В этой главе…
- Переходим от динамики поступательного движения к динамике вращательного движения
- Вычисляем момент инерции
- Определяем работу вращательного движения
- Находим связь между работой и изменением кинетической энергии
- Изучаем закон сохранения момента импульса
Эта глава посвящена динамике вращательного движения, т.е. описанию сил и их влияния на характер вращательного движения. Здесь рассматриваются основные законы динамики вращательного движения по аналогии с законами динамики поступательного движения. Например, описывается аналог второго закона Ньютона (см. главу 5), представлено новое понятие “момент инерции”, исследуется связь между работой и кинетической энергией и т.п.
Содержание
- Применяем второй закон Ньютона для вращательного движения
- Преобразуем тангенциальное ускорение в угловое
- Пример: вычисляем момент силы для обеспечения углового ускорения
- Вычисляем момент инерции протяженного объекта
- Пример: замедление вращения компакт-диска
- Еще один пример: поднимаем груз
- Вычисляем энергию и работу при вращательном движении
- Работа при вращательном движении
- Изучаем кинетическую энергию вращательного движения
- Измеряем кинетическую энергию бочки, катящейся по наклонной плоскости
- Не можем остановиться: момент импульса
- Сохраняем момент импульса
- Пример закона сохранения момента импульса: вычисляем скорость спутника
Применяем второй закон Ньютона для вращательного движения
Согласно второму закону Ньютона (см. главу 5), ускорение объекта под действием силы пропорционально величине силы и обратно пропорционально массе объекта:
где ( mathbf{a} ) — это вектор ускорения, ( mathbf{F} ) — вектор силы, а ( m ) — масса объекта. Подробнее о векторах рассказывается в главе 4. Соблюдается ли этот закон для вращательного движения?
В главе 10 мы уже познакомились характеристиками вращательного движения, которые являются эквивалентами (аналогами) некоторых характеристик поступательного движения. А как будет выглядеть аналог у второго закона Ньютона? Похоже, что во вращательном движении роль ускорения ( mathbf{a} ) играет угловое ускорение ( alpha ), а роль силы ( mathbf{F} ) — момент силы ( mathbf{M} )? Не вдаваясь в подробности, скажем лишь, что это действительно так. А что же с массой? Оказывается, что для этого используется новое понятие — момент инерции ( l ). Известно, что второй закон Ньютона для вращательного движения принимает следующий вид:
Рассмотрим простой пример. Пусть привязанный нитью мячик для игры в гольф вращается по окружности, как показано на рис. 11.1. Допустим, что к мячику приложена направленная по касательной к окружности тангенциальная сила, которая приводит к увеличению тангенциальной скорости мячика. (Обратите внимание, что речь идет не о нормальной силе, направленной вдоль радиуса окружности вращения. Более подробно нормальная и тангенциальная скорости, а также нормальное и тангенциальное ускорения рассматриваются в главе 10.)
Поскольку:
то, умножая обе части этой формулы на радиус окружности ( r ), получим:
Поскольку ( rmathbf{F}=mathbf{M} ) то
или
Таким образом, частично совершен переход от второго закона Ньютона для поступательного движения к его аналогу для вращательного движения. (Следует отметить, что это выражение справедливо для материальной точки, т.е. объекта, размерами которого можно пренебречь по сравнению с величиной радиуса окружности ( r ). Для протяженного объекта следует использовать другие формулы, которые описываются далее в этой главе. — Примеч. ред.)
Преобразуем тангенциальное ускорение в угловое
Чтобы полностью перейти от описания поступательного движения к описанию вращательного движения, необходимо использовать связь между угловым ускорением ( alpha ) и тангенциальным ускорением ( mathbf{a} ). Как нам уже известно из главы 10, они связаны следующим соотношением:
Подставляя это выражение в приведенную выше формулу
получим:
Итак, мы получили связь момента силы, действующей на материальную точку, и ее углового ускорения. Коэффициент пропорциональности между ними, ( l=mr^2 ), называется моментом инерции материальной точки. Таким образом, мы получили эквивалент второго закона Ньютона для вращательного движения, где роль силы играет момент силы, роль ускорения — угловое ускорение, а роль массы — момент инерции.
Пример: вычисляем момент силы для обеспечения углового ускорения
Если на объект действует несколько сил, то второй закон Ньютона имеет следующий вид:
где ( mathbf{sum!F} ) обозначает векторную сумму всех сил, действующих на объект.
Аналогично, если на объект действует несколько моментов сил, то второй закон Ньютона имеет вид:
где ( mathbf{sum! M} ) обозначает векторную сумму всех моментов сил, действующих на объект. Аналог массы, т.е. момент инерции, измеряется в кг·м2.
Помните, что аналогом второго закона Ньютона при описании вращательного движения является формула ( mathbf{sum! M}=lalpha ), т.е. угловое ускорение прямо пропорционально сумме всех моментов сил, действующих на вращающийся точечный объект, и обратно пропорционально моменту инерции.
Пусть мячик из предыдущего примера (см. рис. 11.1) имеет массу 45 г, а длина нити равна 1 м. Какой момент сил необходимо приложить, чтобы обеспечить угловое ускорение — ( 2pi с^{-2} )? Подставляя значения в уже известную нам формулу
получим:
Как видите, для решения этой задачи достаточно было поступить, как при определении силы, необходимой для обеспечения ускорения поступательного движения (где нужно было бы умножить массу на ускорение), т.е. умножить угловое ускорение на момент инерции.
Вычисляем момент инерции протяженного объекта
Момент инерции легко вычисляется для очень маленького (точечного) объекта, если все точки объекта расположены на одинаковом расстоянии от точки вращения. Например в предыдущем примере, если считать, что мячик для игры в гольф гораздо меньше длины нити, то все его точки находятся на одинаковом расстоянии от точки вращения, равном радиусу окружности вращения ( r ). В таком случае момент инерции имеет знакомый вид:
где ( r ) — это расстояние, на котором сосредоточена вся масса мячика ( m ).
Однако такая идеальная ситуация имеет место далеко не всегда. А чему равен момент инерции протяженного объекта, например стержня, вращающегося относительно одного из своих концов? Ведь его масса сосредоточена не в одной точке, а распределена по всей длине. Вообще говоря, для определения момента инерции протяженного объекта нужно просуммировать моменты инерции всех материальных точек объекта:
Например, момент инерции ( l ) системы из двух “точечных” мячиков для игры в гольф с одинаковой массой ( m ) на расстояниях ( r_1 ) и ( r_2 ) равен сумме их отдельных моментов инерции ( l_1=mr_1^2 ) и ( l_2=mr_2^2 ):
А как определить момент инерции диска, вращающегося относительно своего центра? Нужно мысленно разбить диск на множество материальных точек, вычислить момент инерции каждой такой точки и просуммировать полученные моменты инерции. Физики научились вычислять моменты инерции для многих объектов со стандартной формой. Некоторые из них приведены в табл. 11.1.
Попробуем вычислить моменты инерции нескольких предметов с простой геометрией.
Пример: замедление вращения компакт-диска
Компакт-диски могут вращаться с разными угловыми скоростями. Это необходимо для обеспечения одинаковой линейной скорости считывания информации на участках, находящихся на разных расстояниях от центра вращения. Пусть диск массой 30 г и диаметром 12 см сначала вращается со скоростью 700 оборотов в секунду, а спустя 50 минут — со скоростью 200 оборотов в секунду. Какой средний момент сил действует на компакт-диск при таком уменьшении скорости? Связь момента сил и углового ускорения имеет вид:
Момент инерции диска с радиусом ( r ), вращающегося относительно своего центра в плоскости диска, выражается формулой:
Подставляя значения, получим:
Теперь нужно определить угловое ускорение, которое определяется следующей формулой:
Изменение угловой скорости ( Deltaomega ) произошло за промежуток времени:
В данном примере изменение угловой скорости:
где ( omega_1 ) — конечная, а ( omega_0 ) — начальная угловая скорость компакт-диска.
Чему они равны? Начальная скорость 700 оборотов в секунду означает, что диск за секунду 700 раз проходит ( 2pi ) радиан:
Аналогично, конечная скорость 200 оборотов в секунду означает, что диск за секунду 200 раз проходит ( 2pi ) радиан:
Подставляя значения в формулу углового ускорения, получим:
Подставляя значения момента инерции и углового ускорения в итоговую формулу момента силы, получим:
Итак, средний момент равен 10-4 Н·м, а чему будет равна сила для создания такого момента, если она приложена к краю диска? Ее величину легко вычислить по следующей формуле:
Оказывается, для такого замедления компакт-диска нужно приложить не такую уж и большую силу.
Еще один пример: поднимаем груз
Вращательное движение порой внешне выглядит не так очевидно, как вращение ком- пакт-диска. Например подъем груза с помощью блока также является примером вращательного движения. Хотя канат и груз движутся поступательно, но сам блок вращается (рис. 11.2). Пусть радиус блока равен 10 см, его масса равна 1 кг, масса груза равна 16 кг, а к веревке прилагается сила 200 Н. Попробуем вычислить угловое ускорение блока.
В данном примере нужно вычислить сумму всех моментов сил ( mathbf{sum! M} ), которые действуют на веревку:
В данном примере на веревку действует два момента сил: один ( M_1 ) со стороны груза весом ( mg ), а другой ( M_2 ) — со стороны горизонтальной силы ( F ):
Отсюда получаем формулу для углового ускорения:
Эти моменты ( M_1 ) и ( M_2 ) имеют одинаковое плечо, равное радиусу блока ( r ), поэтому:
Поскольку блок имеет форму диска, то из табл. 11.1 находим его момент инерции:
Подставляя выражения для ( l ), ( M_1 ) и ( M_2 ) в формулу для углового ускорения, получим:
Подставляя значения, получим:
Вычисляем энергию и работу при вращательном движении
При изучении поступательного движения в главе 8 мы познакомились с понятием работа. Она равна произведению силы на перемещение под действием этой силы. Можно ли выразить работу при вращательном движении на основе его характеристик? Конечно можно, и для этого потребуется преобразовать силу в момент силы, а перемещение — в угол. В этом разделе демонстрируется такое преобразование, а также связь работы с изменением энергии.
Работа при вращательном движении
Допустим, что инженеру в области автомобилестроения необходимо рассчитать параметры революционно новой шины колеса. Для начала он решил оценить работу, которую необходимо выполнить для ускоренного раскручивания этой шины. Как связать работу при поступательном движении и работу при вращательном движении? Инженер предложил простую, как все гениальное, идею: “связать” шину веревкой. Точнее говоря, он предложил намотать веревку на шину, потянуть за веревку с помощью внешней силы и раскрутить шину. Так, приравнивая работу внешней силы при поступательном движении веревки и работу ускорения вращательного движения шины, можно, образно говоря, “связать” их веревкой.
Пусть шина имеет радиус ( r ) и для ее вращения используется сила ( F ), как показано на рис. 11.3.
Чему равна работа этой силы? Применим знакомую нам формулу:
где ( s ) — это перемещение веревки под действием этой силы. В данном примере перемещение ( s ) равно произведению радиуса ( r ) на угол поворота шины ( theta ):
Подставляя это выражение в формулу работы, получим:
Поскольку момент ( M ), создаваемой этой силой, равен:
то получаем для работы:
Таким образом, работа при вращательном движении равна произведению момента силы и угла поворота. Она измеряется в тех же единицах, что и работа при поступательном движении, т.е. в джоулях.
Учтите, что для описания вращательного движения в этих формулах работы угол нужно указывать в радианах.
Вот еще один пример. Пусть пропеллер самолета совершает 100 поворотов с постоянным моментом силы 600 Н·м. Какую работу выполняет двигатель самолета? Для ответа на этот вопрос начнем с уже известной нам формулы:
Полный оборот соответствует повороту на угол ( 2pi ). Подставляя значения в формулу, получим:
Что происходит с выполненной таким образом работой? Она преобразуется в кинетическую энергию вращательного движения.
Изучаем кинетическую энергию вращательного движения
Из главы 8 нам уже известно, что объект массы ( m ), движущийся поступательно со скоростью ( v ), обладает кинетической энергией:
А как получить формулу кинетической энергии для вращающегося объекта? Нужно применить данную формулу для всех его частичек.
При описании вращательного движения аналогом массы является момент инерции, а аналогом скорости — угловая скорость.
Как известно (см. главу 10), тангенциальная скорость ( v ) и угловая скорость ( omega ) связаны соотношением:
где ( r ) — это радиус окружности вращения.
Подставляя это соотношение в предыдущую формулу, получим:
Однако эта формула справедлива только для бесконечно малой материальной точки. Чтобы определить кинетическую энергию протяженного объекта, нужно просуммировать кинетические энергии всех его мельчайших материальных точек, т.е. вычислить сумму:
Как можно было бы упростить эту формулу? Предположим, что все составляющие частички протяженного объекта вращаются с одинаковой угловой скоростью. Тогда угловую скорость можно вынести за знак суммирования и получим:
Здесь начинается самое интересное. Ранее в этой главе уже приводилась формула момента инерции:
Теперь совсем нетрудно сделать подстановку в предыдущей формуле кинетической энергии:
Итак, кинетическая энергия вращательного движения вычисляется аналогично кинетической энергии поступательного движения, если вместо массы использовать момент инерции, а вместо тангенциальной скорости — угловую скорость. Примеры кинетической энергии вращательного движения окружают повсюду. Спутник на космической орбите и бочка пива, которую скатывают по наклонной плоскости, обладают определенной кинетической энергией вращательного движения. Особенности вращательного движения бочки пива более подробно описываются в следующем разделе.
Измеряем кинетическую энергию бочки, катящейся по наклонной плоскости
Итак, нам уже известно, что объекты могут двигаться поступательно и вращательно, причем двигаться так, что без знания строгих законов физики порой трудно понять их поведение. Да ну? Действительно, если бочка скользит вниз по наклонной плоскости, то ее потенциальная энергия превращается в кинетическую энергию поступательного движения (см. главу 8). А если бочка скатывается вниз по наклонной плоскости, то ее потенциальная энергия превращается не только в кинетическую энергию поступательного движения, но и в кинетическую энергию вращательного движения.
На рис. 11.4 показан случай, когда с наклонной плоскости высотой ( h ) скатываются сплошной и полый цилиндры с одинаковой массой ( m ). Какой цилиндр достигнет нижнего конца наклонной плоскости?
Иначе говоря: какой цилиндр будет обладать большей скоростью в конце наклонной плоскости? Поскольку действующие на цилиндры силы постоянны, то постоянны и их ускорения, а значит, большая скорость в конце пути означает меньшее время его прохождения. В случае только поступательного движения цилиндра и при отсутствии трения уменьшение потенциальной энергии ( mgh ) преобразуется в увеличение кинетической энергии только поступательного движения ( {}^1!/!_2mv^2 ), т.е.:
Однако в данном примере эта формула не годится, потому что цилиндры скатываются без проскальзывания. Это значит, что часть уменьшения потенциальной энергии будет преобразовываться в увеличение кинетической энергии поступательного движения ( {}^1!/!_2mv^2 ), а часть — в кинетическую энергию вращательного движения ( {}^1!/!_2Iomega ^2 ). Тогда предыдущее равенство принимает следующий вид:
Сделаем подстановку ( omega=v/r ) и получим:
Путем несложных алгебраических преобразований получим:
откуда легко получить выражение для скорости цилиндра:
Для обоих цилиндров все параметры одинаковы, кроме момента инерции ( I ). Как это повлияет на скорость цилиндров? Согласно данным из табл. 11.1, полый цилиндр имеет момент инерции ( mr^2 ), а сплошной — ( {}^1!/!_2mr^2 ).
Итак, для полого цилиндра получим:
а для сплошного цилиндра:
А их отношение равно:
Как видите, скорость сплошного цилиндра в 1,15 раза больше скорости полого цилиндра, а значит, сплошной цилиндр быстрее достигнет конца наклонной плоскости.
Как на пальцах объяснить полученный результат? Все очень просто. В полом цилиндре вся масса сосредоточена на расстоянии радиуса цилиндра, а в сплошном цилиндре значительная часть масса распределена ближе радиуса. Это значит, что при одинаковой угловой скорости в полом цилиндре больше материала будет обладать большей тангенциальной скоростью, а для этого потребуется потратить больше энергии.
Не можем остановиться: момент импульса
Допустим, нам нужно остановить космический корабль с массой 40 т, который находится на околоземной орбите. Для этого потребуется затратить немалые усилия. Почему? Все дело во вращательном импульсе космического корабля.
В главе 9 подробно описывается понятие импульс материальной точки, который выражается следующей формулой:
где ( m ) — это масса, a ( v ) — скорость материальной точки.
По аналогии, при описании вращательного движения физики используют понятие вращательный импульс (который в русскоязычной научной литературе чаще называют моментом импульса материальной точки. — Примеч. ред.):
где ( l ) — это момент инерции, а ( omega ) — угловая скорость материальной точки.
Следует помнить, что момент импульса (или вращательный импульс) является вектором, направление которого совпадает с направлением вектора угловой скорости.
Момент импульса в системе СИ измеряется в кг·м2·с-1 (более подробно системы единиц измерения описываются в главе 2). Одним из наиболее важных свойств момента импульса является закон сохранения момента импульса.
Сохраняем момент импульса
Закон сохранения момента импульса гласит: момент импульса сохраняется, если равна нулю сумма всех моментов внешних сил. Этот закон проявляется во многих обыденных ситуациях. Например часто приходится видеть, как мастера фигурного катания на льду вращаются с широко разведенными в стороны руками, а затем резко приближают их к своему телу и сильно ускоряют свое вращение. Дело в том, что таким образом они уменьшают свой момент инерции и, согласно закону сохранения момента импульса, увеличивают свою угловую скорость. Зная начальную угловую скорость вращения фигуриста ( omega_0 ) и его моменты инерции в позе с разведенными руками ( I_0 ) и в позе с сомкнутыми руками ( I_1 ), легко найти конечную угловую скорость ( omega_1 ) по формуле:
Однако этот закон удобно использовать не только в таких простых ситуациях. Возвращаясь к примеру с космическим кораблем на околоземной орбите, следует отметить, что его орбита далеко не всегда является строго круглой. Чаще всего орбиты спутников Земли и других планет имеют эллиптическую форму. Поэтому без закона сохранения момента импульса было бы гораздо сложнее определять параметры их орбитального движения.
Пример закона сохранения момента импульса: вычисляем скорость спутника
Предположим, что космический корабль вращается на эллиптической орбите вокруг Плутона. Причем в самой близкой к Плутону точке орбиты спутник находится на расстоянии 6·106 м от центра Плутона и имеет скорость 9·103 м/с. Вопрос: какой будет скорость спутника в самой далекой точке эллиптической орбиты на расстоянии 2·107 м от центра Плутона?
Для ответа на этот вопрос нужно воспользоваться законом сохранения момента импульса, поскольку на спутник не действуют никакие внешние моменты сил (сила гравитационного притяжения направлена параллельно радиусу и не создает момента). Однако закон сохранения момента импульса нужно преобразовать так, чтобы вместо угловых скоростей в его формулировке фигурировали тангенциальные скорости.
Итак, рассмотрим формулу закона сохранения момента импульса:
где ( I_{бл} ) — это момент инерции спутника в самой близкой точке, ( I_{дал} ) — это момент инерции спутника в самой далекой точке, ( omega_{бл} ) — угловая скорость спутника в самой близкой точке, а ( omega_{дал} ) — угловая скорость спутника в самой далекой точке.
Предположим, что размеры спутника гораздо меньше расстояния до центра Плутона и спутник можно считать материальной точкой. Тогда его моменты инерции равны:
и
где ( r_{бл} ) — это расстояние от спутника до центра Плутона в самой близкой точке эллиптической орбиты, а ( r_{дал} ) — это расстояние от спутника до центра Плутона в самой далекой точке эллиптической орбиты.
Кроме того:
и
Подставляя все перечисленные соотношения в формулу закона сохранения момента импульса
получим:
Отсюда путем несложных алгебраических преобразований, получим:
Подставляя значения, получим:
Итак, в ближайшей к Плутону точке орбиты спутник будет иметь скорость 9000 м/с, а в самой дальней — 2700 м/с. Этот результат мы легко получили только благодаря знанию закона сохранения момента импульса.
Глава 11. Раскручиваем объекты: момент инерции
3.1 (61.38%) 29 votes
Второй закон Ньютона для вращательного движения – главное тождество динамики, помогающее решить основную задачу механики для вращающегося тела: указать угол поворота тела в любой промежуток времени.
Задача механики поступательного движения считается решенной если в любое мгновение легко указать положение материальной точки относительно других тел, при условии, заданной системы отсчета.
Кроме поступательного существует вращательное движение – это такой вид движения при котором каждая точка движется по окружности, центры окружности лежат на одной прямой (оси вращения).
Характеристики вращательного движения:
- Всякая точка абсолютно твердого тела перемещается по дуге круга;
- «Ядра» окружностей расположены вдоль одной линии – ось вращения
- Разные точки передвигаются по разным траекториям;
- Зависимости перемещения по времени представляют отличные значения, изменяющиеся по направлению;
- Углы поворота точек – одинаковы.
Содержание
- Аналоги характеристик поступательного и вращательного движения
- Вывод второго закона Ньютона для вращательного движения
- Практическое применение второго закона Ньютона для вращательного движения
- Простые «мозголомки» из школьного курса физики
- Задание 1. Велосипедное колесо
- Задача 2. Взаимодействие кинематики и динамики
- Упражнение 3. Графическое представление
- Задание 4. Шары
- Упражнение 5. Гири
- Практическое применение в жизни
- Автомобиль
- «Что-то странная какая-то утка, на курицу похожа…»
- Гонки
- Фигурное катание
- Невесомость
- О кошках
Аналоги характеристик поступательного и вращательного движения
Параметры вращательного перемещения необходимо рассматривать, проводя сравнение с характеристиками поступательного.
Справка! При передвижении поступательно: указывается вектор силы, через II закон создателя классической механики – Ньютона выражается векторная величина – ускорение, зная его кинематика помогает выводить координаты x, y, z.
Последовательность нахождения координат тела в любой момент времени для поступательного перемещения:
- зная силу F находим ускорение a;
- из ускорения находи координаты x,y,z.
Пойдем от обратного для вращательного движения:
Найти нам необходимо угла поворота – φ в любой момент времени, для этого используем угловое ускорение ε, а вот аналог силы F мы пока не знаем.
Опишем кинематику вращательного движения.
- Аналог линейной скорости во вращательном движении это угловая скорость ω — выражается отношением:
— угол поворота
— незначительный отрезок времени
- Вспомним формулу линейной скорости υ точки находящейся на вращающемся теле, для этого умножим угловую скорость ω и r — расстояние от оси до искомой точки.
Виды вращательного движения:
- Равномерное вращение.
Поворот предмета за равные промежутки времени на одинаковые углы говорит о равномерности перемещения. Угловое ускорение отсутствует.
Уравнение движения выглядит:
— угол поворота в любой момент времени,
— начальный угол поворота
Угловая скорость постоянна, но линейная скорость постоянно изменяет направление, а это означает, что существует центростремительное ускорение, направленное по радиусу к центру окружности.
- Неравномерное вращение
При неравномерном перемещении постоянное угловое ускорение принимает вид:
При низменном , закон изменения угловой скорости получается:
Подставляя полученные данные в формулу движения при равномерном вращении получим:
Вспомним как рассчитать угол поворота тела тремя разными способами:
Первый способ.
Второй способ (через среднюю скорость).
Третий способ:
Сравнение формул вращательного и поступательного перемещения наглядно представлено таблично.
При нахождении точки на теле, неравномерно вращающемся на окружности, ускорение приобретает вид суммы:
— центростремительного и тангенциального
— тангенциального .
Сумма ускорений равна:
Тангенциальное ускорение вычисляется следующим образом
Используя связь υ и ω, получается:
Нужно сформулировать ключевые тождества, включая 2 закон сэра Ньютона для вращательного механического движения, сопутствующие обозначения, необходимые в ходе решения задач.
Вывод второго закона Ньютона для вращательного движения
Пусть тело, характеристиками которого можно пренебречь закреплено на невесомом стержне, 0 – ось вращения, длиной эквивалентной отрезку r.
На материальную точку оказывает воздействие силы ,
– реакция стержня.
— сила реакции нити;
— сила приводящая тело в движение
r — радиус нити
По II закону английского физика Исаака Ньютона второй закон динамики в векторной форме выглядит:
Выбор системы координат: Y – направляется по радиусу, Х – перпендикулярно.
Переписывая главное правило динамики в проекциях на эти оси:
Для этого на рисунке отобразим угол и выразим через него все проекции.
OX: ,
OY: ,
Из рисунка видно, что — тангенциальное ускорение, и
– модуль центростремительного ускорения
Вспомним, что тангенциальное ускорение равно:
Перепишем уравнение проекции на ось x с учетом этого знания:
Вычислим угловое ускорение из полученной формулы:
Умножая на дробь на :
Далее надо визуально отобразить на рисунке rsinα.
Как видно из полученного рисунка перпендикуляр d – плечо силы F.
Из построения:
М – момент силы.
Сравнивая с выражением:
I=mr2– мера инертности тела, момент инерции.
Выходит: 2 закон Ньютона представлен для вращательного движения:
Словесная формулировка основного тождества динамики вращательного перемещения:
Алгебраическая сумма моментов сил, действующих на тело тождественно произведению момента инерции тела на его угловое ускорение.
Внимание! – не учитывается: направлена вдоль r , проходит через 0.
Практическое применение второго закона Ньютона для вращательного движения
Перемещение путем вращения часто находит практическое применение. Яркие примеры:
- Колеса транспортных средств;
- Шестеренки;
- Роторы электродвигателей.
Простые «мозголомки» из школьного курса физики
Задание 1. Велосипедное колесо
Определить меру инертности у велоколеса диаметром 67 см с массой 1,3 кг? Возможно, не учитывать массу ступицы?
Порядок ответа:
Колесо целесообразно разбить на N мельчайших фрагментов размером Δl с массой Δm.
Внимание! Внутренней структурой колеса пренебречь нельзя. Поэтому его фрагменты – материальные точки.
Мера инертности вычисляется из выражения:
Для N частей:
Получается:
кг х м2
Радиус ступицы много меньше обода колеса, при расчете не учитывается.
Задача 2. Взаимодействие кинематики и динамики
Материальная точка перемещается по окружности, ее радиальное ускорение изменяется пропорционально четвертой степени времени. Найти n из отношения .
Внимание! M – действует на точку относительно оси вращения.
Решение:
Записывается второй закон Ньютона для вращательного движения:
Нормальное ускорение:
Выражая угловую скорость:
Учитывая, неизменность расстояния до центра окружности, :
Итог:
Упражнение 3. Графическое представление
Одно тело вращается по зависимости 1, потом действие момента сил изменяется согласно графику 2. Нужно сравнить угловые скорости в точках A и B.
Процесс размышлений:
Основной закон динамики перемещения путем вращения:
Угловая скорость:
Поскольку тело одно, 1/I неизменно.
Геометрический смысл интеграла – площадь криволинейных трапеций.
Случай 1:
График 2:
Результат:
Получается:
Задание 4. Шары
Два точечных шарика, обладающие равными массами скреплены тонкой невесомой спицей l. Записать выражение момента инерции системы, относительно оси, перпендикулярно соотносящейся со спицей и центром масс.
Ход рассуждений:
Центр оси расположен между шарами:
Мера инертности I1:
Мера инертности системы:
Упражнение 5. Гири
Грузы массами 2 и 1 килограмм связаны ниткой, перекинутой через блок, весящий 1 килограмм. Вычислить ускорение перемещения гирь? Рассчитать натяжение нитей?
Справка! Блок считается диском, сделанным из однородного материала. Трением не учитывается.
Поиск решения:
Векторный вид поступательного передвижения:
Перемещение диска – вращение:
М1– для натяжения нитиТ1;
М2– для натяжения нитиТ2.
Первые 2 равенства надо спроектировать на Х, последнее – Y. Записать уравнение кинематической связи. Получается система:
Подставляя 4 тождество в 3:
Вычитая (2) из (1), переписывается (5):
Численное значение из выражения (6) подставляется в (1) и (2):
Практическое применение в жизни
Автомобиль
Вопрос:
Ускорится автомобиль, если установить шины большего диаметра?
Ответ:
Нет. Чем больше диаметр шин, тем выше линейное ускорение. Каждый автомобиль обладает максимальным угловым ускорением, соответствующее его мощности. Мощность машины ограничена, увеличение диаметра шин приведет к снижению углового ускорения, линейное не изменится.
«Что-то странная какая-то утка, на курицу похожа…»
«Деревенская» задача:
Домашние птицы: селезень и курица имеют одинаковую длину шага. Почему курица бегает ровно, а селезень перемещается переваливаясь?
Пояснение:
Расстановка лап селезня шире, центр тяжести расположен дальше от опоры, поэтому при ходьбе селезень вынужден делать поворот на больший угол. Момент силы тяжести от опоры увеличивается, соответственно становится больше величины угловых ускорения и скорости.
Гонки
Условие:
Европейские гонки проходят по улицам города, поэтому гонщики не снижая большой скорости совершают резкие повороты. Двигатель гоночных машин расположен посередине авто. Содержание преимущества?
Решение:
Двигатель посередине авто, обладает меньшей мерой инертности относительно центра масс, поэтому поворот осуществляется при меньшем моменте сил.
Фигурное катание
Спортивный запрос:
Зачем фигурист прижимает руки к телу?
Мнение эксперта:
Фигурист, вращаясь вокруг вертикальной оси, прижимает руки к корпусу. Момент инерции уменьшается, момент импульса остается неизменным, угловая скорость увеличивается.
Невесомость
Космическая проблема:
Космонавт находится в невесомости. Как ему совершить поворот на 180˚ вокруг продольной оси?
Распутывание Гордиева узла:
Для поворота космонавт поднимает руку над головой, провоцируя поступательные движения в направлении, противоположенному повороту.
О кошках
Дилемма:
Эмиль Кроткий утверждал: «Кошка мечтала о крыльях: ей хотелось попробовать летучих мышей». Люди не раз пытались подкидывать животное вверх ногами, при этом приземление всегда осуществляется на лапы. Момент внешних сил равен нулю, момент импульса сохраняется. Как кошке удается переворачиваться?
Разгадка:
Момент импульса кошки, находящейся в свободном падении остается постоянным, моменты внешних сил отсутствуют. Вытягивая или прижимая к телу лапы, кошка изменяет меру инертности передней части тела относительно центральной оси от момента инерции задней части тела. Попеременно подтягивая передние или задние лапы, животное совершает поворот, ускоряющийся вращением хвоста.
Освоение 2 закона Исаака Ньютона с учетом кинематических и динамических характеристик для вращательного механического движения на практических примерах – легкое задание: надо запастись терпением, желанием приобретать знания. Изучать физику лучше вооружившись высказыванием Морихэй Уэсибы: «Двигайся, как луч света, летай, как молния, бей, как гром, вращайся вокруг устойчивого центра!»
Зависимость углового ускорения от свойств вращающегося тела.
Ускорение
поступательно движущегося тела зависит
от массы тела. Естественно предположить,
что и угловое ускорение зависит от массы
вращающегося тела.
Увеличим массу
вращающегося тела. Для этого поставим
на диск две гири (рис. 2.2). При том же
моменте действующей силы угловое
ускорение вращения диска теперь
оказывается меньшим, чем было прежде.
Изменим расположение гирь относительно
оси вращения диска: отодвинем гири ближе
к краям диска. Угловое ускорение при
этом еще сильнее уменьшится. Следовательно,
угловое ускорение зависит не только от
массы вращающегося тела, но и от ее
расположения относительно оси вращения.
Характеристика
тела, зависящая от массы и ее распределения
относительно оси вращения называется
моментом
инерции
. Момент инерции обозначается буквой
I.
Основное уравнение динамики вращательного движения.
Результаты
выполненных экспериментов можно записать
в виде:
(2.1)
Это основное
уравнение динамики вращательного
движения тела: угловое
ускорение вращающегося тела прямо
пропорционально сумме моментов всех
действующих на него сил относительно
оси вращения тела и обратно пропорционально
моменту инерции тела относительно этой
оси вращения.
Полученное уравнение аналогично по
форме записи выражению второго закона
Ньютона для поступательного движения
тела.
Ускорению
поступательного движения тела а
соответствует
угловое ускорение вращательного движения
.
Аналогом силы F при поступательном
движении, является момент силы М во
вращательном движении, а аналогом массы
тела m
при поступательном движении, служит
момент инерции тела I
при вращательном
движении.
3. Момент инерции
Момент инерции
тела сравнительно простой формы может
быть определен путем вычислений.
Рассмотрим простейший случай — вращение
тела по окружности в случае, когда
размеры тела пренебрежимо малы по
сравнению с радиусом окружности (тело
– материальная точка). Если тело
закреплено на расстоянии R от неподвижной
оси, то под действием силы
,
направленной по касательной к окружности
и перпендикулярно оси вращения, оно
приобретает тангенциальное ускорение
(3.2)
так как за очень
малый промежуток времени
движение
тела по окружности можно считать
прямолинейным.
С другой стороны,
рассматривая движение тела как
вращательное, угловое ускорение его
движения можно определить из основного
уравнения динамики вращательного
движения :
Из уравнений (2.1)
и (3.2) получаем выражение для момента
инерции тела:
Выражая тангенциальное
ускорение через угловое ускорение и
радиус вращения
,
получим:
(3.3)
Итак, момент
инерции тела, вращающегося по окружности
радиуса R, большого по сравнению с
размерами тела, равен произведению
массы тела на квадрат расстояния от
него до оси вращения.
Из уравнения (3.3)
единица момента инерции в СИ будет:
Полученный результат
(3.3) позволяет решить задачу о нахождении
момента инерции тела произвольной формы
относительно любой оси вращения. Для
этого необходимо мысленно разбить это
тело на очень малые части, найти
произведение массы каждой части на
квадрат расстояния от нее до оси вращения
и все эти произведения сложить. Эту
операцию можно произвести сравнительно
просто для таких тел, как обруч,
тонкостенный цилиндр и т. д. Все точки
обруча находятся на одинаковом расстоянии
от оси вращения, проходящей через его
центр перпендикулярно плоскости обруча.
Для таких тел как
шар, цилиндр и многих других, у которых
точки находятся на различных расстояниях
от оси вращения, расчет момента инерции
более сложен и производится методом
высшей математики, называемым
интегрированием.
Момент инерции
тела человека, стоящего с прижатыми к
туловищу руками относительно вертикальной
оси, проходящей через его центр масс,
равен примерно 1,2 кгм2.
Разведение в стороны рук и ног увеличивает
момент инерции человека относительно
той же оси почти в семь раз.
В таблице 3.1
приводятся моменты инерции некоторых
тел относительно указанных осей.
Таблица 3.1.
Тело |
Ось |
Момент |
Тонкий |
Перпендикулярно |
|
Обруч |
Перпендикулярно |
|
Диск |
Перпендикулярно |
|
Плоский |
Через |
|
Шар |
Ось |
|
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Основное уравнение динамики вращательного движения
- Подробности
- Обновлено 13.08.2018 12:16
- Просмотров: 1017
«Физика — 10 класс»
Угловое ускорение.
Ранее мы получили формулу, связывающую линейную скорость υ, угловую скорость ω и радиус R окружности, по которой движется выбранный элемент (материальная точка) абсолютно твёрдого тела, которое, вращается относительно неподвижной оси:
υ = ωR.
Мы знаем, что линейные скорости и ускорения точек твёрдого тела различны. В то же время угловая скорость всех точек твёрдого тела одинакова.
Угловая скорость — векторная величина. Направление угловой скорости определяется по правилу буравчика. Если направление вращения ручки буравчика совпадает с направлением вращения тела, то поступательное движение буравчика указывает направление вектора угловой скорости (рис. 6.1).
Однако равномерное вращательное движение встречается довольно редко. Гораздо чаще мы имеем дело с движением, при котором угловая скорость изменяется, очевидно, это происходит в начале и конце движения.
Причиной изменения угловой скорости вращения является действие на тело сил.
Изменение угловой скорости со временем определяет угловое ускорение.
Bектор угловой скорости — это скользящий вектор. Независимо от точки приложения его направление указывает направление вращения тела, а модуль определяет быстроту вращения,
Среднее угловое ускорение равно отношению изменения угловой скорости к промежутку времени, за которое это изменение произошло:
При равноускоренном движении угловое ускорение постоянно и при неподвижной оси вращения характеризует изменение угловой скорости по модулю. При увеличении угловой скорости вращения тела угловое ускорение направлено в ту же сторону, что и угловая скорость (рис. 6.2, а), а при уменьшении — в противоположную (рис. 6.2, б).
Так как угловая скорость связана с линейной скоростью соотношением υ = ωR, то изменение линейной скорости за некоторый промежуток времени Δt равно Δυ =ΔωR. Разделив левую и правую части уравнения на Δt, имеем или а = εR, где а — касательное (линейное) ускорение, направленное по касательной к траектории движения (окружности).
Если время измерено в секундах, а угловая скорость — в радианах в секунду, то одна единица углового ускорения равна 1 рад/с2 , т. е. угловое ускорение выражается в радианах на секунду в квадрате.
Неравномерно движутся при запуске и остановке любые вращающиеся тела, например ротор в электродвигателе, диск токарного станка, колесо автомобиля при разгоне и др.
Момент силы.
Для создания вращательного движения важно не только значение силы, но также и точка её приложения. Отворить дверь, оказывая давление около петель, очень трудно, в то же время вы легко её откроете, надавливая на дверь как можно дальше от оси вращения, например на ручку. Следовательно, для вращательного движения существенно не только значение силы, но и расстояние от оси вращения до точки приложения силы. Кроме этого, важно и направление приложенной силы. Можно тянуть колесо с очень большой силой, но так и не вызвать его вращения.
Момент силы — это физическая величина, равная произведению силы на плечо:
M = Fd,
где d — плечо силы, равное кратчайшему расстоянию от оси вращения до линии действия силы (рис. 6.3).
Очевидно, что момент силы максимален, если сила перпендикулярна радиус-вектору, проведённому от оси вращения до точки приложения этой силы.
Если на тело действует несколько сил, то суммарный момент равен алгебраической сумме моментов каждой из сил относительно данной оси вращения.
При этом моменты сил, вызывающих вращение тела против часовой стрелки, будем считать положительными (сила 2), а моменты сил, вызывающих вращение по часовой стрелке, — отрицательными (силы
1 и
3) (рис. 6.4).
Основное уравнение динамики вращательного движения. Подобно тому как опытным путём было показано, что ускорение тела прямо пропорционально действующей на него силе, было установлено, что угловое ускорение прямо пропорционально моменту силы:
ε ∼ М.
Пусть на материальною точку, движующуюся по окружности, действует сила (рис. 6.5). Согласно второму закону Ньютона в проекции на касательное направление имеем mак = Fк. Умножив левую и правую части уравнения на r, получим maкr = Fкr, или
mr2ε = М. (6.1)
Заметим, что в данном случае r — кратчайшее расстояние от оси вращения до материальной точки и соответственно точки приложения силы.
Произведение массы материальной точки на квадрат расстояния до оси вращения называют моментом инерции материальной точки и обозначают буквой I.
Таким образом, уравнение (6.1) можно записать в виде Iε = М, откуда
Уравнение (6.2) называют основным уравнением динамики вращательного движения.
Уравнение (6.2) справедливо и для вращательного движения твёрдого тела, имеющего неподвижную ось вращения, где I — момент инерции твёрдого тела, а М — суммарный момент сил, действующих на тело. В этой главе при расчёте суммарного момента сил мы рассматриваем только силы или их проекции, принадлежащие плоскости, перпендикулярной оси вращения.
Угловое ускорение, с которым вращается тело, прямо пропорционально сумме моментов сил, действующих на него, и обратно пропорционально моменту инерции тела относительно данной оси вращения.
Если система состоит из набора материальных точек (рис. 6.6), то момент инерции этой системы относительно данной оси вращения ОО’ равен сумме моментов инерции каждой материальной точки относительно этой оси вращения: I = m1r21 + m2r22 + … .
Момент инерции твёрдого тела можно вычислить, разделив тело на малые объёмы, которые можно считать материальными точками, и просуммировать их моменты инерции относительно оси вращения. Очевидно, что момент инерции зависит от положения оси вращения.
Из определения момента инерции следует, что момент инерции характеризует распределение массы относительно оси вращения.
Приведём значения моментов инерции для некоторых абсолютно твёрдых однородных тел массой m.
1. Момент инерции тонкого прямого стержня длиной l относительно оси, перпендикулярной к стержню и проходящей через его середину (рис. 6.7), равен:
I = ml2/12.
2. Момент инерции прямого цилиндра (рис. 6.8), или диска относительно оси ОО’, совпадающей с геометрической осью цилиндра или диска:
I = mR2/2.
3. Момент инерции шара радиусом R относительно оси, проходящей через его центр:
I = 2 mR2/5.
4. Момент инерции тонкого обруча радиусом R относительно оси, проходящей через его центр:
I = mR2.
Момент инерции по физическому смыслу во вращательном движении играет роль массы, т. е. он характеризует инертность тела по отношению к вращательному движению. Чем больше момент инерции, тем сложнее тело заставить вращаться или, наоборот, остановить вращающееся тело.
Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский
Законы сохранения в механике — Физика, учебник для 10 класса — Класс!ная физика
Импульс материальной точки —
Закон сохранения импульса —
Реактивное движение. Успехи в освоении космоса —
Примеры решения задач по теме «Закон сохранения импульса» —
Механическая работа и мощность силы —
Энергия. Кинетическая энергия —
Примеры решения задач по теме «Кинетическая энергия и её изменение» —
Работа силы тяжести. Консервативные силы —
Работа силы упругости. Консервативные силы —
Потенциальная энергия —
Закон сохранения энергии в механике —
Работа силы тяготения. Потенциальная энергия в поле тяготения —
Примеры решения задач по теме «Закон сохранения механической энергии» —
Основное уравнение динамики вращательного движения —
Закон сохранения момента импульса. Кинетическая энергия абсолютно твёрдого тела, вращающегося относительно неподвижной оси —
Примеры решения задач по теме «Динамика вращательного движения абсолютно твёрдого тела»
Тела, совершающие круговые движения, в физике принято описывать с помощью формул, включающих в себя угловую скорость и угловое ускорение, а также такие величины, как моменты вращения, сил и инерции. Рассмотрим подробнее эти понятия в статье.
Момент вращения относительно оси
Эту физическую величину также называют моментом импульса. Слово «момент» означает, что при определении соответствующей характеристики учитывается положение оси вращения. Так, момент импульса частицы массой m, которая вращается со скоростью v вокруг оси O и находится от последней на расстоянии r, описывается следующей формулой:
L¯ = r¯*m*v¯ = r¯*p¯, где p¯ — импульс частицы.
Знак «¯» указывает на векторный характер соответствующей величины. Направление вектора момента вращения L¯ определяется по правилу правой руки (четыре пальца направлены от конца вектора r¯ к концу p¯, и отставленный большой палец показывает, куда будет направлен L¯). Направления всех названных векторов можно посмотреть на главном фото статьи.
При решении практических задач пользуются формулой для момента импульса в форме скалярной. Кроме того, линейную скорость заменяют угловой. В этом случае формула для L будет выглядеть так:
L = m*r2*ω, где ω = v*r — угловая скорость.
Величина m*r2 обозначается буквой I и называется моментом инерции. Она характеризует инерционные свойства системы вращения. В общем виде выражение для L записывается так:
L = I*ω.
Эта формула справедлива не только для вращающейся частицы массой m, но и для любого тела произвольной формы, которое совершает круговые перемещения относительно некоторой оси.
Момент инерции I
В общем случае введенная в предыдущем пункте величина I рассчитывается по формуле:
I = ∑i(mi*ri2).
Здесь i указывает на номер элемента с массой mi, расположенном от оси вращения на расстоянии ri. Это выражение позволяет произвести расчет для неоднородного тела произвольной формы. Для большинства идеальных объемных геометрических фигур этот расчет уже произведен, и полученные значения момента инерции внесены в соответствующую таблицу. Например, для однородного диска, который совершает круговые движения вокруг оси, перпендикулярной его плоскости и проходящей через центр масс, I = m*r2/2.
Чтобы понять физический смысл момента инерции вращения I, следует ответить на вопрос, относительно какой оси легче раскрутить швабру: той, которая проходит вдоль швабры или той, которая ей перпендикулярна? Во втором случае придется приложить больше усилий, поскольку момент инерции для этого положения швабры имеет большую величину.
Закон сохранения величины L
Изменение момента вращения во времени описывается приведенной ниже формулой:
dL/dt = M, где M = r*F.
Здесь M — это момент результирующей внешней силы F, приложенной к плечу r относительно оси вращения.
Формула показывает, если M=0, тогда изменение момента импульса L не будет происходить, то есть он будет оставаться сколь угодно длительное время неизменным независимо от внутренних изменений в системе. Этот случай записывают в виде выражения:
I1*ω1 = I2*ω2.
То есть любые изменения внутри системы момента I будут приводить к изменениям угловой скорости ω таким образом, что их произведение будет оставаться постоянным.
Примером проявления этого закона является спортсмен в фигурном катании, который, выбрасывая руки и прижимая их к телу, меняет свой I, что отражается на изменении его скорости вращения ω.
Задача на вращение Земли вокруг Солнца
Решим одну интересную задачу: используя приведенные выше формулы, необходимо рассчитать момент вращения нашей планеты по своей орбите.
Поскольку притяжением остальных планет можно пренебречь, а также учитывая, что момент гравитационной силы, действующей со стороны Солнца на Землю, равен нулю (плечо r=0), то L=const. Для вычисления L воспользуемся следующими выражениями:
L = I*ω; I = m*r2; ω = 2*pi/T.
Здесь мы приняли, что Землю можно считать материальной точкой с массой m=5,972*1024 кг, поскольку ее размеры намного меньше расстояния до Солнца r=149,6 млн км. T = 365,256 дня — период обращения планеты вокруг своей звезды (1 год). Подставляя все данные в выражение выше, получаем :
L = I*ω = 5,972*1024*(149,6*109)2*2*3,14/(365,256*24*3600) = 2,66*1040 кг*м2/с.
Рассчитанное значение момента импульса является гигантским, что обусловлено большой массой планеты, высокой скоростью ее вращения по орбите и огромным астрономическим расстоянием.