Как найти моду ряда если их несколько


Загрузить PDF


Загрузить PDF

В статистике модой во множестве чисел называется число, которое встречается в этом множестве наиболее часто. Мод может быть несколько: если в наборе данных одинаково часто встречаются два или больше разных числа, его называют соответственно бимодальным или мультимодальным — иными словами, все значения, встречающиеся максимальное число раз, образуют моды данного множества. В данной статье описано, как найти моду (моды) множества.

  1. Изображение с названием Find the Mode of a Set of Numbers Step 1

    1

    Запишите числа множества. Моду обычно определяют на наборе статистических данных или множестве численных значений. Таким образом, для нахождения моды вам понадобится набор чисел. Моду сложно определить в уме, если чисел достаточно много, поэтому в большинстве случаев лучше записать все числа или набрать их на компьютере. Если у вас есть карандаш и бумага, достаточно записать все числа. Если же вы работаете за компьютером, удобнее использовать Excel.

    • Метод определения моды легче понять на примере. Рассмотрим в данном разделе следующий набор чисел: {18, 21, 11, 21, 15, 19, 17, 21, 17}. В приведенных ниже шагах мы найдем моду этого множества.
  2. Изображение с названием Find the Mode of a Set of Numbers Step 2

    2

    Расположите числа в порядке возрастания. После того как вы выпишете все числа, полезно переписать их в порядке возрастания. Хотя можно обойтись и без этого, так найти моду будет проще, поскольку одинаковые числа расположатся рядом. Для больших наборов данных это просто необходимо, так как попытка просмотреть неупорядоченный список и подсчитать, сколько раз каждое число появляется в нем, довольно трудоемка и может привести к ошибкам.

    • Если вы используете карандаш и бумагу, переписывание поможет вам сэкономить время в дальнейшем. Просмотрите числа, найдите наименьшее значение, вычеркните его из первоначального множества и занесите в новый список. Повторите то же самое для второго, затем для третьего наименьшего числа и так далее, при этом записывайте каждое число столько раз, сколько оно встречается в исходном наборе данных.
    • Компьютер предоставляет больше возможностей — например, в большинстве программ для работы с электронными таблицами можно упорядочить список значений от наименьшего к наибольшему всего лишь несколькими щелчками мыши.
    • В нашем примере после упорядочения получаем следующую последовательность чисел: {11, 15, 17, 17, 18, 19, 21, 21, 21}.
  3. Изображение с названием Find the Mode of a Set of Numbers Step 3

    3

    Подсчитайте, сколько раз повторяется каждое число. После того как вы перепишете значения в порядке возрастания, подсчитайте, сколько раз встречается каждое число. Поищите число, которое чаще всего попадается в списке. Если чисел сравнительно немного и они расположены в порядке возрастания, это довольно просто: найдите самую большую группу одинаковых значений и подсчитайте, сколько раз они повторяются.

    • Если вы используете карандаш и бумагу, попробуйте записать над каждой группой одинаковых чисел, сколько раз они повторяются. Если вы пользуетесь компьютерной программой для работы с электронными таблицами, можно поступить подобным образом: запишите результаты подсчетов в соседние ячейки или используйте одну из опций для анализа данных.
    • В нашем списке ({11, 15, 17, 17, 18, 19, 21, 21, 21}) 11 и 15 встречаются по одному разу, 17 попадается дважды, 18 и 19 встречаются по одному разу, а 21 встречается три раза. Таким образом, в данном наборе значений чаще всего встречается число 21.
  4. Изображение с названием Find the Mode of a Set of Numbers Step 4

    4

    Определите значение (или значения), которые встречаются наиболее часто. После того как вы подсчитаете, сколько раз встречается каждое число, найдите значения, которые повторяются наибольшее количество раз. Это и есть мода данного множества. Помните, что набор чисел может иметь не одну, а несколько мод. Если в множестве наиболее часто встречаются два числа (то есть они повторяются одинаковое количество раз), такое множество называют бимодальным, если три числа — тримодальным и так далее.

    • В нашем множестве ({11, 15, 17, 17, 18, 19, 21, 21, 21}) наиболее часто встречается значение 21, поэтому 21 является модой.
    • Если бы кроме 21 нашлось еще одно число, которое также встречается три раза, (например, если бы множество включало еще одно число 17), то оно наряду с 21 было бы модой.
  5. Изображение с названием Find the Mode of a Set of Numbers Step 5

    5

    Не путайте моду множества чисел с его средним значением и медианой. При статистическом анализе часто рассматривают вместе такие понятия, как среднее значение, медиана и мода. Их легко спутать, так как они имеют схожие названия и иногда их значения совпадают. Однако независимо от того, совпадает или нет мода множества с его медианой или средним значением, следует помнить, что это три абсолютно разных понятия (смотрите ниже).

    • Чтобы найти среднее значение множества, следует сложить все числа и поделить на их количество. Для нашего примера ({11, 15, 17, 17, 18, 19, 21, 21, 21}) среднее значение составляет 11 + 15 + 17 + 17 + 18 + 19 + 21 + 21 + 21 = 160/9 = 17,78. Мы поделили сумму значений на 9, поскольку данное множество состоит из 9 чисел.

      Изображение с названием Find the Mode of a Set of Numbers Step 5Bullet1

    • Медиана представляет собой «среднее число», которое разделяет меньшие и бо́льшие значения множества на две равные половины. Например, для нашего набора значений ({11, 15, 17, 17, 18, 19, 21, 21, 21}) медианой является число 18, так как слева и справа от него стоит по четыре числа. Учтите, что если множество содержит четное количество чисел, оно не имеет единственной медианы. В этом случае медианой обычно считают среднее значение тех двух чисел, которые расположены посередине.

      Изображение с названием Find the Mode of a Set of Numbers Step 5Bullet2

    Реклама

  1. Изображение с названием Find the Mode of a Set of Numbers Step 6

    1

    Множество не имеет моды, если каждое значение встречается в нем одинаковое число раз. Если все значения в данном наборе чисел попадаются одинаковое количество раз, то у этого множества нет моды, поскольку ни одно число не встречается чаще, чем любое другое. Например, моды не имеют те множества, в которые каждое число входит по одному разу. Это же касается тех множеств, в которых каждое число встречается дважды, трижды и так далее.

    • Если мы изменим набор чисел в нашем примере на {11, 15, 17, 18, 19, 21}, так чтобы каждое значение встречалось лишь один раз, то он не будет иметь моды. То же верно и для множества, в котором все числа встречаются дважды, например {11, 11, 15, 15, 17, 17, 18, 18, 19, 19, 21, 21}.
  2. Изображение с названием Find the Mode of a Set of Numbers Step 7

    2

    Помните, что моду нечислового набора данных можно определить точно так же, как для числовых множеств. Как правило, большинство наборов данных являются «количественными», то есть содержат данные в виде чисел. Тем не менее встречаются и такие множества, члены которых выражены не в виде чисел. В таких случаях можно сказать, что «мода» — это то значение, которое встречается чаще всего в наборе данных (как и для числовых множеств).[1]
    При этом определить моду будет возможно, в то время как медиану или среднее значение — нельзя.

    • Предположим, при осмотре небольшого участка земли определили вид каждого растущего на нем дерева. Получился следующий список: {кедр, ольха, кедр, сосна, кедр, кедр, ольха, ольха, сосна, кедр}. Такой набор данных называют номинальным, поскольку входящие в него члены представляют собой названия. В этом случае модой является кедр, так как данное слово встречается чаще других (пять раз), в то время как ольха и сосна встречаются соответственно три и два раза.
    • В рассмотренном выше примере невозможно найти среднее значение и медиану, так как набор данных содержит не числа, а названия.
  3. Изображение с названием Find the Mode of a Set of Numbers Step 8

    3

    При одномодальном симметричном распределении мода, среднее значение и медиана совпадают. Как отмечалось выше, в некоторых случаях мода, медиана и/или среднее значение могут совпадать. В частности, если плотность распределения того или иного набора данных образует идеально симметричную кривую с одной модой (например, гауссиану или колоколообразную кривую), мода, среднее значение и медиана равны друг другу. Плотность распределения отображает относительную частоту определенных значений, поэтому мода будет находиться точно посередине симметричной кривой распределения, так как эта самая высокая точка на графике соответствует наиболее распространенному значению. Поскольку набор данных симметричен, эта точка на графике будет соответствовать также медиане (центральной точке в наборе данных) и среднему значению.

    • В качестве примера рассмотрим набор чисел {1, 2, 2, 3, 3, 3, 4, 4, 5}. Если мы отложим эти значения на графике, то получим симметричную кривую, которая достигает максимальной высоты 3 при x = 3 и опускается до 1 при x = 1 и x = 5. Значение 3 встречается чаще всего, поэтому оно является модой. Так как 3 расположено в центре и по обе стороны от него находится четыре числа, оно является также медианой. И наконец, среднее значение данного множества составляет 1 + 2 + 2 + 3 + 3 + 3 + 4 + 4 + 5 = 27/9 = 3, то есть число 3 является также средним значением.
    • Исключение из этого правила составляют симметричные множества с более чем одной модой — они имеют по одной медиане и среднему значению, с которыми не совпадают несколько мод.

    Реклама

Советы

  • Набор данных может иметь несколько мод.
  • Если все числа встречаются лишь по одному разу, множество не имеет моды.

Реклама

Что вам понадобится

  • Бумага, карандаш и ластик

Об этой статье

Эту страницу просматривали 47 427 раз.

Была ли эта статья полезной?

Мо́да — одно или несколько значений во множестве наблюдений, которое встречается наиболее часто (мода = типичность).

Т. е. я так понимаю, что если у нас имеется набор из десяти данных: 6, 7, 9, 8, 7, 6, 5, 4, 7, 9 — то модой будет число 7, ибо оно встречается три раза (чаще, чем любое другое).

Но что делать, если у нас в наборе все данные различны? Например, набор данных: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Ни одно из чисел не «доминирует». Как в этом случае определить моду? (Она вообще есть?)

В принципе, вариационный ряд может не иметь моды. Когда все значения этого ряда встречаются одинаково часто, то считается, что такой ряд не имеет моды. Если числа не повторяются, то каждое из них встречается с одинаковой частотой, равной 1. Поэтому моды нет. Или, например, ряд 1,2,3,1,2,3,1,2,3,1,­2,3 тоже не имеет моды.

автор вопроса выбрал этот ответ лучшим

Знаете ответ?

Расчет моды

Теперь посмотрим, как рассчитать моду. Мода – это то значение в анализируемой совокупности данных, которое встречается чаще других, поэтому нужно посмотреть на частоты значений и отыскать максимальное из них. Например, в наборе данных 3, 4, 6, 7, 3, 5, 3, 4 модой будет значение 3 – повторяется чаще остальных. Это в дискретном ряду, и здесь все просто. Если данных много, то моду легче всего найти с помощью соответствующей гистограммы. Бывает так, что совокупность данных имеет бимодальное распределение.  

Без диаграммы очень трудно понять, что в данных не

Без диаграммы очень трудно понять, что в данных не один, а два центра. К примеру, на президентских выборах предпочтения сельских и городских жителей могут отличаться. Поэтому распределение доли отданных голосов за конкретного кандидата может быть «двугорбым». Первый «горб» – выбор городского населения, второй – сельского.

Немного сложнее с интервальными данными, когда вместо конкретных значений имеются интервалы. В этом случае говорят о модальном интервале (при анализе доходов населения, например), то есть интервале, частота которого максимальна относительно других интервалов. Однако и здесь можно отыскать конкретное модальное значение, хотя оно будет условным и примерным, так как нет точных исходных данных. Представим, что есть следующая таблица с распределением цен.

Для наглядности изобразим соответствующую диаграмм

Для наглядности изобразим соответствующую диаграмму.

Требуется найти модальное значение цены.

Требуется найти модальное значение цены.

Вначале нужно определить модальный интервал, который соответствует интервалу с наибольшей частотой. Найти его так же легко, как и моду в дискретном ряду. В нашем примере это третий интервал с ценой от 301 до 400 руб. На графике – самый высокий столбец. Теперь нужно определить конкретное значение цены, которое соответствует максимальному количеству. Точно и по факту сделать это невозможно, так как нет индивидуальных значений частот для каждой цены. Поэтому делается допущение о том, что интервалы выше и ниже модального в зависимости от своей частоты имеют разные вес и как бы перетягивают моду в свою сторону. Если частота интервала следующего за модальным больше, чем частота интервала перед модальным, то мода будет правее середины модального интервала и наоборот. Давайте еще раз посмотрим на рисунок, чтобы понять формулу, которую я напишу чуть ниже.

На рисунке отчетливо видно, что соотношение высоты

На рисунке отчетливо видно, что соотношение высоты столбцов, расположенных слева и справа от модального определяет близость моды к левому или правому краю модального интервала. Задача по расчету модального значения состоит в том, чтобы найти точку пересечения линий, соединяющих модальный столбец с соседними (как показано на рисунке пунктирными линиями) и нахождении соответствующего значения признака (в нашем примере цены). Зная основы геометрии (7-й класс), по данному рисунку нетрудно вывести формулу расчета моды в интервальном ряду.

Формула моды имеет следующий вид.

Где Мо – мода,

Где Мо – мода,

x – значение начала модального интервала,

h – размер модального интервала,

fМо – частота модального интервала,

fМо-1 – частота интервала, находящего перед модальным,

fМо1 – частота интервала, находящего после модального.

Второе слагаемое формулы моды соответствует длине красной линии на рисунке выше.

Рассчитаем моду для нашего примера.

Таким образом, мода интервального ряда представляе

Таким образом, мода интервального ряда представляет собой сумму, состоящую из значения начального уровня модального интервала и отрезка, который определяется соотношением частот ближайших интервалов от модального.

Видео

Мода и медиана

Модой называют элемент, который встречается в выборке чаще других.

Рассмотрим следующую выборку: шестеро спортсменов, а также время в секундах за которое они пробегают 100 метров

Элемент 14 встречается в выборке чаще других, поэт

Элемент 14 встречается в выборке чаще других, поэтому элемент 14 назовем модой.

Рассмотрим еще одну выборку. Тех же спортсменов, а также смартфоны, которые им принадлежат

Элемент iphone встречается в выборке чаще других,

Элемент iphone встречается в выборке чаще других, значит элемент iphone является модой. Говоря простым языком, носить iphone модно.

Конечно элементы выборки в этот раз выражены не числами, а другими объектами (смартфонами), но для общего представления о моде этот пример вполне приемлем.

Рассмотрим следующую выборку: семеро спортсменов, а также их рост в сантиметрах:

Упорядочим данные в таблице так, чтобы рост спортс

Упорядочим данные в таблице так, чтобы рост спортсменов шел по возрастанию. Другими словами, построим спортсменов по росту:

Выпишем рост спортсменов отдельно:

Выпишем рост спортсменов отдельно:

180, 182, 183, 184, 185, 188, 190

В получившейся выборке 7 элементов. Посередине этой выборки располагается элемент 184. Слева и справа от него по три элемента. Такой элемент как 184 называют медианой упорядоченной выборки.

Медианой упорядоченной выборки называют элемент, располагающийся посередине.

Отметим, что данное определение справедливо в случае, если количество элементов упорядоченной выборки является нечётным.

В рассмотренном выше примере, количество элементов упорядоченной выборки было нечётным. Это позволило нам быстро указать медиану

Но возможны случаи, когда количество элементов выб

Но возможны случаи, когда количество элементов выборки чётно.

К примеру, рассмотрим выборку в которой не семеро спортсменов, а шестеро:

Построим этих шестерых спортсменов по росту:

Построим этих шестерых спортсменов по росту:

Выпишем рост спортсменов отдельно:

Выпишем рост спортсменов отдельно:

180, 182, 184, 186, 188, 190

В данной выборке не получается указать элемент, который находился бы посередине. Если указать элемент 184 как медиану, то слева от этого элемента будут располагаться два элемента, а справа — три. Если как медиану указать элемент 186, то слева от этого элемента будут располагаться три элемента, а справа — два.

В таких случаях для определения медианы выборки, нужно взять два элемента выборки, находящихся посередине и найти их среднее арифметическое. Полученный результат будет являться медианой.

Вернемся к нашим спортсменам. В упорядоченной выборке 180, 182, 184, 186, 188, 190 посередине располагаются элементы 184 и 186

Найдем среднее арифметическое элементов 184 и 186

Найдем среднее арифметическое элементов 184 и 186

Элемент 185 является медианой выборки, несмотря на

Элемент 185 является медианой выборки, несмотря на то, что этот элемент не является членом исходной и упорядоченной выборки. Спортсмена с ростом 185 нет среди остальных спортсменов. Рост в 185 см используется в данном случае для статистики, чтобы можно было сказать о том, что срединный рост спортсменов составляет 185 см.

Поэтому более точное определение медианы зависит от количества элементов в выборке.

Если количество элементов упорядоченной выборки нечётно, то медианой выборки называют элемент, располагающийся посередине.

Если количество элементов упорядоченной выборки чётно, то медианой выборки называют среднее арифметическое двух чисел, располагающихся посередине этой выборки.

Медиана и среднее арифметическое по сути являются «близкими родственниками», поскольку и то и другое используют для определения среднего значения. Например, для предыдущей упорядоченной выборки 180, 182, 184, 186, 188, 190 мы определили медиану, равную 185. Этот же результат можно получить путем определения среднего арифметического элементов 180, 182, 184, 186, 188, 190

Но медиана в некоторых случаях отражает более реал

Но медиана в некоторых случаях отражает более реальную ситуацию. Например, рассмотрим следующий пример:

Было подсчитано количество имеющихся очков у каждого спортсмена. В результате получилась следующая выборка:

0, 1, 1, 1, 2, 1, 2, 3, 5, 4, 5, 0, 1, 6, 1

Определим среднее арифметическое для данной выборки — получим значение 2,2

По данному значению можно сказать, что в среднем у

По данному значению можно сказать, что в среднем у спортсменов 2,2 очка

Теперь определим медиану для этой же выборки. Упорядочим элементы выборки и укажем элемент, находящийся посередине:

0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6

В данном примере медиана лучше отражает реальную ситуацию, поскольку половина спортсменов имеет не более одного очка.

Среднее арифметическое

Понятие среднего значения часто используется в повседневной жизни.

Примеры:

  • средняя зарплата жителей страны;
  • средний балл учащихся;
  • средняя скорость движения;
  • средняя производительность труда.

Речь идет о среднем арифметическом — результате деления суммы элементов выборки на их количество.

Среднее арифметическое — это результат деления суммы элементов выборки на их количество.

Вернемся к нашему примеру

Вернемся к нашему примеру

Узнаем сколько в среднем мы тратили в каждом из ше

Узнаем сколько в среднем мы тратили в каждом из шести дней:

Теория для решения данных задач. Формулы для расче

Теория для решения данных задач. Формулы для расчета моды и медианы

Модой в статистике называется величины признака (варианта), которая чаще всего встречается в данной совокупности.

Медианой в статистике называется варианта, которая находится в середине вариационного ряда. Медиана делит ряд пополам. Обозначают медиану символом.

Распределительные средние – мода и медиана, их сущность и способы исчисления.

Данные показатели относятся к группе распределительных средних и используются для формирования обобщающей характеристики величины варьирующего признака.

Мода это наиболее часто встречающееся значение варьирующего признака в вариационном ряду. Модой распределения называется такая величина изучаемого признака, которая в данной совокупности встречается наиболее часто, т.е. один из вариантов признака повторяется чаще, чем все другие. Для дискретного ряда (ряд, в котором значение варьирующего признака представлены отдельными числовыми показателями) модой является значение варьирующего признака обладающего наибольшей частотой. Для интервального ряда сначала определяется модальный интервал (т.е. содержащий моду), в случае интервального распределения с равными интервалами определяется по наибольшей частоте; с неравными интервалами – по наибольшей плотности, а определение моды требует проведения расчетов на основе следующих формул:

где: нижняя граница модального интервала;

 величина модального интервала; величина модального интервала;

 частота модального интервала; частота модального интервала;

 частота интервала, предшествующего модальному; частота интервала, предшествующего модальному;

 частота интервала, следующего за модальным; частота интервала, следующего за модальным;

Медиана (Ме) — это значение варьирующего признака, приходящееся на середину ряда, расположенного в порядке возрастания или убывания числовых значений признака, т.е. величина изучаемого признака, которая находится в середине упорядоченного вариационного ряда. Главное свойство медианы в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины:

Для определения медианы в дискретном ряду при наличии частот, сначала исчисляется полусумма частот, а затем определяется какое значение варьирующего признака ей соответствует. При исчислении медианы интервального ряда сначала определяются медианы интервалов, а затем определяется какое значение варьирующего признака соответствует данной частоте. Для определения величины медианы используется формула:

где: нижняя граница медианного интервала;

- величина медианного интервала;

накопленная частота интервала, предшествующего медианному;

частота медианного интервала;

Медианный интервал не обязательно совпадает с модальным.

Моду и медиану в интервальном ряду распределения можно определить графически. Мода определяется по гистограмме распределения. Для этого выбирается самый высокий прямоугольник, который в данном случае является модальным. Затем правую вершину модального прямоугольника соединяют с правым верхним углом предыдущего прямоугольника. А левую вершину модального прямоугольника – с левым верхним углом последующего прямоугольника. Далее из точки их пересечения опускают перпендикуляр на ось абсцисс.

Теги

Среднее арифметическое нескольких величин – это отношение суммы величин к их количеству.

Правило. Чтобы вычислить среднее арифметическое нескольких чисел, нужно взять сумму этих чисел и разделить все на количество слагаемых. Частное и будет средним арифметическим этих чисел.

Например: найдем среднее арифметическое чисел 2; 6; 9; 15.

У нас четыре числа, значит надо их сумму разделить на четыре. Это и будет среднее арифметическое данных чисел: (2 + 6 + 9 + 15) : 4 = 8.

Размах ряда чисел – это разность между наибольшим и наименьшим из этих чисел.

Например: найдем размах чисел 2; 5; 8; 12; 33.

Наибольшее число здесь – 33, наименьшее – 2. Значит, размах составляет 31, т. е.: 33 – 2 = 31.

Мода ряда чисел – это число, которое встречается в данном ряду чаще других.

Например: найдем моду ряда чисел 1; 7; 3; 8; 7; 12; 22; 7; 11; 22; 8.

Чаще всего в этом ряде чисел встречается число 7 (3 раза). Оно и является модой данного ряда чисел.

Медианой упорядоченного ряда чисел с нечетным числом членов называется число, записанное посередине, а медианой упорядоченного ряда чисел с четным числом членов называется среднее арифметическое двух чисел, записанных посередине.

Медианой произвольного ряда чисел называется медиана соответствующего упорядоченного ряда.

Например: в ряде чисел 2; 5; 9; 15; 21 медианой является число 9, находящееся посередине.

Найдем медиану в ряде чисел 4; 5; 7; 11; 13; 19.

Здесь четное количество чисел (6). Поэтому ищем не одно, а два числа, записанных посередине. Это числа 7 и 11. Находим среднее арифметическое этих чисел: (7 + 11) : 2 = 9. Число 9 является медианой данного ряда чисел.

  1. В институте сдавали зачет по высшей математике. В группе было 10 человек, и они получили соответствующие оценки: 3; 5; 5; 4; 4; 4; 3; 2; 4; 5.

    Какую оценку получали чаще всего? Каков средний балл сдавшей зачет группы?

  2. Дан ряд чисел: 175; 172; 179; 171; 174; 170; 172; 169.

    Найдите медиану и размах ряда.

  3. Дан ряд чисел: 175; 172; 179; 171; 174; 170; 172; 169.

    Найдите моду ряда и среднее арифметическое ряда.

  4. Имеются следующие данные о месячной заработной плате пяти рабочих (тг): 126000; 138000; 132000; 141000; 150000.

    Найдите среднюю заработную плату.

  5. Магазин продает 8 видов булочек по следующим ценам: 31; 22; 24; 27; 30; 36; 19; 27.

    Найдите разность среднего арифметического и медианы этого набора.

  6. Найдите объем и медиану числового ряда.

    9; 7; 1; 1; 11; 5; 1.

  7. Товарные запасы хлопчатобумажных тканей в магазине за первое полугодие составили (тыс. тг) на начало каждого месяца:

    I II III IV V VI VII
    37 34 35 32 36 33 38

    Определите средний товарный запас хлопчатобумажных тканей за первое полугодие.

  8. Провели несколько измерений случайной величины: 2,5; 2,2; 2; 2,4; 2,9; 1,8.

    Найдите среднее арифметическое этого набора чисел.

  9. Провели несколько измерений случайной величины: 6; 18; 17; 14; 4; 22.

    Найдите медиану этого набора чисел.

  10. Провели несколько измерений случайной величины:

    800; 3200; 2000; 2600; 2900; 2000. Найдите моду этого набора чисел.

  11. Магазин продает 8 видов хлеба по следующим ценам: 60, 75, 80, 85, 90, 100, 110, 120 тенге.

    Найдите разность среднего арифметического и медианы этого набора.

  12. Дан числовой ряд: 1; 7; 3; 8; 7; 12; 22; 7; 11; 22; 7,8.

    Найдите среднее арифметическое, размах и моду.

Мода
и медиана

особого рода средние, которые используются
для изучения структуры вариационного
ряда. Их иногда называют структурными
средними, в отличие от рассмотренных
ранее степенных средних.

Мода

– это величина признака (варианта),
которая чаще всего встречается в данной
совокупности, т.е. имеет наибольшую
частоту.

Мода
имеет большое практическое применение
и в ряде случаев только мода может дать
характеристику общественных явлений.

Медиана

– это варианта, которая находится в
середине упорядоченного вариационного
ряда.

Медиана
показывает количественную границу
значения варьирующего признака, которой
достигла половина единиц совокупности.
Применение медианы наряду со средней
или вместо нее целесообразно при наличии
в вариационном ряду открытых интервалов,
т.к. для вычисления медианы не требуется
условное установление границ отрытых
интервалов, и поэтому отсутствие сведений
о них не влияет на точность вычисления
медианы.

Медиану
применяют также тогда, когда показатели,
которые нужно использовать в качестве
весов, неизвестны. Медиану применяют
вместо средней арифметической при
статистических методах контроля качества
продукции. Сумма абсолютных отклонений
варианты от медианы меньше, чем от любого
другого числа.

Рассмотрим
расчет моды и медианы в дискретном
вариационном ряду:

Определить моду и медиану.

Мода
Мо
=
4 года, так как этому значению соответствует
наибольшая частота f
= 5.

Т.е.
наибольшее число рабочих имеют стаж 4
года.

Для
того, чтобы вычислить медиану, найдем
предварительно половину суммы частот.
Если сумма частот является числом
нечетным, то мы сначала прибавляем к
этой сумме единицу, а затем делим пополам:

Медианой
будет восьмая по счету варианта.

Для
того, чтобы найти, какая варианта будет
восьмой по номеру, будем накапливать
частоты до тех пор, пока не получим сумму
частот, равную или превышающую половину
суммы всех частот. Соответствующая
варианта и будет медианой.

Ме
= 4 года.

Т.е.
половина рабочих имеет стаж меньше
четырех лет, половина больше.

Если
сумма накопленных частот против одной
варианты равна половине сумме частот,
то медиана определяется как средняя
арифметическая этой варианты и
последующей.

Вычисление
моды и медианы в интервальном вариационном
ряду

Мода
в интервальном вариационном ряду
вычисляется по формуле

где Х
М0
— начальная
граница модального интервала,


h
м
0

– величина модального интервала,


f
м
0
,
f
м
0-1
,
f
м
0+1

– частота
соответственно модального интервала,
предшествующего модальному и последующего.

Модальным

называется такой интервал, которому
соответствует наибольшая частота.

Пример
1

Группы
по стажу

Число
рабочих, чел

Накопленные
частоты

Определить
моду и медиану.

Модальный
интервал , т.к. ему соответствует
наибольшая частота f
= 35. Тогда:

Хм
0
=6,

0
=35

Медиана
— это такое значение признака, которое разделяет ранжированный ряд распределения на две равные части — со значениями признака меньше медианы и со значениями признака больше медианы. Для нахождения медианы, нужно отыскать значение признака, которое находится на середине упорядоченного ряда.

Посмотреть решение задачи на нахождение моды и медианы
Вы можете

В ранжированных рядах несгруппированные данные для нахождения медианы
сводятся к поиску порядкового номера медианы. Медиана может быть вычислена по следующей формуле:

где Хm — нижняя граница медианного интервала;
im — медианный интервал;
Sme- сумма наблюдений, которая была накоплена до начала медианного интервала;
fme — число наблюдений в медианном интервале.

Свойства медианы

  1. Медиана не зависит от тех значений признака, которые расположены по обе стороны от нее.
  2. Аналитические операции с медианой весьма ограничены, поэтому при объединении двух распределений с известными медианами невозможно заранее предсказать величину медианы нового распределения.
  3. Медиана обладает
    свойством минимальности. Его суть заключается в том, что сумма абсолютных отклонений значений х, от медианы представляет собой минимальную величину по сравнению с отклонением X от любой другой величины

Графическое определение медианы

Для определения медианы графическим методом
используют накопленные частоты, по которым строится кумулятивная кривая. Вершины ординат, соответствующих накопленным частотам, соединяют отрезками прямой. Разделив поп олам последнюю ординату, которая соответствует общей сумме частот и проведя к ней перпендикуляр пересечения с кумулятивной кривой, находят ординату искомого значения медианы.

Определение моды в статистике

Мода — значение признака
, имеющее наибольшую частоту в статистическом ряду распределения.

Определение моды
производится разными способами, и это зависит от того, представлен ли варьирующий признак в виде дискретного или интервального ряда.

Нахождение моды
и медианы происходит путем обычного просматривания столбца частот. В этом столбце находят наибольшее число, характеризующее наибольшую частоту. Ей соответствует определенное значение признака, которое и является модой. В интервальном вариационном ряду модой приблизительно считают центральный вариант интервала с наибольшей частотой. В таком ряду распределения мода вычисляется по формуле
:

где ХМо — нижняя граница модального интервала;
imo — модальный интервал;
fм0, fм0-1, fм0+1 — частоты в модальном, предыдущем и следующем за модальным интервалах.

Модальный интервал определяется по наибольшей частоте.

Мода широко используется в статистической практике при анализе покупательного спроса, регистрации цен и т. д.

Соотношения между средней арифметической, медианой и модой

Для одномодального симметричного ряда распределения , медиана и мода совпадают. Для асимметричных распределений они не совпадают.

К. Пирсон на основе выравнивания различных типов кривых определил, что для умеренно асимметричных распределений справедливы такие приближенные соотношения между средней арифметической, медианой и модой:

При изучении учебной нагрузки учащихся выделили группу из 12 семиклассников. Их попросили отметить в определённый день время (в минутах), затраченное на выполнение домашнего задания по алгебре. Получили такие данные: 23, 18, 25, 20, 25, 25, 32, 37, 34, 26, 34, 25. При изучении учебной нагрузки учащихся выделили группу из 12 семиклассников. Их попросили отметить в определённый день время (в минутах), затраченное на выполнение домашнего задания по алгебре. Получили такие данные: 23, 18, 25, 20, 25, 25, 32, 37, 34, 26, 34, 25.

Среднее арифметическое ряда. Средним арифметическим ряда чисел называется частное от деления суммы этих чисел на число слагаемых. Средним арифметическим ряда чисел называется частное от деления суммы этих чисел на число слагаемых.():12=27

Размах ряда. Размахом ряда называется разность между наибольшим и наименьшим из этих чисел. Размахом ряда называется разность между наибольшим и наименьшим из этих чисел. Наибольший расход времени равен 37 мин, а наименьший – 18 мин. Найдём размах ряда: 37 – 18 = 19(мин)

Мода ряда. Модой ряда чисел называется число, которое встречается в данном ряду чаще других. Модой ряда чисел называется число, которое встречается в данном ряду чаще других. Модой нашего ряда является число – 25. Модой нашего ряда является число – 25. Ряд чисел может иметь более одной моды, а может не иметь. 1) 47,46,50,47,52,49,45,43,53,53,47,52 – две моды 47 и 52. 2) 69,68,66,70,67,71,74,63,73,72 – моды нет.

Среднее арифметическое, размах и мода, находят применение в статистике – науке, которая занимается получением, обработкой и анализом количественных данных о разнообразных массовых явлениях, происходящих в природе и обществе. Среднее арифметическое, размах и мода, находят применение в статистике – науке, которая занимается получением, обработкой и анализом количественных данных о разнообразных массовых явлениях, происходящих в природе и обществе. Статистика изучает численность отдельных групп населения страны и её регионов, производство и потребление разнообразных видов продукции, перевозку грузов и пассажиров различными видами транспорта, природные ресурсы и т. п. Статистика изучает численность отдельных групп населения страны и её регионов, производство и потребление разнообразных видов продукции, перевозку грузов и пассажиров различными видами транспорта, природные ресурсы и т. п.

1. Найдите среднее арифметическое и размах ряда чисел: а) 24,22,27,20,16,37; б)30,5,23,5,28, Найдите среднее арифметическое, размах и моду ряда чисел: а)32,26,18,26,15,21,26; б)-21,-33,-35,-19,-20,-22; б)-21,-33,-35,-19,-20,-22; в) 61,64,64,83,61,71,70; в) 61,64,64,83,61,71,70; г) -4,-6, 0, 4, 0, 6, 8, -12. г) -4,-6, 0, 4, 0, 6, 8, В ряду чисел 3, 8, 15, 30, __, 24 пропущено одно число, Найдите его, если: а) среднее арифметическое ряда равно 18; а) среднее арифметическое ряда равно 18; б) размах ряда равен 40; б) размах ряда равен 40; в) мода ряда равна 24. в) мода ряда равна 24.

4. В аттестате о среднем образовании у четырёх друзей – выпускников школы – оказались следующие оценки: Ильин: 4,4,5,5,4,4,4,5,5,5,4,4,5,4,4; Ильин: 4,4,5,5,4,4,4,5,5,5,4,4,5,4,4; Семёнов: 3,4,3,3,3,3,4,3,3,3,3,4,4,5,4; Семёнов: 3,4,3,3,3,3,4,3,3,3,3,4,4,5,4; Попов: 5,5,5,5,5,4,4,5,5,5,5,5,4,4,4; Попов: 5,5,5,5,5,4,4,5,5,5,5,5,4,4,4; Романов: 3,3,4,4,4,4,4,3,4,4,4,5,3,4,4. Романов: 3,3,4,4,4,4,4,3,4,4,4,5,3,4,4. С каким средним баллом окончил школу каждый из этих выпускников? Укажите наиболее типичную для каждого из них оценку в аттестате. Какие статистические характеристики вы использовали при ответе? С каким средним баллом окончил школу каждый из этих выпускников? Укажите наиболее типичную для каждого из них оценку в аттестате. Какие статистические характеристики вы использовали при ответе?

Самостоятельная работа Вариант 1. Вариант Дан ряд чисел: 35, 44, 37, 31, 41, 40, 31, 29. Найдите среднее арифметическое, размах и моду рада. 2. В ряду чисел 4, 9, 16, 31, _, 25 4, 9, 16, 31, _, 25 пропущено одно число. пропущено одно число. Найдите его, если: Найдите его, если: а) среднее арифметичес- а) среднее арифметичес- кое равно 19; кое равно 19; б) размах ряда – 41. б) размах ряда – 41. Вариант Дан ряд чисел: 38, 42, 36, 45, 48, 45,45, 42. Найдите среднее арифметическое, размах и моду рада. 2. В ряду чисел 5, 10, 17, 32, _, 26 пропущено одно число. Найдите его, если: а) среднее арифметичес- кое равно 19; б) размах ряда – 41.

Медианой упорядоченного ряда чисел с нечётным числом чисел называется число, записанное посередине, а медианой упорядоченного ряда чисел с чётным числом чисел называется среднее арифметическое двух чисел, записанных посередине. Медианой упорядоченного ряда чисел с нечётным числом чисел называется число, записанное посередине, а медианой упорядоченного ряда чисел с чётным числом чисел называется среднее арифметическое двух чисел, записанных посередине. В таблице показан расход электроэнергии в январе жильцами девяти квартир: В таблице показан расход электроэнергии в январе жильцами девяти квартир: Номерквартиры Расходэлектро-энергии

Составим упорядоченный ряд: 64, 72, 72, 75, 78, 82, 85, 91,93. 64, 72, 72, 75, 78, 82, 85, 91, – медиана данного ряда. 78 – медиана данного ряда. Дан упорядоченный ряд: Дан упорядоченный ряд: 64, 72, 72, 75, 78, 82, 85, 88, 91, 93. ():2 = 80 – медиана. ():2 = 80 – медиана.

1. Найдите медиану ряда чисел: а) 30, 32, 37, 40, 41, 42, 45, 49, 52; а) 30, 32, 37, 40, 41, 42, 45, 49, 52; б) 102, 104, 205, 207, 327, 408, 417; б) 102, 104, 205, 207, 327, 408, 417; в) 16, 18, 20, 22, 24, 26; в) 16, 18, 20, 22, 24, 26; г) 1,2, 1,4, 2,2, 2,6, 3,2, 3,8, 4,4, 5,6. г) 1,2, 1,4, 2,2, 2,6, 3,2, 3,8, 4,4, 5,6. 2. Найдите среднее арифметическое и медиану ряда чисел: а) 27, 29, 23, 31,21,34; а) 27, 29, 23, 31,21,34; б) 56, 58, 64, 66, 62, 74; б) 56, 58, 64, 66, 62, 74; в) 3,8, 7,2, 6,4, 6,8, 7,2; в) 3,8, 7,2, 6,4, 6,8, 7,2; г) 21,6, 37,3, 16,4, 12, 6. г) 21,6, 37,3, 16,4, 12, 6.

3. В таблице показано число посетителей выставки в разные дни недели: Найдите медиану указанного ряда данных. В какие дни недели число посетителей выставки было больше медианы? Днинедели Пн Пн Вт Вт Ср Ср Чт Чт Пт Пт Сб Сб Вс Вс Число посетите лей

4.Ниже указана среднесуточная переработка сахара (в тыс.ц) заводами сахарной промышленности некоторого региона: (в тыс.ц) заводами сахарной промышленности некоторого региона: 12,2, 13,2, 13,7, 18,0, 18,6, 12,2, 18,5, 12,4, 12,2, 13,2, 13,7, 18,0, 18,6, 12,2, 18,5, 12,4, 14, 2, 17,8. 14, 2, 17,8. Для представленного ряда найдите среднее арифметическое, моду, размах и медиану. Для представленного ряда найдите среднее арифметическое, моду, размах и медиану. 5. В организации вели ежедневный учёт поступивших в течение месяца писем. В результате получили такой ряд данных: 39, 43, 40, 0, 56, 38, 24, 21, 35, 38, 0, 58, 31, 49, 38, 25, 34, 0, 52, 40, 42, 40, 39, 54, 0, 64, 44, 50, 38, 37, 43, 40, 0, 56, 38, 24, 21, 35, 38, 0, 58, 31, 49, 38, 25, 34, 0, 52, 40, 42, 40, 39, 54, 0, 64, 44, 50, 38, 37, 32. Для представленного ряда найдите среднее арифметическое, моду, размах и медиану. Для представленного ряда найдите среднее арифметическое, моду, размах и медиану.

Домашнее задание. На соревнованиях по фигурному катанию выступление спортсмена было оценено следующими баллами: На соревнованиях по фигурному катанию выступление спортсмена было оценено следующими баллами: 5,2; 5,4; 5,5; 5,4; 5,1; 5,1; 5,4; 5,5; 5,3. 5,2; 5,4; 5,5; 5,4; 5,1; 5,1; 5,4; 5,5; 5,3. Для полученного ряда чисел найдите среднее арифметическое, размах и моду. Для полученного ряда чисел найдите среднее арифметическое, размах и моду.


КОНТРОЛЬНАЯ РАБОТА

На тему: «Мода. Медиана. Способы их расчета»

Введение

Средние величины и связанные с ними показатели вариации играют в статистике очень большую роль, что обусловлено предметом ее изучения. Поэтому данная тема является одной из центральных в курсе.

Средняя является очень распространенным обобщающим показателям в статистике. Это объясняется тем, что только с помощью средней можно охарактеризовать совокупность по количественно варьирующему признаку. Средней величиной в статистике называется обобщающая характеристика совокупности однотипных явлений по какому-либо количественно варьирующему признаку. Средняя показывает уровень этого признака, отнесенный к единице совокупности.

Изучая общественные явления и стремясь выявить их характерные, типичные черты в конкретных условиях места и времени, статистики широко используют средние величины. С помощью средних можно сравнивать между собой различные совокупности по варьирующим признакам.

Средние, которые применяются в статистике, относятся к классу степенных средних. Из степенных средних наиболее часто применяется средняя арифметическая, реже – средняя гармоническая; средняя гармоническая применяется только при исчислении средних темпов динамики, а средняя квадратическая – только при исчислении показателей вариации.

Средняя арифметическая есть частное от деления суммы вариант на их число. Она применяется в тех случаях, когда объем варьирующего признака для всей совокупности образуется как сумма значений признака у отдельных ее единиц. Средняя арифметическая – наиболее распространенный вид средних, так как она соответствует природе общественных явлений, где объем варьирующих признаков в совокупности чаще всего образуется именно как сумма значений признака у отдельных единиц совокупности.

По своему определяющему свойству средняя гармоническая должна применяться тогда, когда общий объем признака образуется как сумма обратных значений вариант. Ее применяют тогда, когда в зависимости от имеющего материала веса приходиться не умножать, а делить на варианты или, что то же самое, умножать на обратное их значение. Средняя гармоническая в этих случаях – это величина обратная средней арифметической из обратных значений признака.

К средней гармонической следует прибегать в тех случаях, когда в качестве весов применяются не единицы совокупности – носители признака, а произведения этих единиц на значение признака.

1.

Определение моды и медианы в статистике

Средние арифметическая и гармоническая являются обобщающими характеристиками совокупности по тому или иному варьирующему признаку. Вспомогательными описательными характеристиками распределения варьирующего признака являются мода и медиана.

Модой в статистике называется величина признака (варианта), которая чаще всего встречается в данной совокупности. В вариационном ряду это будет варианта, имеющая наибольшую частоту.

Медианной в статистике называется варианта, которая находится в середине вариационного ряда. Медиана делит ряд пополам, по обе стороны от нее (вверх и вниз) находится одинаковое количество единиц совокупности.

Мода и медиана в отличии от степенных средних являются конкретными характеристиками, их значение имеет какая-либо конкретная варианта в вариационном ряду.

Мода применяется в тех случаях, когда нужно охарактеризовать наиболее часто встречающуюся величину признака. Если надо, например, узнать наиболее распространенный размер заработной платы на предприятии, цену на рынке, по которой было продано наибольшее количество товаров, размер ботинок, пользующийся наибольшим спросом у потребителей, и т.д., в этих случаях прибегают к моде.

Медиана интересна тем, что показывает количественную границу значение варьирующего признака, которую достигла половина членов совокупности. Пусть средняя заработная плата работников банка составила 650000 руб. в месяц. Эта характеристика может быть дополнена, если мы скажем, что половина работников получила заработную плату 700000 руб. и выше, т.е. приведем медиану. Мода и медиана являются типичными характеристиками в тех случаях, когда взяты совокупности однородные и большой численности.

2.

Нахождение моды и медианы в дискретном вариационном ряду

Найти моду и медиану в вариационном ряду, где значения признака заданы определенными числами, не представляет большой трудности. Рассмотрим таблицу 1. с распределение семей по числу детей.

Таблица 1. Распределение семей по числу детей

Очевидно, в этом примере модой будет семья, имеющая двоих детей, так как этому значению варианты соответствует наибольшее число семей. Могут быть распределения, где все варианты встречаются одинаково часто, в этом случае моды нет или, иначе, можно сказать, что все варианты одинаково модальны. В других случаях не одна, а две варианты могут быть наибольшей частоты. Тогда будет две моды, распределение будет бимодальным. Бимодальные распределения могут указывать на качественную неоднородность совокупности по исследуемому признаку.

Чтобы найти медиану в дискретном вариационном ряд, нужно сумму частот разделить пополам и к полученному результату добавить ½. Так, в распределении 185 семьи по числу детей медианой будет: 185/2 + ½ = 93, т.е. 93-я варианта, которая делит упорядоченный ряд пополам. Каково же значение 93-ей варианты? Для того чтобы это выяснить, нужно накапливать частоты, начиная, от наименьшей варианты. Сумма частот 1-й и 2-й вариант равна 40. Ясно, что здесь 93 варианты нет. Если прибавить к 40 частоту 3-й варианты, то получим сумму, равную 40 + 75 = 115. Следовательно, 93-я варианта соответствует третьему значению варьирующего признака, и медианой будет семья, имеющая двоих детей.

Мода и медиана в данном примере совпали. Если бы у нас была четная сумма частот (например, 184), то, применяя указанную выше формулу, получим номер медианной варианты, 184/2 + ½ =92,5. Поскольку варианты с дробным номером не существует, полученный результат указывает, что медиана находится посередине между 92 и 93 вариантами.

3.

Расчет моды и медианы в интервальном вариационном ряду

Описательный характер моды и медианы связан с тем, что в них не погашаются индивидуальные отклонения. Они всегда соответствуют определенной варианте. Поэтому мода и медиана не требуют для своего нахождения расчетов, если известны все значения признака. Однако в интервальном вариационном ряду для нахождения приближенного значения моды и медианы в пределах определенного интервала прибегают к расчетам.

Для расчета определенного значения модальной величины признака, заключенного в интервале, применяют формулу:

М о
= Х Мо
+ i Мо
*(f Мо
– f Мо-1)/((f Мо
– f Мо-1) + (f Мо
– f Мо+1)),

Где Х Мо
– минимальная граница модального интервала;

i Мо
– величина модального интервала;

f Мо
– частота модального интервала;

f Мо-1
– частота интервала, предшествующего модальному;

f Мо+1
– частота интервала, следующего за модальным.

Покажем расчет моды на примере, приведенном в таблице 2.

Таблица 2. Распределение рабочих предприятия по выполнению норм выработки

Чтобы найти моду, первоначально определим модальный интервал данного ряда. Из примера видно, что наибольшая частота соответствует интервалу, где варианта лежит в пределах от 100 до 105. Это и есть модальный интервал. Величина модального интервала равна 5.

Подставляя числовые значения из таблицы 2. в указанную выше формулу, получим:

М о
= 100 + 5 * (104 -12)/((104 – 12) + (104 – 98)) = 108,8

Смысл этой формулы заключается в следующем: величину той части модального интервала, которую нужно добавить к его минимальной границе, определяют в зависимости от величины частот предшествующего и последующего интервалов. В данном случае к 100 прибавляем 8,8, т.е. больше половины интервала, потому что частота предшествующего интервала меньше частоты последующего интервала.

Исчислим теперь медиану. Для нахождения медианы в интервальном вариационном ряду определяем сначала интервал, в котором она находится (медианный интервал). Таким интервалом будет такой, комулятивная частота которого равна или превышает половину суммы частот. Комулятивные частоты образуются путем постепенного суммирования частот, начиная от интервала с наименьшим значением признака. Половина суммы частот у нас равна 250 (500:2). Следовательно, согласно таблицы 3. медианным интервалом будет интервал со значением заработной платы от 350000 руб. до 400000 руб.

Таблица 3. Расчет медианы в интервальном вариационном ряду

До этого интервала сумма накопленных частот составила 160. Следовательно, чтобы получить значение медианы, необходимо прибавить еще 90 единиц (250 – 160).

Основные понятия

Для экспериментальных данных, полученных по выборке, можно вычислить ряд числовых характеристик (мер).

Мода — числовое значение, которое встречается в выборке наиболее часто. Мода обозначается иногда как Мо.

Например, в ряду значении (2 6 6 8 9 9 9 10) модой является 9, потому что 9 встречается чаше любого другого числа.

Мода представляет собой наиболее часто встречающееся значение (в данном примере это 9) а не частоту встречаемости этого значения (в данном примере равную 3).

Моду находят согласно правилам

1. В случае, когда все значения в выборке встречаются одинаково часто, принято считать, что этот выборочный ряд не имеет моды.

Например, 556677 — в этой выборке моды нет.

2. Когда два соседних (смежных) значения имеют одинаковую частоту и их частота больше частот любых других значений, мода вычисляется как среднее арифметическое этих двух значении.

Например, в выборке 1 2 2 2 5 5 5 6 частоты рядом расположенных значении 2 и 5 совпадают и равняются 3. Эта частота больше чем частота других значении 1 и 6 (у которых она равна 1).

Следовательно, модой этого ряда будет величина .

3) Если два несмежных (не соседних) значения в выборке имеют равные частоты которые больше частот любого другого значения, то выделяют две моды. Например, в ряду 10 11 11 11 12 13 14 14 14 17 модами являются значения 11 и 14. В таком случае говорят, что выборка является бимодальной.

Могут существовать и так называемые мультимодальные распределения, имеющие более двух вершин (мод)

4)Если мода оценивается по множеству сгруппированных данных, то для нахождения моды необходимо определить группу с наибольшей частотой признака. Эта группа называется модальной группой
.

Медиана — обозначается Ме
и определяется как величина по отношению к которой по крайней мере 50% выборочных значении меньше нее и по крайней мере 50% — больше.

Медиана — это значение которое делит упорядоченное множество данных пополам.

Задача 1. Найдем медиану выборки 9 3 5 8 4 11 13

Решение Сначала упорядочим выборку по величинам входящих в нее значении. Получим, 3 4 5 8 9 11 13. Поскольку в выборке семь элементов, четвертый по порядку элемент будет иметь значение большее чем первые три и меньшее чем последние три. Таким образом, медианой будет четвертый элемент — 8

Задача 2. Найдем медиану выборки 20, 9, 13, 1, 4, 11.

Упорядочим выборку 1, 4, 9, 11, 13, 20 Поскольку здесь имеется четное число элементов, то существует две «середины» — 9 и 13 В этом случае медиана определяется как среднее арифметическое этих значений

Среднее арифметическое

Среднее арифметическое ряда из n числовых значений подсчитывается как

Чтобы показать обманчивость этого показателя, приведём известный пример: в одном купе вагона поместилась бабушка 60 лет с четырьмя внуками: один – 4 года, двое – по 5 лет и один – 6 лет. Среднее арифметическое возраста всех пассажиров этого купе 80/5 = 16. В другом купе расположилась компания молодежи: двое – 15-ти летних, один – 16-летний и двое – 17-летних. Средний возраст пассажиров этого купе так же равен 80/5 = 16. Таким образом, по средним арифметическим пассажиры этих купе не отличаются. Но если обратиться к показателю стандартного отклонения, то окажется, что средний разброс относительно среднего возраста в первом случае окажется 24,6, а во втором случае 1.

Кроме того, среднее оказывается достаточно чувствительным к очень маленьким или очень большим величинам, отличающимся от основных значений измеренных характеристик. Пусть 9 человек имеют доход от 4500 до 5200 тыс долларов в месяц. Величина их среднего дохода равняется 4900 долларов Если же к этой группе добавить человека имеющего доход в 20000 тыс долларов в месяц, то средняя всей группы сместится и окажется равной 6410 долларов, хотя никто из всей выборки (кроме одного человека) реально не получает такой суммы.

Понятно что аналогичное смещение, но в противоположную сторону можно получить и в том случае, если добавить в эту группу человека с очень маленьким годовым доходом.

Разброс выборки

Разброс (размахом
) выборки
– разность между максимальной и минимальной величинами данного конкретного вариационного ряда. Обозначается буквой R.

Размах = максимальное значение — минимальное значение

Понятно, что чем сильнее варьирует измеряемый признак, тем больше величина R, и наоборот.

Однако может случиться так, что у двух выборочных рядов и средние, и размах совпадают, однако характер варьирования этих рядов будет различный Например, даны две выборки

Дисперсия

Дисперсия представляет собой наиболее часто использующуюся меру рассеяния случайной величины (переменной).

Дисперсия – среднее арифметическое квадратов отклонений значений переменной от ее среднего значения

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти магнитный момент соленоида
  • Как исправить текст в ворде в режиме редактора
  • Не указали код выполняемой функции в сзв тд как исправить
  • Как исправить номер счета фактуры в сданной декларации по ндс
  • Как найти могилку родственника

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии