахтных или муфельных моделях. Для всех применимы базовые правила расчета.
Содержание
-
- Как определить мощность и силу тока печи
- Как рассчитать наименьшее сечение нагревательного элемента электропечи
- Как рассчитать длину проволоки нагревателя для создания спирали
- Как проверить правильность поверхностной мощности нагревательного элемента
Как определить мощность и силу тока печи
Начинается расчет печи с ее будущей мощности. Также определяется сила тока, которая будет проходить по телу нагревателя. Для этого можно использовать базовые эмпирические нормы соотношения размера камеры прибора к ее мощности.
Если объем насчитывает от 1 до 5 литров, желательно, чтобы мощность оборудования была в диапазоне от 300 до 500 Вт на литр. Когда камера планируется для промышленного использования, и ее объем достигает 100 литров и более, расчет муфельной печи должен учитывать примерно 50-60 Вт на каждый из них.
Детальная таблица рекомендуемых норм мощности для различных объемов камер
Провести нужные вычисления совсем несложно. Сам объем легко рассчитывается исходя из данных о высоте, ширине и глубине камеры, а потом умножается на нужный показатель. К примеру, печь на 5 литров и нагрузкой 300 Вт/л будет иметь общую мощность 1500 Вт.
Определить силу тока также достаточно просто. Базовое напряжение сети известно, и составляет 220 В.
После этого производится расчет печей, формула которого имеет следующий вид:
I=P/U
P – предварительно рассчитанная мощность, в нашем случае 1500 Вт.
U – напряжение сети.
Таким образом, имеем: 1500/220 = 6.8 А.
Как рассчитать наименьшее сечение нагревательного элемента электропечи
Расчет электрических печей должен обязательно проводиться с учетом особенностей самого нагревательного элемента. Ведь если через него пройдет сила тока, больше чем он может вынести – выход из строя неизбежен. Планируя конструкцию муфельной или шахтной электропечи, обязательно учитывайте будущий диаметр нагревателя.
Рассчитывать его можно, зная силу тока и предполагаемую рабочую температуру. Рекомендуемые нормы указаны на фото ниже.
Таблица определения параметров нагревателя электропечи. Узнаем нужный диаметр и сечение
Если в таблице отсутствует точное значение, которое совпадает с Вашим расчетом, это не критично. Когда наша сила тока будет равна 6.8 А, стоит брать за основу показатель 7.7, то есть, ближайший больший. Минимальный диаметр и сечение обеспечат бесперебойный и безопасный процесс обжига.
Можно даже заложить в расчет нагревательной печи более мощный элемент для накала. Уменьшать параметры категорически нельзя, поскольку тогда он очень быстро перегорит
Как рассчитать длину проволоки нагревателя для создания спирали
Методика расчета печи также подразумевает определение оптимальной длины проволоки для основы нагревательного элемента. Это очень важно, ведь именно от нее зависит создание необходимого резистивного нагрева.
Для того чтобы провести точный расчет закалочной печи нам потребуются такие данные как:
- Напряжение сети.
- Сила тока.
- Площадь сечения нагревателя.
- Удельное сопротивление проводника.
Последний показатель можно найти на фото представленном ниже.
Величина удельного сопротивления, в зависимости от диаметра и материала нагревателя
Далее расчет термических печей идет по формуле:
L= (U / I) x S/ p
В нашем случае, если использовать для нагревателя нихромовый сплав Х20Н80-Н, длина проволоки будет составлять: (220/6.8) х 0.785/1.11. То есть, приблизительно 23 метра.
Как проверить правильность поверхностной мощности нагревательного элемента
Если Вы планируете создать долговечные трубчатые печи, расчет обязательно должен включать и пункт проверки поверхностной мощности нагревательного элемента с допустимым значением. Это поможет вовремя обнаружить возможный выход из строя и определить грани возможностей данной составляющей оборудования.
Поверхностная удельная мощность указывает сколько тепловой энергии нужно получать с каждой единицы площади нагревателя
Методика расчета трубчатых печей вначале подразумевает поиск допустимого значения. Его можно получить по формуле:
βдоп = βэф х α
βдоп – непосредственно допустимая мощность.
βэф – мощность, которая зависит от диапазона рабочих температур.
α – коэффициент эффективности излучения тепла нагревательным элементом.
В расчет печи для обжига включаем показатель βэф и α из таблиц, представленных на фото ниже.
Таблица для расчета эффективной мощности на основе температуры заготовок и самого нагревателя
Коэффициент α также подбирается из табличных данных. Он напрямую зависит от местоположения спирали нагревателя внутри конструкции печи.
Значения поправочного коэффициента – важный аспект, который стоит учитывать, выполняя расчет шахтных печей
Впоследствии эти 2 показателя умножаются между собой и дают нам граничное значение допустимой мощности.
Это станет последним этапом проектирования оборудования.
Как видите, расчет нагревательных элементов – дело достаточно непростое. Поэтому, проще и лучше заказать электропечи для обжига и других видов термообработки от надежного производителя. Именно таким является литовский изготовитель SNOL, продукция которого представлена на нашем сайте. Не откладывайте и скорее выбирайте нужную модель!
На чтение 5 мин. Просмотров 7.3k. Опубликовано 27 мая, 2020
На кухнях появляется все больше компактной бытовой техники, которая может заменить привычные духовки и варочные поверхности. Мультиварка, гриль, микроволновая печь позволяют готовить разнообразно и полезно и занимают мало места. Но есть и полный аналог большим духовым шкафам, который поможет экономить пространство в студии или на даче. Мини-печь внешне похожа на микроволновку, отличается небольшим объемом и может иметь внешние конфорки. Мощность кухонных электропечей изменяется в диапазоне от 600 Вт до 3000 Вт, от нее зависит скорость приготовления блюд и количество дополнительных функций. Ростеры отличаются и величиной основной камеры. Она может быть от 8 до 40 литров.
Содержание
- На что влияет мощность электродуховки
- Формула расчета мощности электропечи
- Стандартные показатели мощности
- Особенности подключения электрической плиты к сети
- Классы энергопотребления
- Рейтинг самых мощных кухонных электропечей
На что влияет мощность электродуховки
Мощность электрической печи на кухне зависит от того, какие функции она будет выполнять. Если необходимо заменить ею электроплиту и постоянно готовить для всей семьи, стоит выбрать больший по объему и энергопотреблению аппарат. Если же необходимо разогреть привезенную с собой еду в дачном доме, то достаточно компактной и маломощной техники, цена которой также невысока.
Электрическая печь потребляет мощность не только на разогрев основной камеры. Более дорогие модели по набору функций не уступают полноразмерным духовым шкафам, а иногда и превосходят их. В магазинах есть аппараты, имеющие верхний и нижний гриль, конвекцию, возможность приготовления на пару и каталитической очистки. Также в качестве дополнения ростер может иметь внешнюю варочную поверхность и даже кофеварку.
Время, за которое можно сделать еду, и скорость нагрева камеры также определяются мощностью мини-печи. Недорогие аппараты не имеют терморегулятора и нагреваются до заданной температуры достаточно долго. Зато они не дают большой нагрузки на сеть и не увеличат расходы на электроэнергию.
Мини-печи силой 1,5 – 2 кВт имеют регулировку температуры от 60 до 320 градусов и позволяют не только приготовить обед на семью из трех человек, но и решить другие кулинарные задачи.
Формула расчета мощности электропечи
Потребляемая прибором мощность в России рассчитывается в ваттах, в других странах для этого применяют вольт-амперы. Этот параметр описывает, сколько энергии необходимо для совершения работы и указывается в спецификациях бытовой техники. Формула мощности электропечи будет такая:
P (ватт) = S (вольт-ампер) * 0,8 (коэффициент мощности).
Расчет мощности электропечей можно также произвести, исходя из объема камеры и рекомендуемых значений на один литр. Для печей емкостью 8-40 литров удельная мощность принимается в диапазоне от 80 до 120 Вт/л. Такие показатели позволяют подключать оборудование к бытовой сети с напряжением тока 220-230 вольт и его силой от 6 ампер.
Для обработки металлов на производствах используется аппаратура, разогревающаяся с помощью дугового трансформатора. Такая электрическая печь потребляет мощность 800 квт, но она подключается к специальным электрическим сетям, имеющим большее напряжение.
Стандартные показатели мощности
Большинство мини-печек имеет мощность от 650 до 3500 Вт. Такие показатели обеспечивают необходимую тепловую энергию и функционирование дополнительных элементов. Наиболее распространенная группа компактных духовок средней цены с верхним и нижним нагревателями потребляет от 1,2 до 2,5 кВт. Отдельные элементы конструкции различаются по энергозатратам:
- верхний и нижний ТЭН – по 0,8-1 кВт;
- гриль – 1,5 кВт;
- электродвигатель вертела и внутренняя подсветка – 20-25 Вт;
- внешняя конфорка – 1,5 кВт.
У более дорогих моделей на энергоэффективность влияет лучшая теплоизоляция основной камеры. Этот параметр определяет, насколько быстро остывает печка во время готовки. Также уменьшить потребление энергии можно, если:
- выключать духовку за 10-15 минут до конца приготовления блюда;
- использовать темную посуду;
- не давать агрегату остыть, готовя несколько кушаний одно за другим.
Расчет мощности электрических печей для дома зависит от состава семьи и от частоты приготовления. Покупать мощную дорогую модель не имеет смысла, если ее функции используются очень редко.
Особенности подключения электрической плиты к сети
Мини-печь имеет меньший объем и энергозатраты по сравнению с обычной духовкой, но ее мощность может достигать 3,5 кВт. Методика подключения предполагает прокладку отдельной силовой линии и установку автомата.
Чтобы рассчитать сечение провода для нее, нужно знать сопротивление материала и длину кабеля. Тогда формула будет иметь вид:
S = R/(l*ρ), где R – сопротивление, l – длина провода, ρ – удельное сопротивление материала.
Обычно для прокладки силового кабеля для духовки используют сечение 4 мм2. Розетку и автомат стоит установить на 32 А.
Классы энергопотребления
Классы энергоэффективности бытовой техники разработаны в Европейском Союзе для информирования покупателей о возможных расходах на эксплуатацию. Маркировке подлежат все электрические приборы, а также автомобили, здания. Известны 7 классов, среди которых А (выделяют подклассы А+ и А++) имеет наибольшую эффективность использования энергии, а G – наименьшую. Эти указания есть в паспортах.
На этикетках мини-печей содержится информация:
- класс энергопотребления;
- расход энергии;
- объем духовки и ее тип.
Большинство ростеров имеют объем основной камеры от 12 до 35 литров и относятся к малому типу. Чтобы отнести устройство к классу А, оно должно потреблять более 0,6 кВ/ч электричества.
Рейтинг самых мощных кухонных электропечей
Если мини-печь мечты должна иметь максимальную мощность, то следует выбрать одну из следующих моделей:
- Zarget ZMO 4555BH с двумя дополнительными конфорками, 1,6 кВт;
- Moulinex Optimo OX464810 с верхним и нижним грилем, 1,6 кВт;
- KRAFT KF-MO 3801 – недорогая модель, 1,5 кВт;
- REDMOND SkyOven 5706S с сенсорным управлением, 1,5 кВт.
Эти приборы имеют отличные технические характеристики и подходят для приготовления блюд для всей семьи.
m = 1 т = 1000 кг.
T = 2,3 ч = 8280 с.
C = 500 Дж/кг*°C.
λ = 84000 Дж/кг.
Δt = 1500 °C.
N — ?
Количество теплоты Q, которое выделяется в электрической печи, выразим формулой: Q = N * T, где N — мощность печи, T — время работы печи.
Для нагревание и плавление стали, необходимое количество теплоты Q, выразим формулой: Q = C * m * Δt + λ * m, где C, λ — удельная теплоёмкость и теплота плавления стали, m — масса расплавленной стали, Δt — температура нагревания стали.
N * T = C * m * Δt + λ * m.
N = (C * Δt + λ) * m) / T.
N = ( 500 Дж/кг*°C * 1500 °C + 84000 Дж/кг) * 1000 кг / 8280 с = 100725 Вт.
Ответ: мощность электрической печи составляет N = 100725 Вт.
Если домашнему мастеру по характеру выполняемых им работ необходима муфельная печь, то он, конечно, может приобрести готовый прибор в магазине или по объявлениям. Однако, стоит подобное оборудование заводского производства – весьма недешево. Поэтому многие умельцы берутся за изготовление таких печей самостоятельно.
Основной «рабочий узел» электрической муфельной печи – нагреватель, который в условиях кустарного производства обычно исполняют в виде спирали из специальной проволоки с высокими показателями сопротивления и термической отдачи. Характеристики его должны строго соответствовать мощности создаваемого оборудования, предполагаемым температурным режимам работы, а также отвечать еще некоторым требованиям. Если планируется самостоятельное изготовление прибора, то советуем применить предлагаемые ниже алгоритм и удобные калькуляторы расчета нагревателя муфельной печи.
Расчет требует определенных пояснений, которые постараемся изложить максимально доходчиво.
Алгоритм и калькуляторы расчета нагревателя муфельной печи
Из чего делаются нагревательные спирали
Для начала – буквально несколько слов о проволоке, которая используется для навивки нагревательных спиралей. Обычно для таких целей применяется нихромовая или фехралевая.
- Нихромовая (от сокращений никель + хром) чаще всего представлена сплавами Х20Н80-Н, Х15Н60 или Х15Н60-Н.
Цены на муфельную печь
муфельная печь
Ее достоинства:
— высокий запас прочности при любых температурах нагрева;
— пластична, легко обрабатывается, поддаётся свариванию;
— долговечность, стойкость к коррозии, отсутствие магнитных качеств.
Недостатки:
— высокая стоимость;
— более низкие показатели нагрева и термоустойчивости по сравнению с фехралевой.
- Фехралевая (от сокращений феррум, хром, алюминий) – в наше время чаще используется материал из сплава Х23Ю5Т.
Достоинства фехраля:
— намного дешевле нихрома, благодаря чему в основном материал и пользуется широкой популярностью;
— имеет более значительные показатели сопротивления и резистивного нагрева;
— высокая жаростойкость.
Недостатки:
— низкая прочность, а после даже однократного нагрева свыше 1000 градусов – выраженная хрупкость спирали;
— невыдающаяся долговечность;
— наличие магнитных качеств, подверженность коррозии из-за наличии в составе железа;
— ненужная химическая активность – способен вступать в реакции с материалом шамотной футеровки печи;
— чрезмерно большое термическое линейное расширение.
Каждый из мастеров волен выбрать любой из перечисленных материалов, проанализировав их «за» и «против». Алгоритм расчёта учитывает особенности такого выбора.
Шаг 1 – определение мощности печи и силы тока, проходящего через нагреватель.
Чтобы не вдаваться в ненужные в данном случае подробности, сразу скажем, что существуют эмпирические нормы соответствия объема рабочей камеры муфельной печи и ее мощности. Они показаны в таблице ниже:
Объем муфельной камеры печи (литры) | Рекомендуемая удельная мощность печи (Вт/л) |
---|---|
1÷5 | 300÷500 |
6÷10 | 120÷300 |
11÷50 | 80÷120 |
51÷100 | 60÷80 |
101÷500 | 50÷60 |
Если есть проектные наброски будущего прибора, то объем муфельной камеры определить несложно – произведением высоты, ширины и глубины. Затем объем переводится в литры и умножается на указанные в таблице рекомендуемые нормы мощности. Так получаем мощность печи в ваттах.
Табличные значения указаны в некоторых диапазонах, так что или применяйте интерполяцию, или принимайте примерно среднюю величину.
Найденная мощность, при известном напряжении сети (220 вольт) позволяет сразу определить силу тока, который будет проходить через нагревательный элемент.
I = P / U.
I – сила тока.
Р – определённая выше мощность муфельной печи;
U – напряжение питания.
Весь этот первый шаг расчета очень легко и быстро можно проделать с помощью калькулятора: все табличные значения уже внесены в программу вычисления.
Калькулятор мощности муфельной печи и силы тока, проходящего через нагреватель
Перейти к расчётам
Шаг 2 – определение минимального сечения проволоки для навивки спирали
Любой электрический проводник ограничен в своих возможностях. Если через него пропускать ток, выше допустимого, он попросту перегорит или расплавится. Поэтому очередной шаг в расчетах – определение минимально допустимого диаметра проволоки для спирали.
Определить его можно по таблице. Исходные данные – рассчитанная выше сила тока и предполагаемая температура разогрева спирали.
D (мм) | S (мм ²) | Температура разогрева проволочной спирали, °C | ||||||
---|---|---|---|---|---|---|---|---|
200 | 400 | 600 | 700 | 800 | 900 | 1000 | ||
Максимальная допустимая сила тока, А | ||||||||
5 | 19.6 | 52 | 83 | 105 | 124 | 146 | 173 | 206 |
4 | 12.6 | 37 | 60 | 80 | 93 | 110 | 129 | 151 |
3 | 7.07 | 22.3 | 37.5 | 54.5 | 64 | 77 | 88 | 102 |
2.5 | 4.91 | 16.6 | 27.5 | 40 | 46.6 | 57.5 | 66.5 | 73 |
2 | 3.14 | 11.7 | 19.6 | 28.7 | 33.8 | 39.5 | 47 | 51 |
1.8 | 2.54 | 10 | 16.9 | 24.9 | 29 | 33.1 | 39 | 43.2 |
1.6 | 2.01 | 8.6 | 14.4 | 21 | 24.5 | 28 | 32.9 | 36 |
1.5 | 1.77 | 7.9 | 13.2 | 19.2 | 22.4 | 25.7 | 30 | 33 |
1.4 | 1.54 | 7.25 | 12 | 17.4 | 20 | 23.3 | 27 | 30 |
1.3 | 1.33 | 6.6 | 10.9 | 15.6 | 17.8 | 21 | 24.4 | 27 |
1.2 | 1.13 | 6 | 9.8 | 14 | 15.8 | 18.7 | 21.6 | 24.3 |
1.1 | 0.95 | 5.4 | 8.7 | 12.4 | 13.9 | 16.5 | 19.1 | 21.5 |
1 | 0.785 | 4.85 | 7.7 | 10.8 | 12.1 | 14.3 | 16.8 | 19.2 |
0.9 | 0.636 | 4.25 | 6.7 | 9.35 | 10.45 | 12.3 | 14.5 | 16.5 |
0.8 | 0.503 | 3.7 | 5.7 | 8.15 | 9.15 | 10.8 | 12.3 | 14 |
0.75 | 0.442 | 3.4 | 5.3 | 7.55 | 8.4 | 9.95 | 11.25 | 12.85 |
0.7 | 0.385 | 3.1 | 4.8 | 6.95 | 7.8 | 9.1 | 10.3 | 11.8 |
0.65 | 0.342 | 2.82 | 4.4 | 6.3 | 7.15 | 8.25 | 9.3 | 10.75 |
0.6 | 0.283 | 2.52 | 4 | 5.7 | 6.5 | 7.5 | 8.5 | 9.7 |
0.55 | 0.238 | 2.25 | 3.55 | 5.1 | 5.8 | 6.75 | 7.6 | 8.7 |
0.5 | 0.196 | 2 | 3.15 | 4.5 | 5.2 | 5.9 | 6.75 | 7.7 |
0.45 | 0.159 | 1.74 | 2.75 | 3.9 | 4.45 | 5.2 | 5.85 | 6.75 |
0.4 | 0.126 | 1.5 | 2.34 | 3.3 | 3.85 | 4.4 | 5 | 5.7 |
0.35 | 0.096 | 1.27 | 1.95 | 2.76 | 3.3 | 3.75 | 4.15 | 4.75 |
0.3 | 0.085 | 1.05 | 1.63 | 2.27 | 2.7 | 3.05 | 3.4 | 3.85 |
0.25 | 0.049 | 0.84 | 1.33 | 1.83 | 2.15 | 2.4 | 2.7 | 3.1 |
0.2 | 0.0314 | 0.65 | 1.03 | 1.4 | 1.65 | 1.82 | 2 | 2.3 |
0.15 | 0.0177 | 0.46 | 0.74 | 0.99 | 1.15 | 1.28 | 1.4 | 1.62 |
0.1 | 0.00785 | 0.1 | 0.47 | 0.63 | 0.72 | 0.8 | 0.9 | 1 |
D — диаметр нихромовой проволоки, мм | ||||||||
S — площадь поперечного сечения нихромовой проволоки, мм² |
И сила тока, и температура берутся ближайшие, но обязательно с приведением в большую сторону. Например, при планируемом нагреве 850 градусов следует ориентироваться на 900. И, допустим, при силе тока в этом столбце, равной 17 амперам, берется большее ближайшее – 19,1 А. В двух левых столбцах сразу определяется минимально возможная проволока – ее диаметр и площадь поперечного сечение.
Более толстую проволоку использовать можно (иногда это становится и обязательным – о таких случаях будет рассказано ниже). Но меньше – никак нельзя, так как нагреватель просто перегорит в рекордно короткий срок.
Шаг 3 – определение необходимой длины проволоки для навивки спирального нагревателя
Известны мощность, напряжение, сила тока. Намечен диаметр проволоки. То есть имеется возможность, используя формулы электрического сопротивления, определить длину проводника, который будет создавать необходимый резистивный нагрев.
L = (U / I) × S / ρ
ρ — удельное сопротивление нихромового проводника, Ом×мм²/м;
L — длина проводника, м;
S — площадь поперечного сечения проводника, мм².
Как видно, потребуется еще одна табличная величина – удельное сопротивление материала на единицу площади поперечного сечения и длины проводника. Необходимые для расчета данные – показаны в таблице:
Марка нихромового сплава, из которого изготовлена проволока | Диаметр проволоки, мм | Величина удельного сопротивления, Ом×мм²/м |
---|---|---|
Х23Ю5Т | независимо от диаметра | 1.39 |
Х20Н80-Н | 0,1÷0,5 включительно | 1.08 |
0,51÷3,0 включительно | 1.11 | |
более 3 | 1.13 | |
Х15Н60 или Х15Н60-Н |
0,1÷3,0 включительно | 1.11 |
более 3 | 1.12 |
Еще проще покажется расчет, если использовать наш калькулятор:
Калькулятор расчета длины проволоки для спирали
Довольно часто нихромовую ил фехралевую проволоку реализуют не на метры, а на вес. Значит, потребуется перевести длину в ее эквивалент по массе. Выполнить такой перевод поможет предлагаемая таблица:
Диаметр проволоки, мм | Вес погонного метра, г | Длина 1 кг, м | ||||
---|---|---|---|---|---|---|
Х20Н80 | Х15Н60 | ХН70Ю | Х20Н80 | Х15Н60 | ХН70Ю | |
0.6 | 2.374 | 2.317 | 2.233 | 421.26 | 431.53 | 447.92 |
0.7 | 3.231 | 3.154 | 3.039 | 309.5 | 317.04 | 329.08 |
0.8 | 4.22 | 4.12 | 3.969 | 236.96 | 242.74 | 251.96 |
0.9 | 5.341 | 5.214 | 5.023 | 187.23 | 191.79 | 199.08 |
1 | 6.594 | 6.437 | 6.202 | 151.65 | 155.35 | 161.25 |
1.2 | 9.495 | 9.269 | 8.93 | 105.31 | 107.88 | 111.98 |
1.3 | 11.144 | 10.879 | 10.481 | 89.74 | 91.92 | 95.41 |
1.4 | 12.924 | 12.617 | 12.155 | 77.37 | 79.26 | 82.27 |
1.5 | 14.837 | 14.483 | 13.953 | 67.4 | 69.05 | 71.67 |
1.6 | 16.881 | 16.479 | 15.876 | 59.24 | 60.68 | 62.99 |
1.8 | 21.365 | 20.856 | 20.093 | 46.81 | 47.95 | 49.77 |
2 | 26.376 | 25.748 | 24.806 | 37.91 | 38.84 | 40.31 |
2.2 | 31.915 | 31.155 | 30.015 | 31.33 | 32.1 | 33.32 |
2.5 | 41.213 | 40.231 | 38.759 | 24.26 | 24.86 | 25.8 |
2.8 | 51.697 | 50.466 | 48.62 | 19.34 | 19.82 | 20.57 |
3 | 59.346 | 57.933 | 55.814 | 16.85 | 17.26 | 17.92 |
3.2 | 67.523 | 65.915 | 63.503 | 14.81 | 15.17 | 15.75 |
3.5 | 80.777 | 78.853 | 75.968 | 12.38 | 12.68 | 13.16 |
3.6 | 85.458 | 83.424 | 80.371 | 11.7 | 11.99 | 12.44 |
4 | 105.504 | 102.992 | 99.224 | 9.48 | 9.71 | 10.08 |
4.5 | 133.529 | 130.349 | 125.58 | 7.49 | 7.67 | 7.96 |
5 | 164.85 | 160.925 | 155.038 | 6.07 | 6.21 | 6.45 |
5.5 | 199.469 | 194.719 | 187.595 | 5.01 | 5.14 | 5.33 |
5.6 | 206.788 | 201.684 | 194.479 | 4.84 | 4.95 | 5.14 |
6 | 237.384 | 231.732 | 223.254 | 4.21 | 4.32 | 4.48 |
6.3 | 261.716 | 255.485 | 246.138 | 3.82 | 3.91 | 4.06 |
6.5 | 278.597 | 271.963 | 262.013 | 3.59 | 3.68 | 3.82 |
7 | 323.106 | 315.413 | 303.874 | 3.09 | 3.17 | 3.29 |
8 | 422.016 | 411.968 | 396.896 | 2.37 | 2.43 | 2.52 |
9 | 534.114 | 521.397 | 502.322 | 1.87 | 1.92 | 1.99 |
10 | 659.4 | 643.7 | 620.15 | 1.52 | 1.55 | 1.61 |
Шаг 4 – Проверка соответствия удельной поверхностной мощности рассчитанного нагревателя допустимому значению
Нагреватель или не справится со своей задачей, или будет работать на грани возможностей и оттого быстро перегорит, если его поверхностная удельная мощность будет выше допустимого значения.
Поверхностная удельная мощность – это количество тепловой энергии, которое необходимо получить с единицы площади поверхности нагревателя.
Прежде всего – определяем допустимое значение этого параметра. Оно выражается следующей зависимостью:
βдоп = βэф × α
βдоп – допустимая удельная поверхностная мощность нагревателя, Вт/см²
βэф – эффективная удельная поверхностная мощность, зависящая от температурного режима работы муфельной печи.
α – коэффициент эффективности теплового излучения нагревателя.
βэф берем из таблицы. Данными для входа в нее являются:
Левый столбец – ожидаемая температура воспринимающей среды. Проще говоря – до какого уровня требуется разогреть помещенные в печь материалы или заготовки. Каждому уровню соответствует своя строка.
Все остальные столбцы – температура разогрева нагревательного элемента.
Пересечение строки и столбца даст искомое значение βэф.
Требуемая температура тепловоспринимающего материала, °С | Поверхностная мощность βэф (Вт/cм ²) при температуре разогрева нагревательного элемента, °С | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
800 | 850 | 900 | 950 | 1000 | 1050 | 1100 | 1150 | 1200 | 1250 | 1300 | 1350 | |
100 | 6.1 | 7.3 | 8.7 | 10.3 | 12.5 | 14.15 | 16.4 | 19 | 21.8 | 24.9 | 28.4 | 36.3 |
200 | 5.9 | 7.15 | 8.55 | 10.15 | 12 | 14 | 16.25 | 18.85 | 21.65 | 24.75 | 28.2 | 36.1 |
300 | 5.65 | 6.85 | 8.3 | 9.9 | 11.7 | 13.75 | 16 | 18.6 | 21.35 | 24.5 | 27.9 | 35.8 |
400 | 5.2 | 6.45 | 7.85 | 9.45 | 11.25 | 13.3 | 15.55 | 18.1 | 20.9 | 24 | 27.45 | 35.4 |
500 | 4.5 | 5.7 | 7.15 | 8.8 | 10.55 | 12.6 | 14.85 | 17.4 | 20.2 | 23.3 | 26.8 | 34.6 |
600 | 3.5 | 4.7 | 6.1 | 7.7 | 9.5 | 11.5 | 13.8 | 16.4 | 19.3 | 22.3 | 25.7 | 33.7 |
700 | 2 | 3.2 | 4.6 | 6.25 | 8.05 | 10 | 12.4 | 14.9 | 17.7 | 20.8 | 24.3 | 32.2 |
800 | — | 1.25 | 2.65 | 4.2 | 6.05 | 8.1 | 10.4 | 12.9 | 15.7 | 18.8 | 22.3 | 30.2 |
850 | — | — | 1.4 | 3 | 4.8 | 6.85 | 9.1 | 11.7 | 14.5 | 17.6 | 21 | 29 |
900 | — | — | — | 1.55 | 3.4 | 5.45 | 7.75 | 10.3 | 13 | 16.2 | 19.6 | 27.6 |
950 | — | — | — | — | 1.8 | 3.85 | 6.15 | 8.65 | 11.5 | 14.5 | 18.1 | 26 |
1000 | — | — | — | — | — | 2.05 | 4.3 | 6.85 | 9.7 | 12.75 | 16.25 | 24.2 |
1050 | — | — | — | — | — | — | 2.3 | 4.8 | 7.65 | 10.75 | 14.25 | 22.2 |
1100 | — | — | — | — | — | — | — | 2.55 | 5.35 | 8.5 | 12 | 19.8 |
1150 | — | — | — | — | — | — | — | — | 2.85 | 5.95 | 9.4 | 17.55 |
1200 | — | — | — | — | — | — | — | — | — | 3.15 | 6.55 | 14.55 |
1300 | — | — | — | — | — | — | — | — | — | — | — | 7.95 |
Теперь – поправочный коэффициент α. Его значение для спиральных нагревателей показано в следующей таблице.
Иллюстрация | Вариант расположения спирального нагревательного элемента | Значение коэффициента α |
---|---|---|
Нагревательная спираль спрятана в ниши футеровки муфельной печи. | 0,16 ÷ 0,24 | |
Нагревательная спираль заключена в кварцевые трубки и расположена на полочках по стенкам камеры | 0,30 ÷ 0,36 |
Простое перемножение этих двух параметров как раз и даст допустимую удельную поверхностную мощность нагревателя.
Примечание: Практика показывает, что для муфельных печей с высокотемпературным нагревом (от 700 градусов), оптимальным значением βдоп будет 1,6 Вт/см² для нихромовых проводников, и примерно 2,0÷2,2 Вт/см² для фехралевых. Если печь работает в режиме нагрева до 400 градусов, то таких жестких рамок нет – можно ориентироваться на показатели от 4 до 6 Вт/см².
Итак, с допустимым значением поверхностной удельной мощности определись. Значит, необходимо найти удельную мощность рассчитанного ранее нагревателя и сравнить с допустимой.
Быстро рассчитать этот параметр поможет калькулятор:
Калькулятор расчета удельной поверхностной мощности нагревателя
Перейти к расчётам
Если полученное значение не превышает допустимого – расчет может считаться законченным.
В том случае, когда найденное значение превосходит допустимый уровень поверхностной удельной мощности, придется проведенные расчеты несколько откорректировать. Сделать это можно, вернувшись к шагам №2—3, и повторив вычисления с увеличением диаметра проволоки на одну или несколько стандартных позиций – одновременно с этим возрастет и ее длина. Затем – снова сверить показатели. И так – пока не будет найден оптимальный вариант и с точки зрения максимальной экономичности, и с позиций обеспечения соответствия указанному параметру.
С набором наших калькуляторов провести повторный расчет – это дело буквально нескольких минут. И вот на этом расчет может считаться законченным. Можно приобретать проволоку выбранного сплава, с рассчитанными диаметром и длиной.
Как собрать муфельную печь своими руками
В этой публикации акцент был сделан именно на расчетах нагревательного элемента. А более подробно именно о процессе самостоятельного изготовления муфельной печи – читайте в специальной статье нашего портала.
Внимание! Если Вы обнаружили ошибку на сайте, то выделите ее и нажмите Ctrl+Enter.
- Введение
- Нагреватели. Материалы для изготовления нагревателей
- Расчет нагревателей электрических печей
- Пример 1
- Пример 2
- Заключение
- Список литературы
- Калькулятор нагревателей
Вам понравилась эта статья?! Добавьте ее в свои закладки.
—>
8 (800) 200-52-75 (495) 366-00-24 (495) 504-95-54 (495) 642-41-95 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
e-mail: info@metotech.ru |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
e-mail: info@metotech.ru
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Нагреватели. Методика и примеры расчетаСтатья «Нагреватели. Методика и примеры расчета» содержит обзор по расчету нагревателей электрических печей. Рассматриваются материалы, используемые для изготовления нагревателей, их свойства, достоинства и недостатки, условия работы (нихром, вольфрам, молибден и др.), описана цель расчета нагревателей, приведены методики, описанные на конкретных примерах. Также статья содержит справочные таблицы и ссылки на ГОСТы, необходимые для проведения расчета нагревателей электрических печей.
На странице представлена только выдержка из статьи «Нагреватели. Методика и примеры расчета».
Калькулятор нагревателей электрических печейРассчитать нагревательПараметры электрической печи Мощность печи, Вт Тип электросети
Напряжение на концах нагревателя, Вольт Материал нагревателя Температура нагревателя, °C Температура нагреваемого изделия, °C Тип нагревателей Конструкция и размещение нагревателей Результаты расчетаПараметры нагревателя Диаметр нагревателя, мм Размеры нагревателей (толщина x ширина), мм Выбрать из стандартных размеров (толщина х ширина), мм Толщина нагревателя, мм Ширина нагревателя, мм Длина нагревателя, м Масса нагревателя, кг Общая длина нагревателей, м Общая масса нагревателей, кг *Результаты расчета нагревателей электрических печей, выполненного с помощью данного калькулятора, носят информативный характер. Расчет основан на подходе, рассмотренном в книге «Типовые расчеты по электрооборудованию», Дьяков В.И., а также в статье «Нагреватели. Методика и примеры расчета», Никонов Н. В., и содержит ряд допущений. В каждом конкретном случае могут появиться дополнительные условия, связанные с конструктивными особенностями печи, а также условиями эксплуатации. ВведениеОчень часто при желании сделать или отремонтировать нагреватель электропечи своими руками у человека появляется много вопросов. Например, какого диаметра взять проволоку, какова должна быть ее длина или какую мощность можно получить, используя проволоку или ленту с заданными параметрами и т.д. При правильном подходе к решению данного вопроса необходимо учитывать достаточно много параметров, например, силу тока, проходящего через нагреватель, рабочую температуру, тип электрической сети и другие. В данной статье приводятся справочные данные о материалах, наиболее распространенных при изготовлении нагревателей электрических печей, а также методика и примеры их расчета (расчета нагревателей электрических печей). Нагреватели. Материалы для изготовления нагревателейНепосредственно нагреватель – один из самых важных элементов печи, именно он осуществляет нагрев, имеет наибольшую температуру и определяет работоспособность нагревательной установки в целом. Поэтому нагреватели должны соответствовать ряду требований, которые приведены ниже. Требования к нагревателямОсновные требования к нагревателям (материалам нагревателей):
Материалы для изготовления нагревателейНаиболее подходящими и самыми используемыми в производстве нагревателей для электропечей являются прецизионные сплавы с высоким электрическим сопротивлением. К ним относятся сплавы на основе хрома и никеля (хромоникелевые), железа, хрома и алюминия (железохромоалюминиевые). Марки и свойства данных сплавов рассмотрены в ГОСТ 10994-74 «Сплавы прецизионные. Марки». Представителями хромоникелевых сплавов является нихром марок Х20Н80, Х20Н80-Н (950-1200 °С), Х15Н60, Х15Н60-Н (900-1125 °С), железохромоалюминиевых – фехраль марок Х23Ю5Т (950-1400 °С), Х27Ю5Т (950-1350 °С), Х23Ю5 (950-1200 °С), Х15Ю5 (750-1000 °С). Также существуют железохромоникелевые сплавы — Х15Н60Ю3, Х27Н70ЮЗ. Перечисленные выше сплавы обладают хорошими свойствами жаропрочности и жаростойкости, поэтому они могут работать при высоких температурах. Хорошую жаростойкость обеспечивает защитная пленка из окиси хрома, которая образуется на поверхности материала. Температура плавления пленки выше температуры плавления непосредственно сплава, она не растрескивается при нагреве и охлаждении. Приведем сравнительную характеристику нихрома и фехрали.
Недостатки нихрома:
Достоинства фехрали:
Недостатки фехрали:
Также сравнение сплавов фехраль и нихром производится в статье Сравнение сплавов фехраль и нихром. В последнее время разработаны сплавы типа Х15Н60Ю3 и Х27Н70ЮЗ, т.е. с добавлением 3% алюминия, что значительно улучшило жаростойкость сплавов, а наличие никеля практически исключило имеющиеся у железохромоалюминиевых сплавов недостатки. Сплавы Х15Н60ЮЗ, Х27Н60ЮЗ не взаимодействуют с шамотом и окислами железа, достаточно хорошо обрабатываются, механически прочны, нехрупки. Максимальная рабочая температура сплава Х15Н60ЮЗ составляет 1200 °С. Помимо перечисленных выше сплавов на основе никеля, хрома, железа, алюминия для изготовления нагревателей применяют и другие материалы: тугоплавкие металлы, а также неметаллы. Среди неметаллов для изготовления нагревателей используют карборунд, дисилицид молибдена, уголь, графит. Нагреватели из карборунда и дисилицида молибдена используют в высокотемпературных печах. В печах с защитной атмосферой применяют угольные и графитовые нагреватели. Среди тугоплавких материалов в качестве нагревателей могут использоваться вольфрам, молибден, тантал и ниобий. В высокотемпературных вакуумных печах и печах с защитной атмосферой применяются нагреватели из молибдена и вольфрама. Молибденовые нагреватели могут работать до температуры 1700 °С в вакууме и до 2200 °С – в защитной атмосфере. Такая разница температур обусловлена испарением молибдена при температурах выше 1700 °С в вакууме. Вольфрамовые нагреватели могут работать до 3000 °С. В особых случаях применяют нагреватели из тантала и ниобия. Расчет нагревателей электрических печейОбычно в качестве исходных данных для расчета нагревателей электрических печей выступают мощность, которую должны обеспечивать нагреватели, максимальная температура, которая требуется для осуществления соответствующего технологического процесса (отпуска, закалки, спекания и т.д.) и размеры рабочего пространства электрической печи. Если мощность печи не задана, то ее можно определить по эмпирическому правилу . В ходе расчета нагревателей требуется получить диаметр и длину (для проволоки) или площадь сечения и длину (для ленты), которые необходимы для изготовления нагревателей. Также необходимо определить материал, из которого следует делать нагреватели (данный пункт в статье не рассматривается). В данной статье в качестве материала для нагревателей рассматривается хромоникелевый прецизионный сплав с высоким электрическим сопротивлением нихром Х20Н80, который является одним из самых популярных при изготовлении нагревательных элементов. Определение диаметра и длины нагревателя (нихромовой проволоки) для заданной мощности печи (простой расчет)Пожалуй, наиболее простым вариантом расчета нагревателей из нихрома является выбор диаметра и длины нихромовой проволоки при заданной мощности нагревателя, питающего напряжения сети, а также температуры, которую будет иметь нагреватель. Несмотря на простоту расчета, в нем имеется одна особенность, на которую мы обратим внимание ниже. Пример расчета диаметра и длины нагревательного элемента Исходные данные: 1. Сначала необходимо определить силу тока, которая будет проходить через нагревательный элемент: 2. Теперь нужно найти сопротивление нагревателя: 3. Исходя из значения полученной в п. 1 силы тока, проходящего через нихромовый нагреватель, нужно выбрать диаметр проволоки. И этот момент является важным. Если, например, при силе тока в 6 А использовать нихромовую проволоку диаметром 0,4 мм, то она сгорит. Поэтому, рассчитав силу тока, необходимо выбрать из таблицы соответствующее значение диаметра проволоки. В нашем случае для силы тока 3,63 А и температуры нагревателя 800 °C выбираем нихромовую проволоку с диаметром d = 0,35 мм и площадью поперечного сечения S = 0,096 мм2. Общее правило выбора диаметра проволоки можно сформулировать следующим образом: необходимо выбрать проволоку, у которой допустимая сила тока не меньше, чем расчетная сила тока, проходящего через нагреватель. С целью экономии материала нагревателя следует выбирать проволоку с ближайшей большей (чем расчетная) допустимой силой тока. Таблица 1
Примечание:
4. Далее определим длину нихромовой проволоки. Таким образом, получим длину нагревателя: В данном примере в качестве нагревателя используется нихромовая проволока Ø 0,35 мм. В соответствии с ГОСТ 12766.1-90 «Проволока из прецизионных сплавов с высоким электрическим сопротивлением. Технические условия» номинальное значение удельного электрического сопротивления нихромовой проволоки марки Х20Н80 составляет 1,1 Ом · мм2 / м (ρ = 1,1 Ом · мм2 / м), см. табл. 2. Итогом расчетов является необходимая длина нихромовой проволоки, которая составляет 5,3 м, диаметр — 0,35 мм. Таблица 2
Определение диаметра и длины нагревателя (нихромовой проволоки) для заданной печи (подробный расчет)Расчет, представленный в данном пункте, является более сложным, чем выше. Здесь мы учтем дополнительные параметры нагревателей, попытаемся разобраться с вариантами подключения нагревателей к сети трехфазного тока. Расчет нагревателя будем проводить на примере электрической печи. Пусть исходными данными являются внутренние размеры печи. 1. Первое, что необходимо сделать — посчитать объем камеры внутри печи. В данном случае возьмем h = 490 мм, d = 350 мм и l = 350 мм (высота, ширина и глубина соответственно). Таким образом, получаем объем V = h · d · l = 490· 350 · 350 = 60 · 10 6 мм3 = 60 л (мера объема). 2. Далее необходимо определить мощность, которую должна выдавать печь. Мощность измеряется в Ваттах (Вт) и определяется по эмпирическому правилу: для электрической печи объемом 10 — 50 литров удельная мощность составляет 100 Вт/л (Ватт на литр объема), объемом 100 — 500 литров — 50 — 70 Вт/л. Возьмем для рассматриваемой печи удельную мощность 100 Вт/л. Таким образом мощность нагревателя электрической печи должна составлять P = 100 · 60 = 6000 Вт = 6 КВт. Стоит отметить, что при мощности 5-10 кВт нагреватели изготовляют, обычно, однофазными. При больших мощностях для равномерной загрузки сети нагреватели делают трехфазными. 3. Затем нужно найти силу тока, проходящего через нагреватель I = P / U, где P — мощность нагревателя, U — напряжение на нагревателе (между его концами), и сопротивление нагревателя R = U / I. Здесь может быть два варианта подключения к электрической сети:
Далее расчет будет проведен отдельно для однофазного и трехфазного подключения. Бытовая сеть однофазного тока I = P / U = 6000 / 220 = 27,3 А — ток проходящий через нагреватель.
Рисунок 1 Проволочный нагреватель в сети однофазного тока Искомые значения диаметра проволоки и ее длины будут определены в п. 5 данного параграфа. Промышленная сеть трехфазного тока При данном типе подключения нагрузка распределяется равномерно на три фазы, т.е. по 6 / 3 = 2 КВт на фазу. Таким образом, нам требуется 3 нагревателя. Далее необходимо выбрать способ подключения непосредственно нагревателей (нагрузки). Способов может быть 2: “ЗВЕЗДА” или “ТРЕУГОЛЬНИК”. Стоит заметить, что в данной статье формулы для расчета силы тока (I) и сопротивления (R) для трехфазной сети записаны не в классическом виде. Это сделано для того, чтобы не усложнять изложение материала по расчету нагревателей электротехническими терминами и определениями (например, не упоминаются фазные и линейные напряжения и токи и соотношения между ними). С классическим подходом и формулами расчета трехфазных цепей можно ознакомиться в специализированной литературе. В данной статье некоторые математические преобразования, проведенные над классическими формулами, скрыты от читателя, и на конечный результат это не оказывает никакого влияния. При подключении типа “ЗВЕЗДА” нагреватель подключается между фазой и нулем (см. рис. 2). Соответственно, напряжение на концах нагревателя будет U = 220 В.
Рисунок 2 Проволочный нагреватель в сети трехфазного тока. Подключение по схеме «ЗВЕЗДА» При подключении типа “ТРЕУГОЛЬНИК” нагреватель подключается между двумя фазами (см. рис. 3). Соответственно, напряжение на концах нагревателя будет U = 380 В.
Рисунок 3 Проволочный нагреватель в сети трехфазного тока. Подключение по схеме «ТРЕУГОЛЬНИК» 4. После определения сопротивления нагревателя при соответствующем подключении к электрической сети необходимо подобрать диаметр и длину проволоки. При определении указанных выше параметров необходимо анализировать удельную поверхностную мощность нагревателя, т.е. мощность, которая выделяется с единицы площади. Поверхностная мощность нагревателя зависит от температуры нагреваемого материала и от конструктивного выполнения нагревателей. Пример Из предыдущих пунктов расчета (см. п. 3 данного параграфа) нам известно сопротивление нагревателя. Для 60 литровой печи при однофазном подключении оно составляет R = 8,06 Ом. В качестве примера возьмем проволоку нихромовую Х20Н80 диаметром 1 мм. Тогда, чтобы получить требуемое сопротивление, необходимо l = R / ρ = 8,06 / 1,4 = 5,7 м нихромовой проволоки, где ρ — номинальное значение электрического сопротивления 1 м проволоки по ГОСТ 12766.1-90, [Ом/м]. Масса данного отрезка проволоки из нихрома составит m = l · μ = 5,7 · 0,007 = 0,0399 кг = 40 г, где μ — масса 1 м проволоки. Теперь необходимо определить площадь поверхности отрезка проволоки длиной 5,7 м. S = l · π · d = 570 · 3,14 · 0,1 = 179 см2, где l – длина проволоки [см], d – диаметр проволоки [см]. Таким образом, с площади 179 см2 должно выделяться 6 кВт. Решая простую пропорцию, получаем, что с 1 см2 выделяется мощность β = P / S = 6000 / 179 = 33,5 Вт, где β — поверхностная мощность нагревателя. Полученная поверхностная мощность слишком велика. Нагреватель расплавится, если нагреть его до температуры, которая обеспечила бы полученное значение поверхностной мощности. Данная температура будет выше температуры плавления материала нагревателя. Приведенный пример является демонстрацией неправильного выбора диаметра проволоки, которая будет использоваться для изготовления нагревателя. В п. 5 данного параграфа будет приведен пример с правильным подбором диаметра. Для каждого материала в зависимости от требуемой температуры нагрева определено допустимое значение поверхностной мощности. Оно может определяться с помощью специальных таблиц или графиков. В данных расчетах используются таблицы. Для высокотемпературных печей (при температуре более 700 – 800 °С) допустимая поверхностная мощность, Вт/м2, равна βдоп = βэф · α, где βэф – поверхностная мощность нагревателей в зависимости от температуры тепловоспринимающей среды [Вт / м2], α – коэффициент эффективности излучения. βэф выбирается по таблице 3, α — по таблице 4. Если печь низкотемпературная (температура менее 200 – 300 °С), то допустимую поверхностную мощность можно считать равной (4 — 6) · 104 Вт/м2. Таблица 3
Таблица 4
Предположим, что температура нагревателя 1000 °С, и хотим нагреть заготовку до температуры 700 °С. Тогда по таблице 3 подбираем βэф = 8,05 Вт/см2, α = 0,2, βдоп = βэф · α = 8,05 · 0,2 = 1,61 Вт/см2 = 1,61 · 104 Вт/м2. 5. После определения допустимой поверхностной мощности нагревателя необходимо найти его диаметр (для проволочных нагревателей) или ширину и толщину (для ленточных нагревателей), а также длину. Диаметр проволоки можно определить по следующей формуле:
d — диаметр проволоки, [м]; P — мощность нагревателя, [Вт]; U — напряжение на концах нагревателя, [В]; βдоп — допустимая поверхностная мощность нагревателя, [Вт/м2]; ρt — удельное сопротивление материала нагревателя при заданной температуре, [Ом·м]. Длину проволоки можно определить по следующей формуле:
l — длина проволоки, [м]. Подберем диаметр и длину проволоки из нихрома Х20Н80. Удельное электрическое сопротивление материала нагревателя составляет Бытовая сеть однофазного тока Полученный размер необходимо округлить до ближайшего большего стандартного. Стандартные размеры для проволоки из нихрома и фехрали можно найти в ГОСТ 12766.1-90, Приложение 2, Таблица 8. В данном случае, ближайшим большим стандартным размером является Ø 2,8 мм. Диаметр нагревателя d = 2,8 мм. Длина нагревателя l = 43 м. Также иногда требуется определить массу необходимого количества проволоки. В нашем случае масса нагревателя m = l · μ = 43 · 0,052 = 2,3 кг. Данный расчет дает минимальный диаметр проволоки, при котором она может быть использована в качестве нагревателя при заданных условиях. С точки зрения экономии материала такой расчет является оптимальным. При этом также может быть использована проволока большего диаметра, но тогда ее количество возрастет. Проверка Результаты расчета могут быть проверены следующим способом. Был получен диаметр проволоки 2,8 мм. Тогда нужная нам длина составит Теперь необходимо проверить, не превысит ли поверхностная мощность выбранного нами нагревателя допустимую поверхностную мощность, которая была найдена в п. 4. β = P / S = 6000 / (3,14 · 4300 · 0,28) = 1,59 Вт/см2. Полученное значение β = 1,59 Вт/см2 не превышает βдоп = 1,6 Вт/см2. Итоги Таким образом, для нагревателя потребуется 43 метра нихромовой проволоки Х20Н80 диаметром 2,8 мм, это составляет 2,3 кг. Промышленная сеть трехфазного тока Как описано в п. 3, на каждый из трех нагревателей приходится по 2 КВт мощности. Найдем диаметр, длину и массу одного нагревателя. Подключение типа “ЗВЕЗДА” (см. рис. 2) В данном случае, ближайшим большим стандартным размером является Ø 1,4 мм. Диаметр нагревателя d = 1,4 мм. Длина одного нагревателя l = 30 м. Проверка Был получен диаметр проволоки 1,4 мм. Тогда нужная нам длина составит Поверхностная мощность составит β = P / S = 2000 / (3,14 · 3000 · 0,14) = 1,52 Вт/см2, она не превышает допустимую. Итоги Для трех нагревателей, подключенных по схеме “ЗВЕЗДА”, потребуется Подключение типа “ТРЕУГОЛЬНИК” (см. рис. 3) В данном случае, ближайшим большим стандартным размером является Ø 0,95 мм. Диаметр нагревателя d = 0,95 мм. Длина одного нагревателя l = 43 м. Проверка Был получен диаметр проволоки 0,95 мм. Тогда нужная нам длина составит Данное значение практически совпадает со значением, полученным в результате другого расчета. Поверхностная мощность составит β = P / S = 2000 / (3,14 · 4300 · 0,095) = 1,56 Вт/см2, она не превышает допустимую. Итоги Для трех нагревателей, подключенных по схеме “ТРЕУГОЛЬНИК”, потребуется Если сравнить 2 рассмотренных выше варианта подключения нагревателей к сети трехфазного тока, то можно заметить, что для “ЗВЕЗДЫ” требуется проволока большего диаметра, чем для “ТРЕУГОЛЬНИКА” (1,4 мм против 0,95 мм), чтобы обеспечить заданную мощность печи 6 кВт. При этом требуемая длина нихромовой проволоки при подключении по схеме “ЗВЕЗДА” меньше длины проволоки при подключении типа “ТРЕУГОЛЬНИК” (90 м против 129 м), а требуемая масса, наоборот, больше (1,2 кг против 0,8 кг). Расчет спиралиПри эксплуатации основная задача — это разместить нагреватель расчетной длины в ограниченном пространстве печи. Нихромовая и фехралевая проволока подвергаются навивке в виде спиралей или сгибанию в форме зигзагов, лента сгибается в форме зигзагов, что позволяет вместить большее количество материала (по длине) в рабочую камеру. Наиболее распространенным вариантом является спираль. Соотношения между шагом спирали и ее диаметром и диаметром проволоки выбирают таким образом, чтобы облегчить размещение нагревателей в печи, обеспечить достаточную их жесткость, в максимально возможной степени исключить локальный перегрев витков самой спирали и в то же время не затруднить теплоотдачу от них к изделиям. Чем больше диаметр спирали и чем меньше ее шаг, тем легче разместить в печи нагреватели, но с увеличением диаметра уменьшается прочность спирали, увеличивается склонность ее витков лечь друг на друга. С другой стороны, с увеличением частоты намотки увеличивается экранирующее действие обращенной к изделиям части ее витков на остальные и, следовательно, ухудшается использование ее поверхности, а также могут возникнуть местные перегревы. Практика установила вполне определенные, рекомендуемые соотношения между диаметром проволоки (d), шагом (t) и диаметром спирали (D) для проволоки Ø от 3 до 7 мм. Эти соотношения следующие: t ≥ 2d и D = (7÷10)·d для нихрома и D = (4÷6)·d — для менее прочных железохромоалюминиевых сплавов, таких как фехраль и т.п. Для более тонких проволок отношение D и d, а также t обычно берутся больше. ЗаключениеВ статье были рассмотрены различные аспекты, касающиеся расчета нагревателей электрических печей — материалы, примеры расчета с необходимыми справочными данными, ссылками на стандарты, иллюстрациями. В примерах были рассмотрены методики расчета только проволочных нагревателей. Помимо проволоки из прецизионных сплавов для изготовления нагревателей может применяться и лента. Расчет нагревателей не ограничивается выбором их размеров. Также необходимо определить материал, из которого должен быть сделан нагреватель, тип нагревателя (проволочный или ленточный), тип расположения нагревателей и другие особенности. Если нагреватель изготавливается в виде спирали, то необходимо определить количество витков и шаг между ними. Надеемся, что статья оказалась Вам полезной. Мы допускаем её свободное распространение при условии сохранения ссылки на наш сайт http://www.metotech.ru В случае обнаружения неточностей, просим сообщить нам на адрес электронной почты info@metotech.ru или с помощью системы «Орфус», выделив текст с ошибкой и нажав Ctrl+Enter. Список литературы
|