Как найти момент инерции окружности

Часто мы слышим выражения: «он инертный», «двигаться по инерции», «момент инерции». В переносном значении слово «инерция» может трактоваться как отсутствие инициативы и действий. Нас же интересует прямое значение.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Что такое инерция

Согласно определению инерция в физике – это способность тел сохранять состояние покоя или движения в отсутствие действия внешних сил.

Если с самим понятием инерции все понятно на интуитивном уровне, то момент инерции – отдельный вопрос. Согласитесь, сложно представить в уме, что это такое. В этой статье Вы научитесь решать базовые задачи на тему «Момент инерции».

Определение момента инерции

Из школьного курса известно, что масса – мера инертности тела. Если мы толкнем две тележки разной массы, то остановить сложнее будет ту, которая тяжелее. То есть чем больше масса, тем большее внешнее воздействие необходимо, чтобы изменить движение тела. Рассмотренное относится к поступательному движению, когда тележка из примера движется по прямой.

Масса - мера инертности тела

 

По аналогии с массой и поступательным движением момент инерции – это мера инертности тела при вращательном движении вокруг оси.

Момент инерции – скалярная физическая величина, мера инертности тела при вращении вокруг оси. Обозначается буквой J и в системе СИ измеряется в килограммах, умноженных на квадратный метр.

Как посчитать момент инерции? Есть общая формула, по которой в физике вычисляется момент инерции любого тела. Если тело разбить на бесконечно малые кусочки массой dm, то момент инерции будет равен сумме произведений этих элементарных масс на квадрат расстояния до оси вращения.

физика инерция формулы

Это общая формула для момента инерции в физике. Для материальной точки массы m, вращающейся вокруг оси на расстоянии r от нее, данная формула принимает вид:

определение момента инерции

Теорема Штейнера

От чего зависит момент инерции? От массы, положения оси вращения, формы и размеров тела.

Теорема Гюйгенса-Штейнера – очень важная теорема, которую часто используют при решении задач.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Теорема Гюйгенса-Штейнера гласит:

Момент инерции тела относительно произвольной оси равняется сумме момента инерции тела относительно оси, проходящей через центр масс параллельно произвольной оси и произведения массы тела на квадрат расстояния между осями.

момент инерции для чайников

Для тех, кто не хочет постоянно интегрировать при решении задач на нахождение момента инерции, приведем рисунок с указанием моментов инерции некоторых однородных тел, которые часто встречаются в задачах:

Формулы для момента инерции

 

Пример решения задачи на нахождение момента инерции

Рассмотрим два примера. Первая задача – на нахождение момента инерции. Вторая задача – на использование теоремы Гюйгенса-Штейнера.

Задача 1. Найти момент инерции однородного диска массы m и радиуса R. Ось вращения проходит через центр диска.

Решение:

Разобьем диск на бесконечно тонкие кольца, радиус которых меняется от 0 до R и рассмотрим одно такое кольцо. Пусть его радиус – r, а масса – dm. Тогда момент инерции кольца:

определение момента инерции тела

Массу кольца можно представить в виде:

инерция тела физика

Здесь dz – высота кольца. Подставим массу в формулу для момента инерции и проинтегрируем:

момент инерции формула физика

В итоге получилась формула для момента инерции абсолютного тонкого диска или цилиндра.

Задача 2. Пусть опять есть диск массы m и радиуса R. Теперь нужно найти момент инерции диска относительно оси, проходящей через середину одного из его радиусов.

Решение:

Момент инерции диска относительно оси, проходящей через центр масс, известен из предыдущей задачи. Применим теорему Штейнера и найдем:

Пример решения задачи на нахождение момента инерции

Кстати, в нашем блоге Вы можете найти и другие полезные материалы по физике и решению задач.

Надеемся, что Вы найдете в статье что-то полезное для себя. Если в процессе расчета тензора инерции возникают трудности, не забывайте о студенческом сервисе. Наши специалисты проконсультируют по любому вопросу и помогут решить задачу в считанные минуты.

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Осевые моменты инерции простых сечений (фигур)

На этой странице указаны формулы для расчёта моментов инерции простых сечений (фигур). Данные формулы используются при проведении прочностных расчётов при изгибе и расчётов на жёсткость. А также для расчёта геометрических характеристик более сложных сечений.

Формулы для расчёта осевых моментов инерции

Традиционно, моменты инерции обозначаются буквойI. Также в литературе, часто используют букву – J.

На сайте – ssopromat.ru, ты также можешь найти другую справочную информацию.

В прошлый раз мы поговорили о такой величине, как статические моменты. Теперь можем двигаться дальше: сегодня на повестке моменты инерции. 

Внимательный читатель уже может возмутиться:
 “И зачем мы изучаем эти моменты? Какой в этом прок?
Причём же тут инерция, если сопромат — по сути статика?»

На первый вопрос у меня есть два ответа — краткий и не очень. Пока ограничусь кратким:

Статические моменты и моменты инерции  широко используются для определения нормальных и касательных напряжений, определении прогибов и деформаций конструкций. Читая о том, как все это вычислить,  вы будете сталкиваться с геометрическими характеристиками постоянно. Поэтому лучше сразу понимать, о чем идёт речь, а, при необходимости, подсматривать тут.

В изгибаемом элементе от момента сил возникают напряжения, для определения которых нам и нужен момент инерции (хотя и опосредованно. Впрочем, если вы читали статью про моменты, то это уже знаете). При этом сам элемент деформируется, и величина этих деформаций (прогибов) также определяется с помощью момента инерции. 

Для ответа на второй вопрос перейдем уже к моментам инерции.

Что такое момент инерции

поперечное сечение стержень сопротивление материалов

Рисунок 1. Поперечное сечение стержня. Где-то я его уже видел…

Суть и смысл моментов инерции в общем случае походит на статические моменты, однако корни нужно искать в описании вращения тела. Для вращательного движения одного только значения массы тела недостаточно, требуется еще знать распределение этой массы в теле. Рассмотрим вращающееся тело, как совокупность точек с предельно малыми размером и массой, которые находятся на расстояниях Ri (от нуля до R):

вращательное движение энергия

Где:
T — кинетическая энергия;
J — момент инерции;
m — масса;
v — скорость;
w — угловая скорость;
R — радиус;

Тут видно, что также, как в формуле кинетической энергии при линейном движении мера инертности — масса, при вращательном движении мера инертности — момент инерции. Впрочем, я немного забегаю вперёд.

Угловая скорость вращающегося тела — угол поворота, пройденный за единицу времени

угловая скорость формула расчет

Тут начальный угол поворота φ0 может быть равен нулю, если мы рассматриваем начало движения. 

Линейная скорость тела:

линейная скорость вращение расчет
где r — расстояние от рассматриваемой точки до оси вращения

Ускорение вращающегося тела (а нас интересует нормальное) тогда:

ускорение вращение формула расчет

Я не буду затрагивать динамику вращающегося тела, и расскажу только о жизненно необходимом.

Сила (которая по второму закону Ньютона — произведение массы на ускорение):

сила вращение формула расчет

и момент:

момент силы расчет формула вращение

И вот тут вспомним уже третий закон Ньютона — действию всегда есть равное и противоположное противодействие, а значит действию найденного нами момента будет сопротивляться — момент инерции.

Вспомним также, что, как и со статическими моментами, на разные точки тела, удаленные от оси вращения на разные расстояния будет действовать разный момент, а общий момент можно получить их просуммировав:

сумма моментов вращение формула

При этом значения вращающего момента и момента инерции будут равны, а сами моменты направлены в противоположные стороны. При постоянной угловой скорости вращения, например w = 1, основными величинами, характеризующими вращающий момент или момент инерции будут масса материальных точек, составляющих тело, и расстояния от этих точек до оси вращения. Но, как я уже показал, рассказывая про статические моменты, массу точек для изотропных (в данном случае имеющих одинаковую плотность) объектов можно выносить за скобки и рассматривать исключительно геометрию. Формула момента инерции примет следующий вид:

Момент инерции расчет формула интеграл

Почему Iр? Потому что мы с вами оперировали радиусом и углом поворота (в формуле угловой скорости) — т.е. использовали полярную систему отсчета (что и демонстрирует индекс p).

Таким образом момент инерции является мерой инертности тела при вращательном движении, подобно тому как масса является мерой инертности тела при поступательном прямолинейном движении.

Как найти момент инерции

Чтобы немного упростить себе операции со всеми этими величинами перейдем к родной и понятной  системе отсчета: перпендикулярным осям X и Y. Возьмем случайное сечение стержня и рассмотрим интегралы, как мы уже делали со статическими моментами:

Момент инерции интеграл формула

Первые два интеграла называются осевыми моментами инерции относительно осей x и y, а третий — центробежным моментом инерции сечения относительно осей x, y. Теперь рассмотрим случай параллельного переноса осей , не вдаваясь глубоко в вычисление интегралов.

Для осей  x1=x+a, y1=y+b моменты инерции будут равны: 

Параллельный перенос расчет интеграл формула момент инерции

Если вы, как и часть прочитавших эту статью перед публикацией, не имеете черного пояса и седьмого дана в интегральных преобразованиях, то:

интеграл формула момент инерции интеграл формула момент инерции

т.к. 

квадрат суммы формула расчет бином ньютона

и 

интеграл формула момент инерции

Тут первый интеграл — Ix1, второй интеграл — Sx1, а третий раскрывается в площадь при нулевом свободном члене.

Надеюсь, понятно, что при параллельном переносе по y изменяется только ось (буква). 

В последнем случае мы рассматриваем перенос по обеим осям сразу.

Где:
Ix — очевидно, момент инерции относительно оси x
Sx — статический момент сечения относительно оси y
F — площадь сечения

А теперь предположим, что некие оси x1 и y1  являются центральными, тогда и выражения упрощаются и принимают вид:

моменты инерции формула параллельный перенос

Немного проясню обозначение осей:

Центральными называются оси, проходящие через центр тяжести фигуры, т. е. статические моменты относительно этих осей равны нулю.

Главными называются оси, в которых центробежный момент инерции (Ixy) равен нулю. Если фигура имеет хотя бы одну ось симметрии, то эта ось является главной осью.

Оси, относительно которых центробежный момент инерции равен нулю, а осевые моменты инерции принимают экстремальные значения называются главными осями. Если эти оси являются также и центральными, то они называются главными центральными осями. Осевые моменты инерции относительно главных осей называются главными моментами инерции.

 И теперь можно уже коснуться практики: речь о моментах инерции простых сечений.

Момент инерции прямоугольника

Определим осевые моменты инерции прямоугольника со сторонами b и h относительно осей x и y, проходящих через его центр тяжести. В качестве элементарной площадки dA возьмем полоску шириной b и высотой . Тогда будем иметь:

моменты инерции формула прямоугольник

Не прибегая к вычислениям, замечу, что для момента инерции относительно оси Y изменится только положение сторон b и h. Следовательно:

моменты инерции формула прямоугольник расчет

Момент инерции квадрата

Прямоугольник со сторонами b=h=a. Следовательно:

моменты инерции формула квадрат расчет

Момент инерции круга

моменты инерции формула круг расчет

Тут воспользуемся полярным моментом инерции относительно центра круга. Определим его, как сумму колец с толщиной dp:

Сопромат. Геометрические характеристики сечения. Моменты инерции

Момент инерции кольца

А здесь – явная аналогия с моментом инерции круга:

моменты инерции формула кольцо расчет

Как мы видим, момент инерции кольца это разность моментов инерции большего и меньшего кругов.

Пример нахождения момента инерции тавра

Найдём осевые моменты инерции тавра (рисунок 5), приведенного на рисунке, относительно центральных осей xc и yc.

Пример расчет тавр сечение стержень моменты инерции

Рисунок 8. Тавр, положение осей

Так как оси x1 и x2 являются центральными осями для простых фигур в виде прямоугольников, для определения момента инерции фигуры относительно оси xc воспользуемся формулой.

моменты инерции формула расчет пример

Момент инерции относительно оси yc получим путем сложения моментов инерции простых фигур относительно этой же оси, так как ось yc является общей центральной осью для простых фигур и для всей фигуры.

моменты инерции формула расчет пример

Центробежный момент инерции относительно осей xc и yc равен нулю, так как ось инерции yc является главной осью (осью симметрии фигуры).

Обобщение и подведение итогов

Момент инерции является мерой инертности тела при вращательном движении, подобно тому как масса является мерой инертности тела при поступательном прямолинейном движении. В статике момент инерции применяется в определении прогибов, расчетах конструкций на касательные и нормальные напряжения. Момент инерции также, как и статические моменты, характеризует положение осей относительно сечения элемента. Так у нас появляются:

Центральные оси, проходящие через центр тяжести фигуры, т. е. статические моменты относительно этих осей равны нулю.

Главные оси, в которых центробежный момент инерции (Ixy) равен нулю, а осевые моменты инерции — максимальны. Если фигура имеет хотя бы одну ось симметрии, то эта ось является главной осью.

При этом главные и центральные оси могут совпадать!

Список использованных источников

  1. Александров А.В. Сопротивление материалов: Учеб. для ВУЗов/ А.В. Александров, В.Д. Потапов, Б.П. Державин; под ред. А.В. Александрова – 3-е изд. испр. – М.: Высш. шк., 2003. – 560 с.: ил. ISBN 5-06-003732-0
  2. Дарков А.В., Шпиро Г.С. Сопротивление материалов – Учеб. для техн. вузов – 5-е изд. перераб. и дополн. – М.: Высш. шк., 1989 – 624 с. ил.
  3. Г.И. Беликов. Геометрические характеристики поперечных сечений стержней. Учебно-практическое пособие. — Волгоград: ВолгГАСУ, 2015. — 56 с. — ISBN 978-5-98276-752-3

Автор: Марк Ершов
Редактор, факт-чекер: К.А.Овчинников

5 418

Как найти момент инерции круга?

Момент инерции круга относительно центральной оси z равен моменту инерции относительно центральной оси y и  рассчитывается по формуле:

ly =  lz =  Π.d4 /64 ,

где

ly  — момент инерции относительно центральной оси y в мм4 ;

lz  — момент инерции относительно центральной оси z в мм4 ;

d —  диаметр круга в мм.

Момент сопротивления круга (формула и калькулятор)

Радиус инерции круга (формула и калькулятор расчета)

Моменты инерции и сопротивления простых фигур

Формулы площадей, центров тяжести, осевых и полярных моментов инерции, моментов сопротивления и других геометрических характеристик основных простых фигур: прямоугольника, квадрата, равнобедренного и прямоугольного треугольника, круга, полукруга, четверти круга, кольцевого и тонкостенного сечений.

Обозначения в формулах:
C — положение центра тяжести фигуры;
A — площадь сечения;
Ix , Iy — осевые моменты инерции сечения относительно главных осей;
Ix1 , Iy1 — осевые моменты инерции относительно вспомогательных (смещённых) осей;
Iρ — полярный момент инерции сечения;
Wx , Wy — осевые моменты сопротивления;
Wρ — полярный момент сопротивления

Прямоугольник

Прямоугольник высотой h и шириной b.
Центр тяжести прямоугольника
Центр тяжести прямоугольника в точке пересечения его диагоналей, на расстоянии половины высоты (h/2) по вертикали и половины ширины (b/2) по горизонтали.

Площадь
Площадь прямоугольника
Центральные осевые моменты инерции прямоугольника
Центральные осевые моменты инерции прямоугольника
Моменты инерции относительно смещенных осей, проходящих через нижнюю левую точку
Моменты инерции прямоугольника относительно смещенных осей
Осевые моменты сопротивления прямоугольного сечения
Осевые моменты сопротивления прямоугольника

Квадрат

Квадрат — это частный случай прямоугольника, у которого высота равна ширине, т.е. h=b=a.

Центр тяжести квадрата находится так же на пересечении диагоналей — на расстоянии половины стороны (a/2) по высоте и ширине.
Центр тяжести квадрата
Площадь
Площадь квадрата
Центральные осевые моменты инерции квадрата
Осевые моменты инерции квадрата
Моменты инерции относительно смещенных осей, проходящих через нижнюю левую точку
Моменты инерции квадрата относительно смещенных осей
Осевой момент сопротивления квадратного сечения
Осевой момент сопротивления квадрата

Треугольник равнобедренный

Равнобедренный треугольник высотой h и шириной основания b.
Центр тяжести треугольника
Центр тяжести треугольника располагается в точке пересечения его медиан на расстоянии 1/3 высоты от основания и 2/3 высоты от его вершин.

Площадь
Площадь треугольника
Центральные осевые моменты инерции треугольника
Центральные осевые моменты инерции треугольника
Момент инерции относительно смещенной оси x1, проходящей через его основание
Момент инерции треугольника относительно смещенной оси

Прямоугольный треугольник

Прямоугольный треугольник высотой h и шириной основания b.
Центр тяжести прямоугольного треугольника
Центр тяжести прямоугольного треугольника располагается аналогично, на пересечении медиан на расстоянии 1/3 высоты от основания и 2/3 высоты от вершины.

Площадь
Площадь прямоугольного треугольника
Центральные осевые моменты инерции прямоугольного треугольника
Центральные осевые моменты инерции прямоугольного треугольника
Моменты инерции относительно смещенных осей x1 и y1, проходящих через точку, соединяющую его катеты
Моменты инерции прямоугольного треугольника относительно смещенных осей

Трапеция

Равнобокая трапеция высотой H и шириной оснований: малого a и большого b.
Центр тяжести трапеции
Площадь трапеции
Площадь трапеции
Центр тяжести на линии, соединяющей середины оснований трапеции, на высоте, определяемой по формуле:
Координата центра тяжести трапеции

Круг

Круг диаметром D (d) или радиусом R (r)
Центр тяжести круга
Площадь круга через его диаметр и радиус
Площадь круга
Центральные осевые и полярный моменты инерции круга
Моменты инерции круга
Осевые и полярный моменты сопротивления
Моменты сопротивления круга

Полукруг

Половина круга диаметром D (d) или радиусом R (r)
Центр тяжести полукруга
Площадь
Площадь полукруга
Осевые моменты инерции полукруга
Осевые моменты инерции полукруга

Четверть круга

Четверть круга диаметром D (d) или радиусом R (r)
Центр тяжести четверти круга
Площадь
Площадь четверти круга
Центральные осевые моменты инерции четверти круга
Центральные осевые моменты инерции четверти круга
Моменты инерции относительно смещенных осей x1 и y1
Моменты инерции четверти круга относительно смещенных осей

Кольцо

Кольцо с внешним диаметром D и внутренним d, (радиусами: внешним R и внутренним r)
Центр тяжести кольца
Отношение внутреннего диаметра (радиуса) к внешнему обозначается буквой c.
Отношение внутреннего диаметра кольца к внешнему
Площадь
Площадь кольца
Центральные осевые и полярный моменты инерции кольца
Моменты инерции кольца
Осевые и полярный моменты сопротивления
Моменты сопротивления кольца

Тонкостенное сечение (труба)

Тонкостенный профиль (сечение трубы) средним радиусом R0 и толщиной стенки трубы t при R0>>t
Центр тяжести сечения трубы
Площадь
Площадь сечения труб
Центральные осевые и полярный моменты инерции трубного сечения
Моменты инерции сечения труб
Осевые и полярный моменты сопротивления
Осевые и полярный моменты сопротивления труб

Пример определения координат центра тяжести сложной фигуры:

Другие видео

Смотрите также:
Определение координат центра тяжести сложных фигур
Геометрические характеристики сечений

Сохранить или поделиться с друзьями

Вы находитесь тут:

На нашем сайте Вы можете получить решение задач и онлайн помощь

Подробнее

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти тиммейта в играх
  • Как найти длину стороны в прямоугольном треугольнике
  • Как найти слив друга
  • Как найти шапку профиля в ютубе
  • Пропала папка с жесткого диска как найти

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии