Как найти модель векторов

Заказать задачи по любым предметам можно здесь от 10 минут

Модуль вектора

Формула

Чтобы найти модуль вектора по координатам нужно извлечь квадратный корень из суммы квадратов его координат, то есть найти длину вектора.

Если вектор задан на плоскости в виде $ overline{a} = (x;y) $, то вычисляется модуль по формуле: $$ |overline{a}|=sqrt{x^2+y^2} $$

В случае, когда вектор задан в пространстве тремя координатами $ overline{a}= (x;y;z) $, то модуль находится по формуле: $$ |overline{a}|=sqrt{x^2+y^2+z^2} $$

Для нахождения модуля вектора нам понадобится знать:

  1. Координаты вектора
  2. Формулы

Примеры решений

Пример
Найти модуль вектора $ overline{a} = (3;4;0) $
Решение

Зная координаты мы первым делом определяем на плоскости или в пространстве задана задача. В нашем случае координат у вектора три, поэтому в пространстве (было бы две координаты, то на плоскости).

Используем вторую формулу для пространственной задачи:

$$ |overline{a}|=sqrt{x^2+y^2+z^2} $$

Подставляя в формулу в место $ x,y,z $ числа из задания получаем модуль:

$$ |overline{a}|=sqrt{3^2+4^2+0^2} = sqrt{9+16+0} = sqrt{25}=5 $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ |overline{a}|= sqrt{25}=5 $$

Содержание:

  • Формула
  • Примеры вычисления модуля вектора

Формула

Чтобы найти модуль вектора, заданного своими координатами, нужно найти его длину, то есть извлечь корень из суммы
квадратов его координат. Если вектор задан на плоскости и имеет координаты $bar{a}=left(a_{x} ; a_{y}right)$, то его модуль вычисляется по формуле

$$|bar{a}|=sqrt{a_{x}^{2}+a_{y}^{2}}$$

То есть модуль вектора равен корню квадратному из суммы квадратов координат.

Если вектор задан в пространстве координатами
, то его модуль вычисляется по формуле

$$bar{a}=left(a_{x} ; a_{y} ; a_{z}right)$$

Примеры вычисления модуля вектора

Пример

Задание. Найти модуль вектора $bar{a}=(-1 ; 1)$

Решение. Для нахождения модуля вектора, заданного на плоскости воспользуемся формулой:

$$|bar{a}|=sqrt{a_{x}^{2}+a_{y}^{2}}$$

Подставляя в неё координаты заданного вектора, будем иметь:

$$|bar{a}|=sqrt{(-1)^{2}+1^{2}}=sqrt{1+1}=sqrt{2}$$

Ответ. $|bar{a}|=sqrt{2}$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. В пространстве заданны точки
$A(2 ;-4 ; 1)$ и $B(-2 ; 0 ; 3)$. Найти модуль вектора
$overline{A B}$

Решение. Найдем координаты вектора $overline{A B}$. Для этого из координат конца
(точки $B$ ) вычтем соответствующие координаты начала (точки
$A$ ):

$$overline{A B}=(-2-2 ; 0-(-4) ; 3-1)=(-4 ; 4 ; 2)$$

Далее для нахождения модуля вектора $overline{A B}$ воспользуемся формулой:

$|overline{a}|=sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}$

Подставляя координаты вектора $overline{A B}$, получим:

$$|overrightarrow{A B}|=sqrt{(-4)^{2}+4^{2}+2^{2}}=sqrt{16+16+4}=sqrt{36}=6$$

Ответ. $|overrightarrow{A B}|=6$

Читать дальше: как найти координаты вектора.

Длина направленного отрезка определяет числовое значение вектора и называется длиной, или модулем, вектора.

векторы-модуль-формула.png

Из теоремы Пифагора следует, что в треугольнике (ABC) длина отрезка (AB), которая является модулем вектора

AB→

, равна

AC2+CB2

, и, следовательно, модуль (длина) вектора

AB→

 рассчитывается по формуле

AB→=x2+y2

Пример:

вычисли длину вектора

AB→=5;3

.

Расстояние между двумя точками

Как известно, координаты вектора можно определить, если даны координаты начальной и конечной точек вектора

Ax1;y1

 и

Bx2;y2

.

Koord_vektori_galap.png

Если

x=x2−x1

,

y=y2−y1

 и

AB→=x2+y2

, то вместо (x) и (y) можно поставить их выражения.

Новую формулу называют не только формулой длины вектора, но и формулой расстояния между двумя точками с заданными координатамиAB=x2−x12+y2−y12.

Так как выражения в скобках в квадрате, то справедливо, что

AB=x2−x12+y2−y12=x1−x22+y1−y22

.

То есть, не важна последовательность координат в разности.

Обрати внимание!

Если даны координаты начальной и конечной точек вектора

Ax1;y1

 и

Bx2;y2

, то

AB→x2−x1;y2−y1

.

Обязательно из координат конечной точки надо вычитать координаты начальной точки!

Но при определении длины вектора в формуле последовательность координат не имеет значения:

AB→=x2−x12+y2−y12=x1−x22+y1−y22

.

Определение и обозначение вектора

Вектор в геометрии — это отрезок, для которого указано, какая из его граничных точек считается началом, а какая — концом. В некоторых учебниках вектор могут называть направленным отрезком.

Вектор обозначается одной строчной буквой латинского алфавита или двумя заглавными со стрелкой (в некоторых случаях — прямой линией) сверху.

Обозначение вектора

Интересно, что порядок букв в названии вектора имеет значение! Первая буква отвечает за начало вектора, а последняя — за его конец. Поэтому

и

— абсолютно разные векторы.

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Узнай, какие профессии будущего тебе подойдут

Пройди тест — и мы покажем, кем ты можешь стать, а ещё пришлём подробный гайд, как реализовать себя уже сейчас

Узнай, какие профессии будущего тебе подойдут

Виды векторов

Во-первых, векторы бывают коллинеарными и неколлинеарными.

Коллинеарные и неколлинеарные векторы

Коллинеарными называют те векторы, которые лежат на одной прямой или параллельных прямых. На рисунке

и

и

являются коллинеарными, а

и

относительно друг друга — нет.

Виды векторов

Векторы различаются и по направлению. Если векторы уже являются коллинеарными, они могут быть сонаправленными или противоположно направленными. Сонаправленные векторы обозначаются так:

Если же они противоположно направлены, мы можем записать это следующим образом:

Равными являются те векторы, которые одновременно и коллинеарны, и сонаправлены, а также имеют одинаковую длину.

Нулевой вектор — вектор, длина которого равна нулю. Чаще всего его обозначают так:

Он считается коллинеарным любому вектору.

Иногда в геометрии вводят дополнительные понятия, рассмотрим и их:

  • Закреплённый вектор — отрезок с упорядоченными концами: если С — точка начала вектора, а Е — точка конца, тогда

    (это то, что мы понимаем под обычным вектором в школьной геометрии).

  • Свободный вектор — вектор, начало и конец которого не закреплены. Его можно перемещать как вдоль прямой, на которой он находится, так и параллельно этой прямой. По сути под свободным вектором понимают множество закреплённых векторов.

Сложение и вычитание векторов

Действия с векторами описываются и в алгебре, и в геометрии. Сегодня мы рассмотрим способы, благодаря которым можно сложить и вычесть векторы, не зная их координат.

Сложение: метод треугольника

Представим, что в пространстве заданы векторы

и

которые нам необходимо сложить. Эта задача особенно актуальна для физиков, поскольку такие векторные величины, как сила, часто приложены к одному и тому же телу. В таком случае возникает вопрос: а как же рассчитать результирующее действие всех этих сил?

В этом на помощь физикам приходит математика — царица наук! Чтобы сложить два вектора, необходимо:

  1. Отложить начало одного вектора от конца другого.

  2. Вектор их суммы будет совпадать с вектором

    , который соединяет начало вектора

    с концом вектора

Сложение векторов методом треугольника

Сложение: метод параллелограмма

Сложение векторов методом параллелограмма

Сложить векторы можно и по-другому, используя метод параллелограмма:

  1. Совместим между собой начала

    и

  2. Отложим от конца

    вектор, равный

  3. Отложим от конца

    вектор, равный

  4. Благодаря пунктам 2 и 3 мы получили параллелограмм (четырёхугольник, противоположные стороны которого параллельны и равны).

  5. Проведём диагональ параллелограмма между

    и

    на которой будет лежать вектор, равный сумме

    и

Задача решена, вы великолепны!

Обратите внимание

Как метод параллелограмма, так и метод треугольника подразумевает перемещение векторов в пространстве: мы или совмещаем их начала, или откладываем от конца одного вектора начало другого. Получить сумму векторов, не имеющих общей точки, с этими методами не представляется возможным.

Сложение: метод многоугольника

А что если векторов больше, чем два? На эту проблему математика уже подготовила решение: воспользуемся расширенным методом треугольника, который получил название «метод многоугольника».

Согласно этому методу мы последовательно совмещаем конец и начало векторов, а после изображаем суммирующий вектор, начало которого совпадает с началом первого вектора, а конец — с концом последнего. Лучше всего рассмотреть это на чертеже:

Сложение векторов методом многоугольника

Вычитание векторов

Продолжаем проделывать с векторами всевозможные действия, на этот раз вычитание. Математики знают, что вычитание — это по своей сути то же сложение, но с обратным числом.

С векторами работает та же штука: вместо вычитания попробуем прибавить вектор, противоположно направленный исходному:

Изобразим разность векторов с помощью уже знакомого нам правила треугольника:

Вычитание векторов. Рисунок 1

Боитесь запутаться в векторах сонаправленных и противоположно направленных?
Существует отдельное правило для их вычитания:

  1. Отложим один вектор от начала другого.

  2. Тогда вектор их разности совпадает с вектором, начало которого совмещено с концом вычитаемого вектора, а конец — с концом уменьшаемого.

Вычитание векторов. Рисунок 2

Этот метод схож и с методом параллелограмма, но в этом случае мы берём другую диагональ.

Координаты вектора на плоскости и в пространстве

Для выполнения остальных действий с векторами нам необходимо поместить их в такую систему координат, чтобы можно было
определить их положение относительно друг друга. Для этого используют декартову систему координат, которой можно
пользоваться как на плоскости с осями X и Y, так и в пространстве с осями
X, Y, Z.

Тогда, если

находится на плоскости, его координаты можно выразить как

если в пространстве

Базисные векторы — это векторы, каждый из которых направлен вдоль своей оси координат, в трёхмерном пространстве их обозначают

Базисные векторы

Любой вектор в трёхмерном пространстве можно разложить по трём базисным векторам.

с координатами

можно записать так:

Умножение вектора на число

Представьте, что нам необходимо растянуть вектор в два раза или же сжать, но уже в три. За все эти действия отвечает
одна простая задача: умножение вектора на число.

Для того чтобы увеличить или уменьшить вектор в некоторое количество раз, необходимо умножить все координаты вектора
на это число.

Таким образом, если

задан координатами

то

Кстати, подобным образом можно перевернуть вектор, направив его в противоположную сторону:

Длина вектора

Длина вектора — одно из основных понятий в этом разделе. И неудивительно, ведь она характеризует его протяженность в
пространстве и выражается числом.

Итак, длина вектора — это расстояние между его началом и концом. Её часто называют модулем, что
отражается и в обозначении. Если нам необходимо найти длину

мы так и запишем:

Длину вектора можно найти разными способами, вот основные:

  1. через координаты вектора;

  2. через координаты точек начала и конца вектора;

  3. через теорему косинусов.

Давайте вместе разберём все методы!

Длина вектора через его координаты

Если

задан через координаты

то его длину можно найти как

Почему мы можем быть уверены, что эта формула правильная? Рассмотрим вектор

в декартовой системе координат.

Длина вектора через его координаты

Отложим вектор

от точки

с координатами

Тогда этот вектор можно назвать

, и так как мы строили его из
начала координат, координаты вектора могут быть найдены как

Рассчитаем длину

через теорему Пифагора:

Задача 1

Посчитайте, чему равен модуль

, если его координаты

Решение:

Модуль вектора — это его длина, а значит,

Задача 2

Длина

Чему равна координата по оси

, если координата по оси

Решение:

Длина вектора через координаты точек начала и конца

Для начала давайте вспомним, как задать координаты вектора через координаты его начала и конца.

Длина вектора через координаты точек начала и конца. Рисунок 1

Рассмотрим

где

и

Тогда координаты вектора можно выразить так:

Мы уже знаем, как найти длину вектора через его координаты, поэтому подставим полученное выражение в формулу:

Задача 3

Найдите длину

если

и

Решение:

Задача 4

Длина вектора через координаты точек начала и конца. Рисунок 2

Рассчитайте координату по

точки

вектора

, если его длина равна

а

Решение:

Остановимся здесь и подставим известные числа в формулу:

или

Длина вектора через теорему косинуса

К сожалению, в задачах не всегда даны координаты точек вектора или его самого. В таком случае мы воспользуемся
теоремой косинуса.
Давайте вспомним её формулировку.

Длина вектора через теорему косинуса. Рисунок 1

Теорема косинусов звучит так: квадрат стороны треугольника равен сумме квадратов двух других его сторон минус
удвоенное произведение этих сторон на косинус угла между ними.

Формула теоремы косинусов:

Эту теорему можно применить и в векторной форме. Немного изменим рисунок:

Длина вектора через теорему косинуса. Рисунок 2

Тогда, чтобы найти длину

, необходимо знать (или иметь возможность вычислить) длины

и

, знать угол между ними, а также уметь рассчитать произведение длин этих векторов.

Задача 5

Длины

и

равны 4 и 6 соответственно, а угол между ними равен

Вычислите длину

Решение:

Задача 6

Рассчитайте модуль вектора

в треугольнике, если длина

= 8, длина

= 10, а угол между ними равен

Решение:

Длина вектора через теорему косинуса. Рисунок 3

Скалярное произведение векторов

Мы практически дошли до финала нашего путешествия по царству векторов. 👑 Нам осталось изучить только скалярное
произведение векторов. Что это?

Скалярное произведение — это операция над двумя векторами, результатом которой является скаляр, то
есть число,
которое не зависит от выбора системы координат.

Скалярным произведением

и

будет скалярная величина, равная произведению модулей этих векторов, умноженная на
косинус угла между ними:

Вспомним, что в той же физике величины делятся на скалярные (не имеющие направления, например, масса) и векторные
(имеющие направление, например, сила, ускорение, скорость). В математике под вектором подразумевают направленный
отрезок, а понятие скаляра хоть и не равно, но очень близко к понятию числа.

Скалярное произведение показывает, насколько синхронизированы, скоординированы направления векторов. Так, чем больше
угол между векторами, тем меньше согласованности, а значит, скалярное произведение будет уменьшаться с ростом угла:

  • Скалярное произведение вектора на само себя равно квадрату его модуля:

    В данном случае значение скалярного произведения является наибольшим из
    возможных.

  • Если угол между векторами острый и векторы ненулевые, то скалярное произведение положительно, так как

    Скалярное произведение векторов. Рисунок 1

  • Если угол между векторами прямой, то скалярное произведение равно 0, так как

    Скалярное произведение векторов. Рисунок 2

  • Если угол между векторами тупой и векторы ненулевые, то скалярное произведение отрицательно, так как

    Скалярное произведение векторов. Рисунок 3

  • Cкалярное произведение вектора на противоположно направленный ему вектор равно отрицательному произведению их
    длин
    . В данном случае значение скалярного произведения является наименьшим из возможных.

    Скалярное произведение векторов. Рисунок 4

Конечно, вы можете возразить: «Согласованность направлений отлично показывает угол, для чего нам эти сложные
вычисления?». А всё дело в том, что в пространстве порой очень сложно измерить угол, а вот посчитать скалярное
произведение — просто, особенно если рассмотреть его через координаты.

Если

выражен координатами

а

то скалярное произведение этих векторов описывается формулой:

В пространстве скалярное произведение через координаты векторов будет задаваться так:

Где применяется скалярное произведение? Благодаря ему выполняется большое количество математических операций, таких
как нахождение угла между векторами и любых расстояний, если они заданы через координаты. Благодаря скалярному
произведению можно описать даже характеристику криволинейных поверхностей, но это мы обсудим как-нибудь в другой
раз. 🙂

Чтобы закрепить пройденный материал, нужно больше, чем пара заданий. Поэтом приглашаем на онлайн-уроки математики в
школу Skysmart. За короткое время благодаря особенной платформе и учителям-профессионалам вы сможете улучшить
школьные отметки, подготовиться к экзаменам и олимпиадам, и самое главное — понять и полюбить математику.

Вектором является направленный отрезок. Длина этого отрезка является длиной вектора.

Длина вектора b⃗vec{b} обозначается ∣b⃗∣.left | vec{b} right |. Модуль числа имеет аналогичное обозначение и длина вектора часто называется модулем вектора.

Длина нулевого вектора равна нулю.

Нахождение длины вектора по его координатам

Длина вектора, который задан своими координатами, – это квадратный корень из суммы квадратов его координат.

Для того чтобы найти длину вектора, заданного своими координатами, нужно извлечь квадратный корень из суммы квадратов его координат.

  1. Для вектора b⃗=(bx;by),vec{b}=(b_{x};b_{y}), заданного на плоскости, длина вычисляется по формуле ∣b⃗∣left |vec{b} right|=bx2+by2sqrt {b_{x}^{2}+b_{y}^{2}}.
  2. Для вектора b⃗=(bx;by;bz),vec{b}=(b_{x};b_{y};b_{z}), заданного в пространстве, длина вычисляется по формуле ∣b⃗∣=bx2+by2+bz2left | vec{b} right |=sqrt {b_{x}^{2}+b_{y}^{2}+b_{z}^{2}}.

Пример 1

Найти длину вектора b⃗=(6;−4).vec{b}=(6;-4).

Вектор задан на плоскости, поэтому воспользуемся первой формулой: ∣b⃗∣=bx2+by2left | vec{b} right |=sqrt {b_{x}^{2}+b_{y}^{2}}.

Подставим координаты вектора b⃗vec{b} в формулу, получим: ∣b⃗∣=62+(−4)2=36+16=52=213left | vec{b} right |=sqrt {6^{2}+(-4)^{2}}=sqrt {36+16}=sqrt {52}=2sqrt {13}.

Ответ: 2132sqrt {13}.

Пример 2

Найти длину вектора d⃗=(1;3;5).vec{d}=(1;3;5).

Вектор задан в пространстве, поэтому воспользуемся второй формулой:

∣d⃗∣=dx2+dy2+dz2left | vec{d} right |=sqrt {d_{x}^{2}+d_{y}^{2}+d_{z}^{2}}.

Подставим координаты вектора d⃗vec{d} в формулу, получим:

∣d⃗∣=12+32+52=1+9+25=35left | vec{d} right |=sqrt {1^{2}+3^{2}+5^{2}}=sqrt {1+9+25}=sqrt {35}.

Нахождение длины вектора по координатам точек его начала и конца

Для нахождения длины вектора CD⃗vec{CD}, где C(cx;cy)C(c_{x};c_{y}) и D(dx;dy)D(d_{x};d_{y}) существует определенная последовательность действий:

  1. Найти координаты вектора CD⃗vec{CD} по формуле: ∣CD⃗∣=(dx−cx;dy−cy)left | vec{CD} right |=(d_{x}-c_{x};d_{y}-c_{y}).
  2. Найти длину вектора по его координатам по формуле: ∣CD⃗∣=(dx−cx)2+(dy−cy)2left | vec{CD} right |=sqrt {(d_{x}-c_{x})^{2}+(d_{y}-c_{y})^{2}}.

Аналогично находится длина вектора CD⃗,vec{CD}, заданного в пространстве, где C(cx;cy;cz)C(c_{x};c_{y};c_{z}) и D(dx;dy;dz)D(d_{x};d_{y};d_{z}):

  1. Найти координаты вектора CD⃗vec{CD} по формуле: CD⃗=(dx−cx;dy−cy;dz−cz).vec{CD}=(d_{x}-c_{x};d_{y}-c_{y};d_{z}-c_{z}).
  2. Найти длину вектора по его координатам по формуле: ∣CD⃗∣=(dx−cx)2+(dy−cy)2+(dz−cz)2left | vec{CD} right |=sqrt {(d_{x}-c_{x})^{2}+(d_{y}-c_{y})^{2}+(d_{z}-c_{z})^{2}}.

Пример 1

На плоскости заданы точки E(−1;3)иK(3;−4)E(-1;3) и K(3;-4). Найти длину вектора EK⃗.vec{EK}.

Найдем координаты вектора EK⃗.vec{EK}. Для этого из координат конца вычтем координаты начала, получим:

EK⃗=(3−(−1);−4−3)=(3+1;−4−3)=(4;−7).vec{EK}=(3-(-1);-4-3)=(3+1;-4-3)=(4;-7).

Воспользуемся формулой ∣b⃗∣=bx2+by2left | vec{b} right |=sqrt {b_{x}^{2}+b_{y}^{2}} для нахождения длины вектора, получим:

∣EK⃗∣=42+(−7)2left | vec{EK} right |=sqrt {4^{2}+(-7)^{2}}=16+49sqrt {16+49}=65sqrt {65}.

Пример 2

В пространстве заданы точки C(1;2;3)C(1;2;3) и D(3;4;5).D(3;4;5). Найти длину вектора CD⃗.vec{CD}.

Найдем координаты вектора CD⃗.vec{CD}. Для этого из координат конца вычтем координаты начала, получим: CD⃗=(3−1;4−2;5−3)=(2;2;2).vec{CD}=(3-1;4-2;5-3)=(2;2;2).

Воспользуемся формулой ∣b⃗∣=bx2+by2+bz2left | vec{b} right |=sqrt {b_{x}^{2}+b_{y}^{2}+b_{z}^{2}} для нахождения длины вектора, получим: ∣b⃗∣=22+22+22=4+4+4=12=23left | vec{b} right |=sqrt {2^{2}+2^{2}+2^{2}}=sqrt {4+4+4}=sqrt {12}=2sqrt 3.

Нахождение длины вектора по теореме косинусов

Теорема косинусов: квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Для треугольника со сторонами a,b,ca, b, c и углами α,βalpha, beta и γ,gamma, противолежащими этим сторонам соответственно, справедливы равенства:

b=a2+c2−2a⋅c⋅cos(β),b=a^{2}+c^{2}-2acdot ccdot cos (beta), a=b2+c2−2b⋅c⋅cos(α),a=b^{2}+c^{2}-2bcdot ccdot cos (alpha), c=a2+b2−2a⋅b⋅cos(γ).c=a^{2}+b^{2}-2acdot bcdot cos (gamma).

Аналогично поступают и с векторами. Рассмотрим пример.

Пример 1

Длины векторов KL⃗vec{KL} и KM⃗vec{KM} равны соответственно 2 и 4, а угол между ними равен π4.frac{pi }{4}. Вычислите длину вектора LM⃗.vec{LM}.

Длина вектора LM⃗vec{LM} равна длине стороны LMLM в треугольнике LMKLMK. Также нам известны стороны KLKL и KMKM треугольника LMKLMK. Они равны длинам соответствующих векторов. Нам известен угол между векторами. Найдем сторону LMLM треугольника △KLM.triangle KLM.

LM2=KL2+KM2−2KL⋅KM⋅cos⁡∠LKM.LM^2=KL^2+KM^2-2KLcdot KMcdot cos angle LKM.
LM2=22+42−2⋅2⋅4⋅cos⁡π4=4+16−82=20−82.LM^2=2^2+4^2-2cdot 2cdot4cdot cos frac{pi }{4}=4+16-8sqrt{2}=20-8sqrt{2}.
LM=20−82.LM=sqrt{20-8sqrt{2}}.
∣LM⃗∣=20−82.|vec{LM}|=sqrt{20-8sqrt{2}}.

Тест по теме «Как вычислить длину вектора»

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти хорошего невролога в воронеже
  • Как найти фактическое значение показателя
  • Как найти хорошего посредника на таобао
  • Как найти количество ячеек удовлетворяющих условию
  • Как найти документы на иностранцев

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии