Как найти множество если есть интервалы

Содержание:

Множества

Понятие множества является одним из исходных понятий математики в том смысле, что его нельзя определить с помощью более простых, чем оно само, понятий. В повседневной жизни часто приходится рассматривать набор некоторых объектов как единое целое. Скажем, когда биолог изучает флору и фауну некоторой местности, он делит организмы на виды, а виды на семейства. При этом каждый вид рассматривается как единое целое, состоящее из организмов.

Множество может состоять из объектов различной природы. Например, вес реки Азии или все слова в словаре могут рассматриваться как множества.

Знаменитый немецкий математик Г. Кантор (1845 -1918) дал следующую описательную формулировку: «Множество есть совокупность, мыслимая как единое целое».

Объекты, составляющие множество, называются его элементами.

Обычно, для удобства, множество обозначается заглавными буквами латинского алфавита, например, А, В, С,…, а его элементы — прописными.

Множество А, состоящее из элементов а, b, с, … , будем записывать в виде A = {а, b, с,…}. Отметим, что записи {6, 11} , {11, 6} , {11, 6, 6, 11} означают одно и то же множество.

При ведем примеры множеств. Например, множество {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} — множество цифр десятичной системы счисления ,Множества - определение и вычисление с примерами решения

То, что х является элементом множества А, будем обозначать как Множества - определение и вычисление с примерами решенияа то, что он не является его элементом, будем обозначать как Множества - определение и вычисление с примерами решения Эти записи в первом случае читаются как «элементах принадлежит А», а во втором случае как «элемент х не принадлежит А».

Например, для множества Множества - определение и вычисление с примерами решения имеем Множества - определение и вычисление с примерами решенияоднако Множества - определение и вычисление с примерами решения

Если число элементов, составляющих множество, конечно, то такое множество будем называть конечным, в противном случае бесконечным. Например, множество Множества - определение и вычисление с примерами решения конечно, а множество Множества - определение и вычисление с примерами решения всех натуральных чисел бесконечно.

В качестве еще одного примера бесконечного множества можно привести множество всех натуральных чисел, не меньших 13.

Обозначим через Множества - определение и вычисление с примерами решения число всех элементов конечного множества А. Если, например,Множества - определение и вычисление с примерами решения

в силу того, что число всех его элементов равно 6. Множество, не содержащее ни одного элемента, называется пустым и обозначается так: 0

Пустое множество 0 считается конечным и для него я(0)= 0.

Для бесконечного множества А принято, что Множества - определение и вычисление с примерами решения

Если вес элементы множества А также принадлежат множеству В, то говорят, что множество А — подмножество множества В и обозначают так: Множества - определение и вычисление с примерами решения. В этом случае также говорят, что «множество А лежит во множестве В» или «множество А — часть В».

Во множестве {а} лежат два подмножества:Множества - определение и вычисление с примерами решения

Множество {а, b} имеет четыре подмножества: Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения так как все элементы первого множества также являются элементами второго.

Если множество А имеет элементы, не принадлежащие В, то множество А не может быть подмножеством В. Этот факт мы будем записывать так:Множества - определение и вычисление с примерами решения

Например, пусть А={ 1, 2, 3, 4}, В={2, 3, 4, 5}. Так как Множества - определение и вычисление с примерами решения Очевидно, что справедливы соотношения:Множества - определение и вычисление с примерами решения

Если Множества - определение и вычисление с примерами решения то эти множества состоят из одних и тех же элементов. Такие множества называются равными (совпадающими), и этот факт мы будем записывать так: А = В.

Например, множество всех правильных треугольников совпадает со множеством всевозможных треугольников, у которых все углы равны. Причина этого заключается в том, что у любого правильного треугольника

все углы равны, и, наоборот, если у треугольника все углы равны, то он является правильным.

Напомним основные числовые множества:Множества - определение и вычисление с примерами решения— множество натуральных чисел; Множества - определение и вычисление с примерами решения — множество целых чисел; Множества - определение и вычисление с примерами решения— множество рациональных чисел; Множества - определение и вычисление с примерами решения

Множество действительных чисел

Объединение и пересечение множеств

1) Множество, состоящее из элементов, принадлежащих хотя бы одному из множеств А, В, называется объединением множеств.

Объединение множеств А, В обозначается через Множества - определение и вычисление с примерами решения

Например, если Множества - определение и вычисление с примерами решения

2) Множество, состоящее из элементов, принадлежащих обоим множествам А, В, называется пересечением множеств. Пересечение множеств А. В обозначается через Множества - определение и вычисление с примерами решения

Например, если Множества - определение и вычисление с примерами решения

Множества, не имеющие общих элементов, называются не пересекающимися.

Пример:

Для множеств Множества - определение и вычисление с примерами решения

a) определите, какие из утверждений верны, а какие неверны: Множества - определение и вычисление с примерами решения

b) найдите множества: Множества - определение и вычисление с примерами решения

c) определите, какие из утверждений верны, а какие неверны:Множества - определение и вычисление с примерами решения

Решение:

а) Так как число 4 не является элементом множества М, то утверждение Множества - определение и вычисление с примерами решения неверно. Так как число 6 не является элементом множества, утверждение Множества - определение и вычисление с примерами решения истинно.

b). Множества - определение и вычисление с примерами решения так как только числа 3 и 9 — элементы обоих множеств. Для того, чтобы найти множествоМножества - определение и вычисление с примерами решениявыпишем элементы, принадлежащие либо М либо N: Множества - определение и вычисление с примерами решения = {2, 3, 4, 5, 6, 7, 8, 9, 10};

c) Утверждение Множества - определение и вычисление с примерами решения ложно, ибо существуют элементы множества М, не принадлежащие N. Утверждение Множества - определение и вычисление с примерами решения истинно, ибо в множестве У есть элементы из {9, 6, 3}. 

В некоторых случаях для задания множества указывается характеристическое свойство, истинное для всех элементов множества и ложное для остальных. Если мы кратко запишем тот факт, что элемент х удовлетворяет свойству Р как Р(х), то множество всех элементов, удовлетворяющих свойству Р обозначается так: Множества - определение и вычисление с примерами решения

Например, запись Множества - определение и вычисление с примерами решения читается следующим образом: «множество всех целых чисел, больших или равных -2, по меньших или равных 4».

На числовом луче это множество изображается так:

Множества - определение и вычисление с примерами решения

Видно, что Множества - определение и вычисление с примерами решения и оно, конечно, при этом Множества - определение и вычисление с примерами решения

Аналогично запись Множества - определение и вычисление с примерами решения читается так: «множество всех действительных чисел, больших или равных -2, но меньших 4».

На числовом луче это множество изображается так:

Множества - определение и вычисление с примерами решения

Видно, что, Множества - определение и вычисление с примерами решения и оно бесконечно, при этом Множества - определение и вычисление с примерами решения

Пример:

Множества - определение и вычисление с примерами решения

a) Как читается эта запись?

b) Выпишите последовательно элементы этого множества.

c) Найдите Множества - определение и вычисление с примерами решения

Решение:

a) «Множество всех целых чисел, больших 3 и меньших или равных 10»;

b). Множества - определение и вычисление с примерами решения

c). Множества - определение и вычисление с примерами решения

Рассмотрим множество всех натуральных чисел, больших или равных 1, но меньших или равных 8. Пусть нас интересуют только его подмножества.

В таком случае, обычно вводится множество Множества - определение и вычисление с примерами решения называемое универсальным множеством.

Множество А содержащее все элементы универсального множества U, не являющиеся элементами множества А, называется дополнением множества А.

Например, если Множества - определение и вычисление с примерами решения — универсальное множество, то дополнение множества Множества - определение и вычисление с примерами решенияимеет вид Множества - определение и вычисление с примерами решения

Очевидно, что Множества - определение и вычисление с примерами решения

т.е. множества А и А’ не имеют общих элементов, а также вес составляющие их элементы образуют в совокупности универсальное множество U.

Пример:

Пусть U универсальное множество. Найдите С’, если:

а) С = {все четные числа); b). Множества - определение и вычисление с примерами решения

Решение:

Множества - определение и вычисление с примерами решения Множества - определение и вычисление с примерами решения

Пример:

Пусть Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения Выпишите все элементы множеств:

Множества - определение и вычисление с примерами решения

Решение:

Множества - определение и вычисление с примерами решения

Пример:

Пусть Множества - определение и вычисление с примерами решения {числа, кратные 4 и меньшие 50} и Q = {числа, кратные 6 и меньшие 50}. a) выпишите элементы множеств Р, Q;

b) найдите Множества - определение и вычисление с примерами решения с) Найдите Множества - определение и вычисление с примерами решения

d) проверьте выполнение равенства Множества - определение и вычисление с примерами решения

Решение:

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Значит, Множества - определение и вычисление с примерами решения равенство является верным. 

Диаграммы Венна

Множества - определение и вычисление с примерами решения

Например, на этом рисунке изображено множество А, лежащее внутри универсального множества Множества - определение и вычисление с примерами решенияЗакрашенная область вне круга означает дополнение А ’ множества А:

Множества - определение и вычисление с примерами решения

Если Множества - определение и вычисление с примерами решенияи Множества - определение и вычисление с примерами решения, то они изображаются на диаграмме Венна следующим образом:

Множества - определение и вычисление с примерами решения

Мы знаем, что если Множества - определение и вычисление с примерами решения то любой элемент множества В принадлежит множеству А. Значит, на соответствующей диаграмме Венна круг, обозначающий множество В, лежит в круге, обозначающем множество А:

Множества - определение и вычисление с примерами решения

Все элементы пересечения Множества - определение и вычисление с примерами решениялежат как в А, так и в В. Значит, на соответствующей диаграмме Венна закрашенная область изображает множество Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Все элементы объединения A U В принадлежат либо А, либо В, либо обоим одновременно. Значит, на соответствующей диаграмме Венна область, соответствующая множеству A U В, изображается следующим образом: Множества - определение и вычисление с примерами решения

Пример:

Пусть Множества - определение и вычисление с примерами решения Изобразите на диаграмме

Венна множества:

Множества - определение и вычисление с примерами решения

Решение:

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Удобно на диаграмме Венна множества раскрашивать.

Например, на рисунке раскрашены множества А, Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Высказывание

Высказывание — это повествовательное предложение, утверждающее что-либо о чем-либо, при этом непременно истинное или ложное. Вопросительные предложения, повествовательные предложения, описывающие личное отношение субъекта, например «Зеленый цвет приятен», не являются высказываниями. Отметим, что существуют высказывания, истинность или ложность которых не определяются однозначно.

Например, высказывание «Этот писатель родился в Ташкенте» может быть истинным по отношению к некоторым писателям и ложным по отношению к другим.

Пример:

Укажите, какие из предложений являются высказываниями. В случае, когда предложение является высказыванием, однозначно ли определяется его истинность — ложность?

а) 20:4=80; b) 25-8=200;

с) Где мой карандаш? d) У тебя глаза голубые.

Решение:

a) Это высказывание и оно ложно, так как 20:4=5;

b) это высказывание и оно истинно;

c) это вопросительное предложение и поэтому оно не является высказыванием;

d) это высказывание. Истинность-ложность его определяется неоднозначно, так как применительно к некоторым людям оно истинно, а к другим — ложно.

Мы будем обозначать высказывания буквами p,q,r … .

Например, р: во вторник прошел дождь; q: 20:4=5; r: х — четное число. Для построения нескольких сложных высказываний служат символы, называемые логическими связками: Множества - определение и вычисление с примерами решения(конъюнкция, «и», «но»), Множества - определение и вычисление с примерами решения(дизъюнкция, «или»), Множества - определение и вычисление с примерами решения(отрицание,» не ….»,»неверно, что ….»).

Рассмотрим их подробней.

Отрицание

Для высказывания р высказывание вида «не р» или «неверно, что р» называется отрицанием высказывания р и обозначается как Множества - определение и вычисление с примерами решения

Например,

отрицанием высказывания

р: Во вторник шел дождь

является высказывание

Множества - определение и вычисление с примерами решения: Во вторник дождя не было;

Отрицанием высказывания

р: У Мадины глаза голубые

является высказывание

Множества - определение и вычисление с примерами решения: У Мадины глаза не голубые.

Ясно, что если р истинно, то Множества - определение и вычисление с примерами решения ложно, и наоборот, если р ложно, то Множества - определение и вычисление с примерами решенияистинно. Этот факт иллюстрируется так называемой таблицей истинности. Такая таблица позволяет, исходя из высказывания р, заключить об истинности Множества - определение и вычисление с примерами решения или ложности Множества - определение и вычисление с примерами решения нового высказывания Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

1 Буквы Т и F — начальные буквы английских слов «true» (истинно) и «false» (ложно) соответственно.

Пример:

Составьте отрицание высказывания:

Множества - определение и вычисление с примерами решения

Решение:

Удобно находить отрицание высказывания с помощью диаграмм Венна. Например, рассмотрим высказывание: Множества - определение и вычисление с примерами решения

р: «Число х больше, чем 10 «.

На диаграмме U — множество всех чисел, множество Р — множество истинности высказывания р, то есть множество всех х , для которых это высказывание истинно. Множество Р’ является множеством истинности отрицания Множества - определение и вычисление с примерами решения: «Число х меньше или равно 10».

Пример:

На множестве Множества - определение и вычисление с примерами решениярассмотрим высказывание р: х- простое число. Найдите множества истинности высказываний Множества - определение и вычисление с примерами решения

Решение:

Пусть множество Р — множество истинности высказывания р, а множество Р’ — множество высказывания Множества - определение и вычисление с примерами решения. Тогда эти множества изображаются на диаграмме Венна следующим образом:

Множества - определение и вычисление с примерами решения

Конъюнкция

Высказывание, образованное из двух высказываний с помощью связки «и», называется конъюнкцией заданных высказываний.

Конъюнкция высказываний р, q обозначается через Множества - определение и вычисление с примерами решения

Например, конъюнкция высказываний,

р: Эльдар на завтрак ел плов;

q: Эльдар на завтрак ел самсу.

имеет вид:

Множества - определение и вычисление с примерами решения Эльдар на завтрак ел плов и самсу.

Видно, что высказывание Множества - определение и вычисление с примерами решения верно, если Эльдар на завтрак ел и плов и самсу, то есть высказывание Множества - определение и вычисление с примерами решения истинно при истинности обоих высказываний. Если хотя бы одно из высказываний р, q ложно, то высказывание Множества - определение и вычисление с примерами решения является ложным. Конъюнкция высказываний р, q имеет следующую таблицу истинности:

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения истинно, когда оба высказывания р, q истинны. Множества - определение и вычисление с примерами решения ложно, когда хотя бы одно из высказываний р, q ложно.

Первый и второй столбцы таблицы составлены из всех возможных значений истинности высказываний р, q.

На диаграмме Р — множество истинности высказывания р, Q — множество истинности высказывания q , а множество истинности высказывания Множества - определение и вычисление с примерами решения является множеством Множества - определение и вычисление с примерами решения на котором истинны оба высказывания:

Множества - определение и вычисление с примерами решения

Дизъюнкция

Высказывание, образованное из двух высказываний с помощью связки «или», называется дизъюнкцией заданных высказываний.

Дизъюнкция высказываний р, q обозначается через Множества - определение и вычисление с примерами решения

Например, дизъюнкция высказываний,

р: Эльдар сегодня посетит библиотеку,

q: Эльдар сегодня посетит театр .

имеет вид:

Множества - определение и вычисление с примерами решения Эльдар сегодня посетит библиотеку или театр.

ВысказываниеМножества - определение и вычисление с примерами решения истинно, когда сегодня Эльдар посетит либо библиотеку, либо театр, либо и то и другое.

Высказывание Множества - определение и вычисление с примерами решения будет ложным, лишь когда оба высказывания р, q будут ложными одновременно.

Дизъюнкция имеет следующую таблицу истинности:

Множества - определение и вычисление с примерами решения

pVq истинно, когда хотя бы одно из высказываний р, q истинно.

pVq ложно, когда оба высказывания p, q ложны.

На диаграмме Р — множество истинности высказывания р, Q — множество истинности высказывания q, а множество истинности высказывания pVq является множество Множества - определение и вычисление с примерами решения, на котором истинно хотя бы одно высказывание:

Множества - определение и вычисление с примерами решения

Логическая равносильность

Составим, используя буквы и символы логических связок таких, как отрицание, конъюнкция и дизъюнкция, символическую запись более сложных высказываний естественного языка, при этом не обращая внимания на их истинность или ложность.

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Объединяя таблицы истинности для отрицания, конъюнкции и дизъюнкции, можно составить таблицы истинности для более сложных высказываний: Множества - определение и вычисление с примерами решения

Пример 1. Составьте таблицу истинности высказывания Множества - определение и вычисление с примерами решения

1 шаг.

Выпишем таблицу и заполним сначала первый и второй столбец всеми возможными значениями истинности р и q:

Множества - определение и вычисление с примерами решения

2 шаг. Учитывая значения истинности q, заполним третий столбец значениями истинности Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

3 шаг Учитывая значения истинности p и Множества - определение и вычисление с примерами решениязаполним четвертый столбец значениями истинности Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Высказывание, являющееся истинным всегда, называется законом логики или тавтологией.

То, что высказывание является законом логики, можно доказать при помощи таблицы истинности.

Пример:

Докажите, что высказываниеМножества - определение и вычисление с примерами решенияявляется тавтологией.

Заполним таблицу истинности:

Множества - определение и вычисление с примерами решения

Решение:

Видно, что высказывание Множества - определение и вычисление с примерами решения принимает только истинные значения (см. третий столбец). Поэтому данное высказывание является тавтологией. 

Если для двух высказываний соответствующие их значениям истинности столбцы одинаковы, то эти высказывания называются логически равносильными.

Пример:

Докажите, что следующие высказывания являются логически равносильнымиМножества - определение и вычисление с примерами решения

Решение:

Составим таблицы истинности для высказываний Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Так как у высказыванийМножества - определение и вычисление с примерами решения соответствующие значениям истинности столбцы одинаковы, то эти высказывания являются логически равносильными.

Мы будем обозначать этот факт так:Множества - определение и вычисление с примерами решения

Импликация

Высказывание, образуемое из двух высказываний с помощью связки «если …., то …» называется импликацией этих двух высказываний.

Импликация «Если р, то q» обозначается какМножества - определение и вычисление с примерами решения и имеет также следующие интерпретации «Из р следует (вытекает) q», «Высказывание р достаточно для q «, «Высказывание q необходимо для р».

При этом высказывание р называется достаточным условием для q, а высказывание q — необходимым условием для р.

высказывание q — необходимым условием для р.

Рассмотрим , например, высказывания

р: У Сардора есть телевизор; q: Сардор будет смотреть кино.

Тогда высказывание Множества - определение и вычисление с примерами решения означает:

Если у Сардора есть телевизор, то он будет смотреть кино.

Точно такжеМножества - определение и вычисление с примерами решения

Для того, чтобы Сардор смотрел кино достаточно, чтобы у него был телевизор.

Можно заметить, что высказывание Множества - определение и вычисление с примерами решения ложно, лишь когда высказывание р истинно, а высказывание q ложно, а в остальных случаях — истинно. Поэтому имеем следующую таблицу истинности:

Множества - определение и вычисление с примерами решения Из высказываний и логических связок, не обращая на значения истинности, можно составить более сложные высказывания.

Пример:

Рассмотрим высказывания

р: «Анора часто смотрит кинофильмы»;

q: «Барно часто смотрит кинофильмы

r: «Барно не сдаст экзамен»;

s: «произойдет чудо».

 Имеем: 1. Множества - определение и вычисление с примерами решения«Анора часто смотрит кинофильмы, а Барно — нет».

2. Множества - определение и вычисление с примерами решения«Если Анора часто смотрит кинофильмы, то Барно нет».

3. Множества - определение и вычисление с примерами решения «Если Барно часто смотрит кинофильмы, то она или не сдаст экзамен или произойдет чудо».

4. Множества - определение и вычисление с примерами решения «Если Барно часто смотрит кинофильмы и при этом не произойдет чуда, то Барно не сдаст экзамен».

5. Множества - определение и вычисление с примерами решения «Либо Барно часто смотрит кинофильмы и произойдет чудо, либо Барно не сдаст экзамен».

Эквиваленция

Высказывание вида Множества - определение и вычисление с примерами решения называется эквиваленцией высказываний и обозначается так: Множества - определение и вычисление с примерами решения

Запись Множества - определение и вычисление с примерами решения читается как «высказывание р необходимо и достаточно для q» или как «высказывание р истинно лишь при выполнении q».

Пример:

р: х — четно, q: последняя цифра числа х четна. Выразите высказывание Множества - определение и вычисление с примерами решения

Решение:

Рассмотрим высказывание,Множества - определение и вычисление с примерами решения: Если х- четно, то его последняя цифра четна;

Множества - определение и вычисление с примерами решения Если последняя цифра числа х четна, то х — четно.

Тогда запись Множества - определение и вычисление с примерами решениячитается , как «Для того чтобы число х было четно, необходимо и достаточно, чтобы последняя его цифра была четной». ^ Теперь для заданных высказываний р и q составим таблицу истинности высказывания Множества - определение и вычисление с примерами решения:

Множества - определение и вычисление с примерами решения

Видно, что высказывание Множества - определение и вычисление с примерами решениябудет истинным, лишь когда высказывания р и q принимают одинаковые значения истинности (то есть когда они оба одновременно истинны или одновременно ложны ).

Множества - определение и вычисление с примерами решения

Конверсия

Конверсией высказывания Множества - определение и вычисление с примерами решения называется высказываниеМножества - определение и вычисление с примерами решения

Конверсия имеет следующую таблицу истинности:

Множества - определение и вычисление с примерами решения

Пример:

Рассмотрим высказывания

р: треугольник равнобедренный,

q: два угла треугольника равны.

Выразите на естественном языке высказывание Множества - определение и вычисление с примерами решения и его конверсию.

Решение:

Множества - определение и вычисление с примерами решенияЕсли треугольник равнобедренный, то у него два угла равны.

Множества - определение и вычисление с примерами решенияЕсли два угла треугольника равны, то он равнобедренный .

Инверсия

Инверсией высказыванияМножества - определение и вычисление с примерами решения называется высказывание Множества - определение и вычисление с примерами решения Инверсия имеет следующую таблицу истинности:

Эта таблица совпадает с таблицей истинности высказывания Множества - определение и вычисление с примерами решения. Поэтому конверсия и инверсия логически равносильны.

Множества - определение и вычисление с примерами решения

Контрапозиция

Контрапозицией высказывания Множества - определение и вычисление с примерами решенияназывается высказывание Множества - определение и вычисление с примерами решения Контрапозиция имеет следующую таблицу истинности:

Множества - определение и вычисление с примерами решения

Эта таблица совпадает с таблицей истинности высказывания Множества - определение и вычисление с примерами решенияПоэтому импликация и контрапозиция логически равносильны.

Пример:

Рассмотрим высказывание. Все учителя живут поблизости от школы». Составим его контрапозицию.

Решение:

Данное высказывание можно сформулировать так: «Если этот человек — учитель, что он живет поблизости от школы».

Это предложение имеет форму Множества - определение и вычисление с примерами решения, где

р: этот человек — учитель,

q: этот человек живет поблизости от школы.

Контрапозиция Множества - определение и вычисление с примерами решения имеет вид:

«Если этот человек не живет поблизости от школы, то он не является учителем.

Пример:

Рассмотрим высказывания:

р: Самандар находится в библиотеке, q: Самандар читает книгу.

Составьте имликацию, конверсию, инверсию и контрапозицию

Решение:

Множества - определение и вычисление с примерами решения

Отметим, что импликация и конверсия логически не равносильны, так как , например , Самандар может читать книгу и в классе.

Предикаты и кванторы

В некоторых предложениях участвуют переменные, при этом подставив вместо них конкретные значения, получим высказывания. Такие предложения называются предикатами.

Пример:

Пусть задан предикат Множества - определение и вычисление с примерами решения Определите истинность или ложность высказываний Множества - определение и вычисление с примерами решения

Решение:

Множества - определение и вычисление с примерами решения

В некоторых предикатах переменную можно определить исходя из контекста.

Например, в предложениях «Этот писатель родился в Ташкенте» и «Он родился в Ташкенте» переменными являются словосочетание». «Этот писатель» и местоимение «он» соответственно. Если вместо переменной подставить значение «Абдулла Кадыри», получим истинное высказывание «Абдулла Кадыри родился в Ташкенте». Если вместо переменной подставить значение «Шекспир», получим ложное высказывание «Шекспир родился в Ташкенте».

Обозначив переменную через х, вышеуказанные предложения можно записать в виде «х родился в Ташкенте».

В предикате могут участвовать одно или несколько переменных. В зависимости от количества переменных, участвующих в предикате, будем обозначать его так: Множества - определение и вычисление с примерами решения

Используя совместно с предикатом специальные символы Множества - определение и вычисление с примерами решения(квантор всеобщности, «для всех … «) и Множества - определение и вычисление с примерами решения (квантор существования, «существует такой, что ….»), можно образовать новые высказывания

Например, новое высказывание вида Множества - определение и вычисление с примерами решения говорит о том, что для всех значений х верно Р(х), высказывание вида Множества - определение и вычисление с примерами решения говорит о том, что значений х верно Р(х).

К примеру, рассмотрим предикат Р(х): «х родился в Самарканде». Тогда высказывание Множества - определение и вычисление с примерами решениячитается как «все родились в Самарканде», а высказывание Множества - определение и вычисление с примерами решения — «некоторые родились в Самарканде».

Приведем примеры, в которых можно определить истинность-ложность высказываний видаМножества - определение и вычисление с примерами решения

Пример:

ПустьМножества - определение и вычисление с примерами решения Докажите истинность высказывания: Множества - определение и вычисление с примерами решения

Решение:

 Проверим: Множества - определение и вычисление с примерами решения

Значит, высказывание, Множества - определение и вычисление с примерами решенияистинно.

Следует отметить, что для того, чтобы доказать ложность высказывания Множества - определение и вычисление с примерами решения достаточно, привести пример хотя бы одного значения х такого, что высказываниеМножества - определение и вычисление с примерами решения, ложно.

Действительно, приМножества - определение и вычисление с примерами решения

Любое значениех, которое показывает, что высказывание Множества - определение и вычисление с примерами решенияложно, называется контрпримером.

Пример:

Докажите истинность высказывания Множества - определение и вычисление с примерами решения

Решение:

Так как Множества - определение и вычисление с примерами решения то высказывание, Множества - определение и вычисление с примерами решенияистинно.

Если же Множества - определение и вычисление с примерами решения, то высказывание Множества - определение и вычисление с примерами решения ложно, ибо

Множества - определение и вычисление с примерами решения

Приведем два важных закона логики, связанных с операцией отрицания:Множества - определение и вычисление с примерами решения

Для понимания смысла этих законов приведем пример.

Если запись Множества - определение и вычисление с примерами решения означает Множества - определение и вычисление с примерами решения«Среди моих одноклассников

не существует отличников», тогда запись означает логически равносильное ему утверждение «Все мои одноклассники не являются отличниками».

Точно также, формула Множества - определение и вычисление с примерами решения означает высказывание «Неверно, что все мои одноклассники — отличники «, а формулаМножества - определение и вычисление с примерами решенияозначает логически равносильное ему высказывание «Некоторые мои одноклассники не являются отличниками».

Очевидно, что с помощью кванторов и предиката Множества - определение и вычисление с примерами решения можно построить зависящие от одной переменной предикаты вида:

Множества - определение и вычисление с примерами решения

из которых, в свою очередь, можно построить всказывания вида:

Множества - определение и вычисление с примерами решения

В то время, когда смысл высказываний Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решенияа также смысл высказыванийМножества - определение и вычисление с примерами решения,одинаков, оказывается, что высказывания Множества - определение и вычисление с примерами решенияне являются равносильными.

Рассмотрим, например, предикат Р(х,у): человек у — отец моего одноклассника х.

В этом случаеМножества - определение и вычисление с примерами решения = означает высказывание «у каждого моего одноклассника есть отец»; а Множества - определение и вычисление с примерами решенияозначает высказывание «существует такой человек, который является отцом всех моих одноклассников».

Аналогично можно показать, что высказывания,Множества - определение и вычисление с примерами решенияне являются равносильными (приведите примеры самостоятельно).

С помощью кванторов и предикатов можно построить и другие законы логики. Например, высказывание «Если все вороны черные, то ни одна не черная птица не является вороной «, служит примером закона логики вида:

Множества - определение и вычисление с примерами решения

Законы правильного мышления (аргументации)

В процессе познания действительности мы приобретаем новые знания. Некоторые из них непосредственно, в результате воздействия предметов внешнего мира на органы чувств. Но большую часть знаний мы получаем пу тем выведения новых знаний из знаний уже имеющихся. Чтобы научиться стройно и последовательно излагать свои мысли, правильно делать выводы, необходимо пользоваться законами логики. Определенность, непротиворечивость, последовательность и обоснованность являются обязательными качествами правильного мышления. Законы логики устанавливают необходимые связи в последовательном ряду мыслей и умозаключений.

Суждение представляет собой форму мышления, в которой что-либо утверждается или отрицается о предметах, их свойствах или отношениях. Например, в суждении «Железо-металл» утверждается связь между предметом (железо) и его признаком (являться металлом). В суждении «Яйцо появилось раньше курицы » утверждается связь между двумя предметами (яйцо и курица). Так как суждение выражается в форме повествовательного предложения, причем суждение может быть либо истинным, либо ложным, то каждое суждение имеет форму высказывания.

Умозаключение- это такая форма мышления, посредством которой из одного или нескольких суждений, называемых посылками, по определенным правилам получается некоторое суждение, называемое заключением или выводом.

Пусть S-совокупность исходных суждений (посылок), Р- заключение. В этом случае, умозаключение имеет логическую форму вида Множества - определение и вычисление с примерами решенияСовокупность высказываний S будем называть основанием, а высказывание Р- следствием. Основание и следствие будем связывать словом «следовательно» и отделять горизонтальной чертой: Множества - определение и вычисление с примерами решения . Рассмотрим простой пример.

Если Собир занимается спортом, то будет здоров. Собир занимается спортом. Следовательно, Собир будет здоров.

Найдем логическую форму этого умозаключения.

Пусть р: Собир занимается спортом; q: Собир будет здоров. Тогда умозаключение имеет вид:

Множества - определение и вычисление с примерами решения

Так следствие вытекает из суждений Множества - определение и вычисление с примерами решенияи р, то умозаключение имеет следующую логическую форму Множества - определение и вычисление с примерами решения

Составим соответствующую таблицу истинности: Множества - определение и вычисление с примерами решения

Получили тавтологию. Это показывает правильность умозаключения, то есть мы из данного основания получили правильное следствие.

Пример:

Покажите неправильность умозаключения:

Если треугольник имеет три стороны, то 2+4-7.

Следовательно, треугольник имеет три стороны.

Решение:

Найдем логическую форму этого умозаключения.

р: треугольник имеет три стороны.

q: 2+4=7

Имеем:

Множества - определение и вычисление с примерами решения

Так как здесь Множества - определение и вычисление с примерами решенияследует q, то наше умозаключение имеет логическую форму Множества - определение и вычисление с примерами решения

Составим соответствующую таблицу истинности:

Множества - определение и вычисление с примерами решения

В результате мы не получили тавтологию. Это показывает неверность умозаключения, то есть мы из данного основания не получили правильное следствие.

Ниже мы приведем некоторые правила правильных умозаключений:

Множества - определение и вычисление с примерами решения

Доказательство верности вышеуказанных умозаключений мы оставляем учащимся в качестве упражнения.

Софизмы и парадоксы

Множества - определение и вычисление с примерами решения— представляют собой преднамеренные, сознательно совершаемые ошибки, рассчитанные на то, чтобы выдать ложь за истину, тем самым вводя человека в заблуждение.

Одним из первых соответствующие примеры привел математик Зенон, живший в 5 веке до нашей эры в Древней Греции. Например, Зенон «доказал», что быстроногий Ахиллес никогда не догонит неторопливую черепаху, если в начале движения она находится впереди Ахиллеса. Приведем его рассуждения. Допустим, Ахиллес бежит в 10 раз быстрее, чем черепаха, и находи тся позади нее на расстоянии в 100 шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползет 10 шагов.

За то время, за которое Ахиллес пробежит 10 шагов, черепаха проползет еще 1 шаг, и так далее. Процесс будет длиться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Примеры Зенона связаны с понятиями бесконечности и движения, которые имели большое значение в развитии физики и математики.

Некоторые софизмы обсуждали в переписке между собой наши великие соотечественники Беруни и Ибн Сино, а также они встречаются в произведениях Фараби.

Приведем простейшие примеры на софизмы и обсудим их.

Пример:

Куда пропали 1000 руб? Три друга отобедали в кафе, после чего официант дал им счет на 25000 руб. Каждый из трех друзей достал по купюре в 10000 руб, в итоге они отдали официанту 30000 руб. На сдачу официант отдал 5000 руб более мелкими купюрами. Друзья взяли по 1000 руб себе, а оставшиеся 2000 руб отдали другу на такси. Один из друзей стал рассуждать: «Каждый из нас потратил по 9000 руб, что в итоге составляет 27000 руб. Затем 2000 руб отдали на такси, значит, в итоге получается 29000 руб. Куда пропали 1000 руб?»

Решение:

 Основной «подвох» в этом рассуждении заключается в том, что 2 От древнегреческого уловка.

расчеты сделаны неверно. Действительно, трое друзей сложились по 9000 руб и получили 27000 руб. Из этих денег 25000 руб заплатили за обед, а 2000 руб заплатили за такси. Следовательно, общая трата составила 27000 руб. Тс 2000 руб находятся внутри 27000 руб.

Пример:

Множества - определение и вычисление с примерами решенияУпростим верное равенство: 20-16-4=25-20-5

2(10—8—2)=25—20—5

2-2-(5—4—1)=5-(5—4—1)

Сократим левую и правую часть последнего равенства на общий делитель (5-4-1). В итоге получим равенство 2-2=5.

Основной «подвох» в этом рассуждении заключается в том, что мы поделили обе части равенства 2-2-(5-4-1)=5-(5-4-1) на нуль.

Множества - определение и вычисление с примерами решения — странное мнение, высказывание, расходящееся с общепринятыми мнениями, научными положениями, а также мнение, противоречащее здравому смыслу. Сам термин «парадокс» использовался в античной философии для обозначения всякого странного, оригинального мнения.

Парадоксы, обычно, возникают в теориях, логические основы которых не определены полно.

Пример:

Парадокс лжеца. Рассмотрим высказывание «То, что я утверждаю сейчас — ложь».

Если это высказывание истинно, значит, исходя из его содержания, верно то, что данное высказывание -ложь. Но если оно -ложь, тогда неверно то, что оно утверждает, то есть утверждение о ложности данного высказывания неверно, значит, данное высказывание истинно. Таким образом, цепочка рассуждений возвращается в начало.

Пример:

Прилагательное русского языка назовем рефлексивным, если оно обладает свойством, которое определяет.

Например, прилагательное «русский» — рефлексивное, а прилагательное «английский» — нерефлексивное, прилагательное «трехсложный» — рефлексивное (это слово состоит из трех слогов), а прилагательное «четырехсложный» — нерефлсксивное (состоит из пяти слогов). Вроде бы ничто не мешает нам определить множество {все рефлексивные прилагательные}. Но давайте рассмотрим прилагательное «нерефлексивный». Оно рефлексивное или нет?

Можно заявить, что прилагательное «нерефлексивный» не является ни рефлексивным, ни нерефлексивным. Действительно, если это слово рефлексивное, то по своему смыслу, оно нерефлексивное. Если же это от древнегреческого Множества - определение и вычисление с примерами решения — неожиданный, странный слово нерефлексивное, то, в силу того, что оно обладает свойством, которое определяет, оно является рефлексивным. Противоречие.

Пример:

Два взаимно пересекающихся множества А, В делят универсальное множество на четыре части:

Множества - определение и вычисление с примерами решения

Следовательно, число элементов универсального множества является суммой количеств элементов этих частей.

На следующей диаграмме мы заключили известные количества элементов частей универсального множества в круглые скобки: Множества - определение и вычисление с примерами решения

Здесь, например, обоим множествам А, В принадлежат 4 элемента, а 3 элемента не принадлежат ни одному из них.

Так как произвольный элемент множества U, принадлежит только одному из этих 4 частей , то число элементов множества U равно 7+4+6+3=20.

Пример:

Используя рисунок, найдите число элементов следующих множеств: Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

d). Множество элементов, принадлежащих Р, но не принадлежащих Q

е) Множество элементов, принадлежащих Q, но не принадлежащих Р;

f) Множество элементов, не принадлежащих ни Р, ни Q.

Множества - определение и вычисление с примерами решения

Пример:

Если Множества - определение и вычисление с примерами решения

a) Найдите Множества - определение и вычисление с примерами решения

b) Сколько элементов содержит множество элементов, принадлежащих А, но не принадлежащих В‘?

Решение:

Составим диаграмму Венна:

Из того, что Множества - определение и вычисление с примерами решенияСледовательно, b=6, а=8, с= 11, d=5.

Множества - определение и вычисление с примерами решения

Из диаграммы получаем следующее:

Множества - определение и вычисление с примерами решения

b) Число элементов, принадлежащих А, но не принадлежащих В, равно а= 8

Пример:

Из 27 учеников, посещающих спортивную секцию, 19 имеют темные волосы, 14 — черные глаза, а 11 имеют и темные волосы и черные глаза одновременно.

a) Изобразите эту информацию с помощью диаграммы Венна. Объясните ситуацию.

b) Найдите число учеников, которые I имеют или темные волосы или черные глаза; II темноволосых, но не черноглазых?

Решение:

а) Пусть Qs — множество темноволосых, a Qk множество черноглазых учеников.

Изобразим ситуацию на диаграмме:

Множества - определение и вычисление с примерами решения

b) Используя диаграмму, определим следующее:

I количество учеников, имеющих или темные волосы или черные глаза:

Множества - определение и вычисление с примерами решения

II количество темноволосых учеников, не обладающих черными глазами:

Множества - определение и вычисление с примерами решения

Пример:

На футбольном соревновании город представляют три команды А, В и С. 20 процентов населения города болеют за команду И, 24 процента — за В, 28 процентов — за С. 4 процента жителей болеют и за С и за И, 5 процент, жителей болеют и за В и за А, а 6 процентов жителей болеют и за В и за С. Кроме того, 1 процент населения болеет за все три команды.

Сколько процентов жителей:

a) болеют только за команду А;

b) болеют и за А и за В, но не болеют за команду С;

c) не болеют ни за одну из команд?

Решение:

Заполним для начала соответствующую диаграмму Венна.

Множества - определение и вычисление с примерами решения

а= 1, так как 1 процент жителей болеет за все команды.

a+d=4, так как 4 процента жителей болеет и за И и за В.

а+b=6, так как 6 процентов жителей болеют и за В и за С а+с=5, так как 5 процентов жителей болеют

—-

Множества

Понятие множества принадлежит к числу первичных, не определяемых через более простые. Под множеством понимается совокупность некоторых объектов, объединенных по определенному признаку. Объекты, которые образуют множество, называются элементами, или точками, этого множества.

Множества обозначаются прописными буквами, а их элементы — строчными. Если Множества - определение и вычисление с примерами решения есть элемент множества А, то используется запись Множества - определение и вычисление с примерами решения если b не является элементом множества А, то записывают Множества - определение и вычисление с примерами решения

Например, Множества - определение и вычисление с примерами решения — множество А состоит из элементов 1;3;6;8.

Множество, не содержащее ни одного элемента, называется пустым и обозначается Множества - определение и вычисление с примерами решения Например, множество действительных корней уравнения Множества - определение и вычисление с примерами решения есть пустое множество.

Два множества называются равными, если они состоят из одних и тех же элементов. Например, если Множества - определение и вычисление с примерами решения т.е.
множества равны.

Объединением двух множеств А и В называется множество С, состоящее из элементов, принадлежащих хотя бы одному из данных множеств, т.е. Множества - определение и вычисление с примерами решения

Пересечением двух множеств А и В называется множество D, состоящее из всех элементов, одновременно принадлежащих каждому из данных множеств А и В, т.е. Множества - определение и вычисление с примерами решения

Разностью двух множеств А и В называется множество E, состоящее из всех элементов множества А, которые не принадлежат множеству В, т.е. Множества - определение и вычисление с примерами решения

Пример 1. Даны множества  Множества - определение и вычисление с примерами решения Найти объединение, пересечение и разность множеств А и В.

Решение. Объединение двух данных множеств — Множества - определение и вычисление с примерами решения их пересечение — Множества - определение и вычисление с примерами решения а разностью — Множества - определение и вычисление с примерами решения  .

Множества, элементами которых являются действительные числа, называются числовыми.

Обозначения множеств:

Множества - определение и вычисление с примерами решения — множество натуральных чисел.

Множества - определение и вычисление с примерами решения — множество целых чисел;
Множества - определение и вычисление с примерами решения— множество рациональных чисел;

R — множество действительных чисел;

I — множество иррациональных чисел;

Множества - определение и вычисление с примерами решения — множество комплексных чисел.

Геометрически, каждому действительному числу соответствует точка числовой оси, и наоборот, каждой точке прямой — определенное действительное число.

Множество X, элементы  которого удовлетворяют: неравенству Множества - определение и вычисление с примерами решенияназывается отрезком Множества - определение и вычисление с примерами решения неравенству Множества - определение и вычисление с примерами решения называется интервалом Множества - определение и вычисление с примерами решениянеравенствам Множества - определение и вычисление с примерами решения называются полуинтервалом соответственно Множества - определение и вычисление с примерами решения

В дальнейшем все указанные множества мы объединяем термином промежуток X.

——

Множества и операции над ними

Под множеством будем понимать совокупность объектов, наделенных определенными свойствами. Эти свойства должны полностью определять данное множество, то есть являться признаками, по которым относительно любого объекта можно решить, принадлежит он данному множеству или нет. Синонимами термина «множество» являются термины «класс «семейство «совокупность». Объекты, из которых состоит данное множество, называют его элементами.

Чаще всего множество обозначают большими буквами латинского или греческого алфавита, а его элементы — малыми буквами. Если a — элемент множества A, то пишут a ∈ A (читают: «a принадлежит множеству A») или A 3 a (множество A содержит элемент a). Запись a ∈/ A означает, что a не является элементом множества A.
Множество обычно записывают одним из следующих способов:

A = {a , . . . , Множества - определение и вычисление с примерами решения} или A = {x ∈ X : P (x)}.

Первая запись означает, что множество A состоит из элементов a, . . . , Множества - определение и вычисление с примерами решения , то есть перечислены элементы, составляющие A, их может быть конечное число или бесконечно много. Вторая запись означает, что A есть совокупность всех тех объектов из множества X, для которых выполняется свойство P . Формально введем пустое множество — множество, не содержащее в себе никаких элементов, которое обозначим символом Множества - определение и вычисление с примерами решения.

Определение 1.1. Множества A и B называются равными (или совпадающими), если они состоят из одних и тех же элементов, то есть x ∈ A тогда и только тогда, когда x ∈ B .

Коротко это высказывание записывают: A = B, а отрицание этого утверждения — в виде: Множества - определение и вычисление с примерами решения .

Определение 1.2. Если каждый элемент множества A является элементом множества B , то говорят, что A есть подмножество множества B (или A есть часть B ), и пишут A ⊂ B (читается: «Множество A содержится в множестве B») или B ⊃ A (читается: «Множестоо B содержит множество A»).

Отметим следующие свойства отношения включения:
1.    A ⊂ A, то есть всякое множество есть подмножество себя самого;
2.    Если A ⊂ B и B ⊂ C, то A ⊂ C (отношение включения транзитивно);
3.    Если A ⊂ B и B ⊂ A, то A = B.

Удобно считать, что Множества - определение и вычисление с примерами решения⊂ A для любого множества A.

Пусть A и B — некоторые подмножества множества E. Введем наиболее простые операции с множествами.

Определение 1.3. Объединением множеств A и B называется множество, обозначаемое A ∪ B и состоящее из всех элементов, которые принадлежат или множеству A или B .

Таким образом, x ∈ A ∪ B , если x ∈ A, но x Множества - определение и вычисление с примерами решения B , или x ∈ B , но x Множества - определение и вычисление с примерами решения A, или x ∈ A и x ∈ B. Очевидно, что A ∪ A = A, A ∪ Множества - определение и вычисление с примерами решения = A.

Определение 1.4. Пересечением множеств A и B называют множество, обозначаемое A∩B и состоящее из всех элементов, каждый из которых принадлежит и A и B .

Если множества A и B не имеют общих точек, то A ∩ B =Множества - определение и вычисление с примерами решения. Очевидно, что A∩A= A, A∩Множества - определение и вычисление с примерами решения= Множества - определение и вычисление с примерами решения.

Определение 1.5. Разностью множеств A и B называют множество, обозначаемое A B и состоящее из всех элементов множества A, которые не принадлежат множеству B .

Если A ⊂ B , то часто множество A B называют дополнением множества B до A. По определению A A = Множества - определение и вычисление с примерами решения, A Множества - определение и вычисление с примерами решения = A.

Пример 1.1. Пусть A = {1,3,4,8, 15} ,B = {1,2,7,8, 12}. Тогда

A∪B = {1,2,3,4,7,8,12,15}, A∩B = {1, 8},

AB = {3, 4, 15}, BA= {2, 7, 12}

Определение 1.6. Набор, состоящий из двух элементов x1 и x2, называют упорядоченным, если известно, какой из этих элементов является первым, а какой — вторым. Такой упорядоченный набор называют упорядоченной парой и обозначают (x1, x2). Элементы x1 , x2 называют, соответственно, первой и второй координатами пары (x1, x2). Пары (x1, x2) и (y1 , y2) называют совпадающими, если x1 = y1 и x2 = y2 .

Определение 1.7. Декартовым (или, по-другому, прямым) произведением множеств A и B называют множество упорядоченных пар (x, y), где первый элемент x является элементом множества A, а второй y — элементом множества B . Это множество обозначают символом A × B .

Таким образом, A × B = { (x, y) | x ∈ A, y ∈ B}. Но, вообще говоря, A × BМножества - определение и вычисление с примерами решения B × A. Известная всем плоскость с декартовой системой координат является декартовым произведением двух числовых прямых (осей).

Пусть A и B — числовые отрезки, помещенные на взаимно перпендикулярных осях плоскости. Упорядоченная пара (x, y) — это точка пересечения перпендикуляров, восстановленных в точках x ∈ A и y ∈ B . Произведением A × B является прямоугольник.

Логическая символика

В последующем, как и в большинстве математических текстов используется ряд специальных символов, многие из которых вводятся по мере надобности. Применяются распространенные символы математической логики Множества - определение и вычисление с примерами решения, Множества - определение и вычисление с примерами решения, ∃, ∀, которые читаются, соответственно, как «влечет» , «равносильно» , «существует» («найдется»), «любой» («каждый» , «для каждого» , «для любого» ).

Запись A Множества - определение и вычисление с примерами решения B читают одним из следующих способов: A влечет B , B следует из A, B — необходимое условие A, A — достаточное условие (признак) B.

Запись A Множества - определение и вычисление с примерами решения B читают одним из следующих способов: A равносильно B, A необходимо и достаточно для B , A верно тогда и только тогда, когда верно B . Квантор равносильности часто применяется в символьной записи определений и утверждений.

Запись «∃ x ∈ X » означает: существует элемент x из множества X .
Запись «∀ x ∈ X » означает: для любого элемента x из множества X или каков бы ни был элемент x из множества X .

Часто в символьной записи математических утверждений используют символ «:» или эквивалентный ему символ «| которые читают: «такой, что». В частности, запись «∃ x ∈ X : x2 — 1 = 0″ означает: существует такой элемент x в множестве X , что x2 — 1 = 0.

  • Заказать решение задач по высшей математике

Множества

Множества и операции над ними

Понятие множества и его элементов

Элемент Множества - определение и вычисление с примерами решения принадлежит множеству Множества - определение и вычисление с примерами решенияМножества - определение и вычисление с примерами решенияМножества - определение и вычисление с примерами решения

Элемент Множества - определение и вычисление с примерами решения не принадлежит множеству Множества - определение и вычисление с примерами решенияМножества - определение и вычисление с примерами решения Множества - определение и вычисление с примерами решения

В множестве нет элементов Множества - определение и вычисление с примерами решения Множества - определение и вычисление с примерами решения

Множество можно представить как совокупность некоторых объектов, объединенных по определенному признаку. В математике множество — одно из основных неопределяемых понятий.

Каждый объект, принадлежащий множеству Множества - определение и вычисление с примерами решения, называется элементом этого множества.

Множество, не содержащее ни одного элемента, называется пустым множеством и обозначается Множества - определение и вычисление с примерами решения

Подмножество Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Если каждый элемент множества Множества - определение и вычисление с примерами решения является элементом множества Множества - определение и вычисление с примерами решения, то говорят, что множество Множества - определение и вычисление с примерами решения является подмножеством множества Множества - определение и вычисление с примерами решения, и записывают так: Множества - определение и вычисление с примерами решения Используется также запись Множества - определение и вычисление с примерами решения, если множество Множества - определение и вычисление с примерами решения или является подмножеством множества Множества - определение и вычисление с примерами решения, или равно множеству Множества - определение и вычисление с примерами решения

Равенство множеств

Множества - определение и вычисление с примерами решения

Два множества называются равными, если каждый элемент первого множества является элементом второго множества и, наоборот, каждый элемент второго множества является элементом первого множества

Пересечение множеств Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Пересечением множеств Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения называют их общую часть, то есть множество Множества - определение и вычисление с примерами решения всех элементов, принадлежащих как множеству Множества - определение и вычисление с примерами решения, так и множеству Множества - определение и вычисление с примерами решения

Объединение множеств Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Объединением множеств Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения называют множество Множества - определение и вычисление с примерами решения, состоящее из всех элементов, принадлежащих хотя бы одному из этих множеств (Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения)

Разность множеств Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Разностью множеств Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения называется множество Множества - определение и вычисление с примерами решения, которое состоит из всех элементов, принадлежащих множеству Множества - определение и вычисление с примерами решения и не принадлежащих множеству Множества - определение и вычисление с примерами решения

Дополнение множеств

Множества - определение и вычисление с примерами решения

Если все рассматриваемые множества являются подмножествами некоторого универсального множества Множества - определение и вычисление с примерами решения, то разность Множества - определение и вычисление с примерами решения называется дополнением множества Множества - определение и вычисление с примерами решения. Другими словами, дополнением множества Множества - определение и вычисление с примерами решения называется множество, состоящее из всех элементов, не принадлежащих множеству Множества - определение и вычисление с примерами решения (но принадлежащих универсальному множеству Множества - определение и вычисление с примерами решения)

Объяснение и обоснование:

Понятие множества

Одним из основных понятий, которые используются в математике, является понятие множества. Для него не дается определения. Можно пояснить, что множеством называют произвольную совокупность объектов, а сами объекты — элементами данного множества. Так, можно говорить о множестве учеников в классе (элементы — ученики), множестве дней недели (элементы — дни недели), множестве натуральных делителей числа 6 (элементы — числа 1, 2, 3, 6) и т. д. В курсах алгебры и алгебры и начал анализа чаще всего рассматривают множества, элементами которых являются числа, и поэтому их называют числовыми множествами.

Как правило, множества обозначают прописными буквами латинского алфавита. Например, если множество Множества - определение и вычисление с примерами решения состоит из чисел 1; 2; 3, то его обозначают так: Множества - определение и вычисление с примерами решения = {1; 2; 3}. Тот факт, что число 2 входит в это множество (является элементом данного множества Множества - определение и вычисление с примерами решения), записывается с помощью специального значка е следующим образом: Множества - определение и вычисление с примерами решения; а то, что число 5 не входит в это множество (не является элементом данного множества), записывается так: Множества - определение и вычисление с примерами решения.

Можно рассматривать также множество, не содержащее ни одного элемента, — пустое множество.

Например, множество простых делителей числа 1 — пустое множество.

Для некоторых множеств существуют специальные обозначения. Так, пустое множество обозначается символом Множества - определение и вычисление с примерами решения, множество всех натуральных чисел — буквой Множества - определение и вычисление с примерами решения, множество всех целых чисел — буквой Множества - определение и вычисление с примерами решения, множество всех рациональных чисел — буквой Множества - определение и вычисление с примерами решения, а множество всех действительных чисел — буквой Множества - определение и вычисление с примерами решения. Множества бывают конечными и бесконечными в зависимости от того, какое количество элементов они содержат. Так, множества Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения — конечные, потому что содержат конечное число элементов, а множества Множества - определение и вычисление с примерами решения — бесконечные.

Множества задают или с помощью перечисления их элементов (это можно сделать только для конечных множеств), или с помощью описания, когда задается правило — характеристическое свойство, которое позволяет определить, принадлежит или нет данный объект рассматриваемому множеству. Например, множество Множества - определение и вычисление с примерами решения задано перечислением элементов, а множество Множества - определение и вычисление с примерами решения четных целых чисел — характеристическим свойством элементов множества. Последнее множество иногда записывают так: Множества - определение и вычисление с примерами решения или так: Множества - определение и вычисление с примерами решения — здесь после вертикальной черточки записано характеристическое Множества - определение и вычисление с примерами решения.

В общем виде запись множества с помощью характеристического свойства можно обозначить так: Множества - определение и вычисление с примерами решения, где Множества - определение и вычисление с примерами решения — характеристическое свойство. Например, Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решенияВ этом случае и в записи решений тригонометрических уравнений и неравенств в разделе 3 запись Множества - определение и вычисление с примерами решения означает, что Множества - определение и вычисление с примерами решения принимает любое целое значение, что также можно записать как Множества - определение и вычисление с примерами решения

Равенство множеств

Пусть Множества - определение и вычисление с примерами решения — множество цифр трехзначного числа 312, то есть Множества - определение и вычисление с примерами решения, а Множества - определение и вычисление с примерами решения — множество натуральных чисел, меньших чем 4, то есть Множества - определение и вычисление с примерами решения. Поскольку эти множества состоят из одних и тех же элементов, то они считаются равными. Это записывают так: Множества - определение и вычисление с примерами решения. Для бесконечных множеств таким способом (сравнивая все элементы) установить их равенство невозможно. Поэтому в общем случае равенство множеств определяется следующим образом.

Два множества называются равными, если каждый элемент первого множества является элементом второго множества и, наоборот, каждый элемент второго множества является элементом первого множества.

Из приведенного определения равенства множеств следует, что в множестве одинаковые элементы не различаются. Действительно, например, Множества - определение и вычисление с примерами решения, поскольку каждый элемент первого множества (1 или 2) является элементом второго множества и, наоборот, каждый элемент второго множества (1 или 2) является элементом первого. Поэтому, записывая множество, чаще всего каждый его элемент записывают только один раз.

Подмножество

Если каждый элемент множества Множества - определение и вычисление с примерами решения является элементом множества Множества - определение и вычисление с примерами решения, то говорят, что множество Множества - определение и вычисление с примерами решения является подмножеством множества Множества - определение и вычисление с примерами решения.

Это записывают следующим образом: Множества - определение и вычисление с примерами решения

Например, Множества - определение и вычисление с примерами решения (поскольку любое натуральное число — целое), Множества - определение и вычисление с примерами решения (поскольку любое целое число — рациональное), Множества - определение и вычисление с примерами решения (поскольку любое рациональное число — действительное).

Полагают, что всегда Множества - определение и вычисление с примерами решения, то есть пустое множество является подмножеством любого непустого множества.

Иногда вместо записи Множества - определение и вычисление с примерами решения используется также запись Множества - определение и вычисление с примерами решения, если множество Множества - определение и вычисление с примерами решения является подмножеством множества Множества - определение и вычисление с примерами решения, или равно множеству Множества - определение и вычисление с примерами решения. Например, Множества - определение и вычисление с примерами решения

Сопоставим определение равенства множеств с определением подмножества. Если множества Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения равны, то: 1) каждый элемент множества Множества - определение и вычисление с примерами решения является элементом множества Множества - определение и вычисление с примерами решения, следовательно, Множества - определение и вычисление с примерами решения — подмножество Множества - определение и вычисление с примерами решения Множества - определение и вычисление с примерами решения; 2) каждый элемент множества Множества - определение и вычисление с примерами решения является элементом множества Множества - определение и вычисление с примерами решения, следовательно, Множества - определение и вычисление с примерами решения — подмножество Множества - определение и вычисление с примерами решения Множества - определение и вычисление с примерами решения.

Таким образом, два множества равны, если каждое из них является подмножеством другого.

Иногда соотношения между множествами удобно иллюстрировать с помощью кругов (которые часто называют кругами Эйлера—Венна). Например, рисунок 1 иллюстрирует определение подмножества, а рисунок 2 — отношения между множествами Множества - определение и вычисление с примерами решения.

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Операции над множествами

Над множествами можно выполнять определенные действия: пересечение, объединение, находить разность. Дадим определение этих операций и проиллюстрируем их с помощью кругов Эйлера—Венна.

Пересечением множеств Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения называют их общую часть, то есть множество Множества - определение и вычисление с примерами решения всех элементов, принадлежащих как множеству Множества - определение и вычисление с примерами решения, так и множеству Множества - определение и вычисление с примерами решения.

Пересечение множеств обозначают знаком Множества - определение и вычисление с примерами решения (на рисунке 3 приведена иллюстрация определения пересечения множеств).

Например, если Множества - определение и вычисление с примерами решения то Множества - определение и вычисление с примерами решения.

Объединением множеств Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения называют множество Множества - определение и вычисление с примерами решения, состоящее из всех элементов, принадлежащих хотя бы одному из этих множеств (Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения).

Объединение множеств обозначают знаком Множества - определение и вычисление с примерами решения (на рисунке 4 приведена иллюстрация определения объединения множеств).

Например, для множеств Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения из предыдущего примера Множества - определение и вычисление с примерами решения Если обозначить множество иррациональных чисел через Множества - определение и вычисление с примерами решения, то Множества - определение и вычисление с примерами решения.

Разностью множеств Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения называется множество Множества - определение и вычисление с примерами решения, состоящее из всех элементов, которые принадлежат множеству Множества - определение и вычисление с примерами решения и не принадлежат множеству В.

Разность множеств обозначают знаком Множества - определение и вычисление с примерами решения. На рисунке 5 приведена иллюстрация определения разности множеств.

Например, если Множества - определение и вычисление с примерами решения

Если Множества - определение и вычисление с примерами решения — подмножество Множества - определение и вычисление с примерами решения, то разность Множества - определение и вычисление с примерами решения называют дополнением множества В до множества Множества - определение и вычисление с примерами решения (рис. 6).

Множества - определение и вычисление с примерами решения

Например, если обозначить множество всех иррациональных чисел через Множества - определение и вычисление с примерами решения, то Множества - определение и вычисление с примерами решения: множество Множества - определение и вычисление с примерами решения всех иррациональных чисел дополняет множество Множества - определение и вычисление с примерами решения всех рациональных чисел до множества Множества - определение и вычисление с примерами решения всех действительных чисел.

Если все множества, которые мы рассматриваем, являются подмножествами некоторого так называемого универсального множества Множества - определение и вычисление с примерами решения (на рисунке его обычно изображают в виде прямоугольника, а все остальные множества — в виде кругов внутри этого прямоугольника, то разность Множества - определение и вычисление с примерами решения называют дополнением множества Множества - определение и вычисление с примерами решения (рис. 7). То есть дополнением множества Множества - определение и вычисление с примерами решения называется множество, состоящее из всех элементов, не принадлежащих множеству Множества - определение и вычисление с примерами решения, но принадлежащих универсальному множеству Множества - определение и вычисление с примерами решения.

Дополнение множества Множества - определение и вычисление с примерами решения обозначается Множества - определение и вычисление с примерами решения (можно читать: «Множества - определение и вычисление с примерами решения с чертой» или «дополнение Множества - определение и вычисление с примерами решения»).

Например, если Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения, то Множества - определение и вычисление с примерами решения. Для этого примера удобно использовать традиционную иллюстрацию множества действительных чисел на числовой прямой (рис. 8).

Множества - определение и вычисление с примерами решения

Числовые множества. Множество действительных чисел

Числовые множества:

Действительные числа Множества - определение и вычисление с примерами решения

Числа, которые можно представить в виде бесконечной десятичной дроби

Рациональные числа Множества - определение и вычисление с примерами решения

Можно представить в виде несократимой дроби Множества - определение и вычисление с примерами решения, где Множества - определение и вычисление с примерами решения — целое, — натуральное число. Записываются в виде бесконечной периодической десятичной дроби

Множества - определение и вычисление с примерами решения

Иррациональные числа

Нельзя представить в виде несократимой дроби Множества - определение и вычисление с примерами решения, где Множества - определение и вычисление с примерами решения — целое, Множества - определение и вычисление с примерами решения — натуральное число. Записываются в виде бесконечной непериодической десятичной дроби

Множества - определение и вычисление с примерами решения

Целые числа Множества - определение и вычисление с примерами решения

Включают натуральные числа, числа, противоположные им, и число нуль

Дробные числа

Числа, состоящие из целого числа частей единицы

(Множества - определение и вычисление с примерами решения — обыкновенная дробь, 1,23 — десятичная дробь: Множества - определение и вычисление с примерами решения)

Натуральные числа Множества - определение и вычисление с примерами решения (целые положительные)

Для школьного курса математики натуральное число — основное не определяемое понятие

Число 0

Такое число, при сложение с которым любое число не изменяется

Множества - определение и вычисление с примерами решения

Целые отрицательные числа

Числа, противоположные натуральным

Модуль действительного числа и его свойства

Определение:

Модулем положительного числа называется само это число, модулем отрицательного числа называется число, противоположное ему, модуль нуля равен нулю

Множества - определение и вычисление с примерами решения

Геометрический смысл модуля

Множества - определение и вычисление с примерами решения

На координатной прямой модуль — это расстояние от начала координат до точки, изображающей это число.

Модуль разности двух чисел Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения — это расстояние между точками Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения на координатной прямой

Свойства

1. Множества - определение и вычисление с примерами решения Модуль любого числа — неотрицательное число

2. Множества - определение и вычисление с примерами решения Модули противоположных чисел равны

3. Множества - определение и вычисление с примерами решения, то естьМножества - определение и вычисление с примерами решения Каждое число не больше своего модуля

4. При Множества - определение и вычисление с примерами решения Множества - определение и вычисление с примерами решения

5. При Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

6. Множества - определение и вычисление с примерами решения Модуль произведения равен произведению модулей множителей

7. Множества - определение и вычисление с примерами решения Модуль дроби равен модулю числителя, деленному на модуль знаменателя (если знаменатель не равен нулю)

8. Множества - определение и вычисление с примерами решения Множества - определение и вычисление с примерами решения

9. Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Модуль суммы не превышает суммы модулей слагаемых

10. Множества - определение и вычисление с примерами решения

Объяснение и обоснование:

Числовые множества

В курсе математики вы встречались с разными числами: натуральными, целыми, рациональными, иррациональными, действительными. Представление о числах у человечества складывалось постепенно, под воздействием требований практики. Например, натуральные числа появились в связи с необходимостью подсчета предметов. Но для того чтобы дать ответ на вопрос «Сколько спичек в пустой коробке из-под спичек?», множества натуральных чисел Множества - определение и вычисление с примерами решения недостаточно — для этого необходимо иметь еще и число нуль. Присоединяя к множеству Множества - определение и вычисление с примерами решения натуральных чисел число 0, получаем множество неотрицательных целых чисел. Его часто обозначают Множества - определение и вычисление с примерами решения. Одних только неотрицательных целых чисел оказалось недостаточно для решения задач практики (а следовательно, и математических задач, отображающих заданную реальную ситуацию). Так, для того чтобы охарактеризовать температуру воздуха выше и ниже нуля или движение тела в противоположных направлениях, необходимы противоположные натуральным числа, то есть отрицательные числа. Для натурального числа Множества - определение и вычисление с примерами решения противоположным считается число Множества - определение и вычисление с примерами решения, а для числа Множества - определение и вычисление с примерами решения противоположным считается число Множества - определение и вычисление с примерами решения. Нуль считают противоположным самому себе.

Натуральные числа, числа, противоположные натуральным, и число нуль составляют множество Множества - определение и вычисление с примерами решения целых чисел.

Измерение величин привело к необходимости расширения множества целых чисел и введения рациональных чисел. Например, средняя многолетняя температура воздуха в январе в г. Харькове — Множества - определение и вычисление с примерами решения, длительность урока — 45 минут, или Множества - определение и вычисление с примерами решения часа.

Таким образом, выбирая какую-либо единицу измерения, мы получаем числовое значение величин, которое может выражаться с помощью разных рациональных чисел — целых и дробных, положительных и отрицательных.

Целые и дробные числа составляют множество Множества - определение и вычисление с примерами решения рациональных чисел.

Любое рациональное число можно записать в виде дроби Множества - определение и вычисление с примерами решения, где

Множества - определение и вычисление с примерами решения (то есть числитель Множества - определение и вычисление с примерами решения является целым числом, а знаменатель Множества - определение и вычисление с примерами решения — натуральным).

Рациональное число может быть записано разными дробями. Например,

Множества - определение и вычисление с примерами решения

Как видно из приведенных примеров, среди дробей, которые изображают данное рациональное число, всегда есть единственная несократимая дробь (для целых чисел — это дробь, знаменатель которой равен 1).

Обратим внимание, что рациональное число, записанное в виде дроби Множества - определение и вычисление с примерами решения, где Множества - определение и вычисление с примерами решения, можно также записать в виде конечной или бесконечной периодической десятичной дроби, разделив числитель на знаменатель. Например, Множества - определение и вычисление с примерами решения.

Договоримся, что конечную десятичную дробь можно изображать в виде бесконечной, у которой после последнего десятичного знака, отличного от нуля, на месте следующих десятичных знаков записываются нули, например, Множества - определение и вычисление с примерами решения .

Целые числа также договоримся записывать в виде бесконечной десятичной дроби, у которой справа от запятой на месте десятичных знаков стоят нули, например Множества - определение и вычисление с примерами решения . Таким образом, любое рациональное число может быть записано как бесконечная периодическая дробь. Напомним, что у бесконечной периодической дроби, начиная с некоторого разряда, все десятичные знаки повторяются. Группу цифр, которая повторяется, называют периодом дроби; при записи дроби период записывают в скобках. Например, Множества - определение и вычисление с примерами решения.

Таким образом, каждое рациональное число может быть записано в виде бесконечной периодической десятичной дроби и наоборот, каждая бесконечная периодическая дробь задает рациональное число.

Обратим внимание, что любая периодическая десятичная дробь с периодом девять равна бесконечной десятичной дроби с периодом нуль, у которой десятичный разряд, предшествующий периоду, увеличен на единицу по сравнению с разрядом первой дроби. Например, бесконечные периодические дроби Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения являются записью одного и того же рационального числа Множества - определение и вычисление с примерами решения. Действительно, учитывая, что сумма бесконечной убывающей геометрической прогрессии с первым членом Множества - определение и вычисление с примерами решения и знаменателем Множества - определение и вычисление с примерами решениявычисляется по формуле Множества - определение и вычисление с примерами решения, имеем:

Множества - определение и вычисление с примерами решения

В дальнейшем, записывая рациональные числа с помощью бесконечных периодических десятичных дробей, договоримся исключить из рассмотрения бесконечные периодические дроби, период которых равен девяти.

Каждое рациональное число можно изобразить точкой на координатной прямой (то есть прямой, на которой выбраны начало отсчета, положительное направление и единица измерения). Например, на рисунке изображены несколько рациональных чисел Множества - определение и вычисление с примерами решения.

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Однако на координатной прямой есть точки, изображающие числа, которые не являются рациональными. Например, из курса алгебры известно, что число Множества - определение и вычисление с примерами решения не является рациональным. Это так называемое иррациональное число. Если построить квадрат со стороной, равной 1, на координатной прямой Множества - определение и вычисление с примерами решения (рис. 10), то его диагональ будет равна Множества - определение и вычисление с примерами решения. Тогда, проведя дугу окружности радиуса Множества - определение и вычисление с примерами решения с центром в точке Множества - определение и вычисление с примерами решения, получим точку Множества - определение и вычисление с примерами решения, координата которой равна Множества - определение и вычисление с примерами решения. Кроме числа Множества - определение и вычисление с примерами решения вы также встречались с иррациональными числами Множества - определение и вычисление с примерами решения и т. д.

Рациональные и иррациональные числа составляют множество действительных чисел Множества - определение и вычисление с примерами решения. На координатной прямой каждому действительному числу соответствует единственная точка и, наоборот, каждой точке координатной прямой соответствует единственное действительное число (в этом случае говорят, что между множеством действительных чисел и множеством точек координатной прямой устанавливается взаимно однозначное соответствие).

Каждое действительное число может быть записано в виде бесконечной десятичной дроби: рациональные числа — в виде бесконечной периодической десятичной дроби, а иррациональные — в виде бесконечной непериодической десятичной дроби.

Напомним, что для сравнения действительных чисел и выполнения действий над ними (в случае, когда хотя бы одно из них не является рациональным) используются приближенные значения этих чисел. В частности, для сравнения двух действительных чисел последовательно рассматриваем их приближенные значения с недостатком с точностью до целых, десятых, сотых и т. д. до тех пор, пока не получим, что какое-то приближенное значение одного числа больше соответствующего приближенного значения второго. Тогда то число, у которого приближенное значение больше, и считается большим. Например, если

Множества - определение и вычисление с примерами решения, то Множества - определение и вычисление с примерами решения (поскольку Множества - определение и вычисление с примерами решения).

Для выполнения сложения или умножения рассмотренных чисел Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения последовательно записывают их приближенные значения с недостатком и с избытком (с точностью до целых, десятых, сотых и т. д.) и выполняют действия над полученными рациональными числами. В результате последовательно получаем значение суммы или произведения с необходимой точностью.

Множества - определение и вычисление с примерами решения

Как видим, Множества - определение и вычисление с примерами решения

В курсе математического анализа доказывается, что в случае, когда приближенные значения чисел Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения последовательно берутся с точностью до целых, десятых, сотых и т. д., то значения суммы Множества - определение и вычисление с примерами решения с недостатком и с избытком стремятся к одному и тому же числу, которое и принимается за значение суммы Множества - определение и вычисление с примерами решения (аналогично определяется и произведение Множества - определение и вычисление с примерами решения).

Модуль действительного числа и его свойства

Напомним определение модуля.

Модулем положительного числа называется само это число, модулем отрицательного числа — число, противоположное ему, модуль нуля равен нулю.

Это определение можно коротко записать несколькими способами. а при а > 0,

Множества - определение и вычисление с примерами решения, или Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения или

Множества - определение и вычисление с примерами решения

При необходимости мы будем пользоваться любой из этих записей определения модуля. Для нахождения Множества - определение и вычисление с примерами решения по определению необходимо знать знак числа Множества - определение и вычисление с примерами решения и использовать соответствующую формулу. Например, Множества - определение и вычисление с примерами решения

На координатной прямой модуль числа — это расстояние от начала координат до точки, изображающей это число.

Множества - определение и вычисление с примерами решения

Действительно, если Множества - определение и вычисление с примерами решения (рис. 11), то расстояние Множества - определение и вычисление с примерами решения

Если Множества - определение и вычисление с примерами решения, то расстояние Множества - определение и вычисление с примерами решения

Модуль разности двух чисел Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения — это расстояние между точками Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения на координатной прямой.

Для доказательства можно воспользоваться тем, что при параллельном переносе вдоль оси координат на Множества - определение и вычисление с примерами решения единиц абсцисса соответствующей точки изменяется на Множества - определение и вычисление с примерами решения: к абсциссе данной точки прибавляется число Множества - определение и вычисление с примерами решения, то есть при Множества - определение и вычисление с примерами решения точка переносится вправо, а при Множества - определение и вычисление с примерами решения — влево. Обозначим на координатной прямой числа Множества - определение и вычисление с примерами решения соответственно точками Множества - определение и вычисление с примерами решения. На рисунке 12 эти точки изображены для случая Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения, хотя приведенное далее обоснование не зависит от знаков Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения.

Множества - определение и вычисление с примерами решения

При параллельном переносе вдоль оси Множества - определение и вычисление с примерами решения на Множества - определение и вычисление с примерами решения единиц точка Множества - определение и вычисление с примерами решения перейдет в точку Множества - определение и вычисление с примерами решения, а точка Множества - определение и вычисление с примерами решения (с координатой Множества - определение и вычисление с примерами решения) — в точку с координатой Множества - определение и вычисление с примерами решения, то есть в точку Множества - определение и вычисление с примерами решения. Тогда Множества - определение и вычисление с примерами решения. Но расстояние Множества - определение и вычисление с примерами решения — это расстояние от точки Множества - определение и вычисление с примерами решения до начала координат, следовательно, Множества - определение и вычисление с примерами решения, а значит, и Множества - определение и вычисление с примерами решения.

Используя определение модуля и его геометрический смысл, можно обосновать свойства модуля, приведенные в таблице 2.

Например, учитывая, что Множества - определение и вычисление с примерами решения — это расстояние от точки Множества - определение и вычисление с примерами решения до точки Множества - определение и вычисление с примерами решения, а расстояние может выражаться только неотрицательным числом, получаем

Множества - определение и вычисление с примерами решения

то есть модуль любого числа является неотрицательным числом.

Учитывая, что точки Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения находятся на одинаковом расстоянии от точки Множества - определение и вычисление с примерами решения, получаем

Множества - определение и вычисление с примерами решения

это означает, что модули противоположных чисел равны.

Если Множества - определение и вычисление с примерами решения то Множества - определение и вычисление с примерами решения а если Множества - определение и вычисление с примерами решения, то Множества - определение и вычисление с примерами решения. Следовательно, всегда

Множества - определение и вычисление с примерами решения

то есть каждое число не превышает его модуль.

Если в последнее неравенство вместо Множества - определение и вычисление с примерами решения подставить Множества - определение и вычисление с примерами решения и учесть, что Множества - определение и вычисление с примерами решения, то получаем неравенство Множества - определение и вычисление с примерами решения. Отсюда Множества - определение и вычисление с примерами решения, что вместе с неравенством Множества - определение и вычисление с примерами решения свидетельствует о том, что для любого действительного числа а выполняется двойное неравенство

Множества - определение и вычисление с примерами решения (1)

При Множества - определение и вычисление с примерами решения неравенство Множества - определение и вычисление с примерами решения означает, что число Множества - определение и вычисление с примерами решения на координатной прямой находится от точки Множества - определение и вычисление с примерами решения на расстоянии, которое не превышает Множества - определение и вычисление с примерами решения (рис. 13), то есть в промежутке Множества - определение и вычисление с примерами решения. Наоборот, если число Множества - определение и вычисление с примерами решения находится в этом промежутке, то есть Множества - определение и вычисление с примерами решения. Следовательно,

при Множества - определение и вычисление с примерами решения (2)

Обратим внимание, что последнее утверждение справедливо и при Множества - определение и вычисление с примерами решения (тогда двум неравенствам удовлетворяет только одно значение Множества - определение и вычисление с примерами решения).

Аналогично при Множества - определение и вычисление с примерами решения неравенство Множества - определение и вычисление с примерами решения означает, что число Множества - определение и вычисление с примерами решения на координатной прямой находится от точки Множества - определение и вычисление с примерами решения на расстоянии, которое больше или равно Множества - определение и вычисление с примерами решения (рис. 13),

Множества - определение и вычисление с примерами решения

то есть в этом случае Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения. Наоборот, если число Множества - определение и вычисление с примерами решения удовлетворяет одному из этих неравенств, то Множества - определение и вычисление с примерами решения. Следовательно, при Множества - определение и вычисление с примерами решения неравенство Множества - определение и вычисление с примерами решения равносильно совокупности неравенств Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения, что можно записать так:

при Множества - определение и вычисление с примерами решения

Свойства модуля произведения и модуля дроби фиксируют известные правила действий над числами с одинаковыми и разными знаками:

модуль произведения равен произведению модулей множителей, то есть

Множества - определение и вычисление с примерами решения

модуль дроби равен модулю числителя, деленному на модуль знаменателя (если знаменатель не равен нулю), то есть

Множества - определение и вычисление с примерами решения

Формулу для нахождения модуля произведения можно обобщить для случая нескольких множителей

Множества - определение и вычисление с примерами решения (3)

Если в формуле (3) взять Множества - определение и вычисление с примерами решения, получаем формулу

Множества - определение и вычисление с примерами решения

Используя последнюю формулу справа налево при Множества - определение и вычисление с примерами решения и учитывая, что Множества - определение и вычисление с примерами решения при всех значениях Множества - определение и вычисление с примерами решения, получаем Множества - определение и вычисление с примерами решения. Следовательно,

Множества - определение и вычисление с примерами решения. Для обоснования неравенства

Множества - определение и вычисление с примерами решения (4)

запишем неравенство (1) для чисел Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения:

Множества - определение и вычисление с примерами решения

Складывая почленно эти неравенства, получаем

Множества - определение и вычисление с примерами решения

Учитывая неравенство (2), имеем

Множества - определение и вычисление с примерами решения (5)

то есть модуль суммы не превышает суммы модулей слагаемых. Если в неравенстве (4) заменить Множества - определение и вычисление с примерами решения на Множества - определение и вычисление с примерами решения и учесть, что Множества - определение и вычисление с примерами решения, то получим неравенство

Множества - определение и вычисление с примерами решения

Если записать число Множества - определение и вычисление с примерами решения так: Множества - определение и вычисление с примерами решения и использовать неравенство (4), то получим неравенство Множества - определение и вычисление с примерами решения. Отсюда

Множества - определение и вычисление с примерами решения (6)

Если в неравенстве (6) заменить Множества - определение и вычисление с примерами решения на Множества - определение и вычисление с примерами решения и учесть, что Множества - определение и вычисление с примерами решения, то получим неравенство

Множества - определение и вычисление с примерами решения (7)

то есть модуль суммы двух чисел не меньше разности их модулей.

Меняя местами буквы Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения в неравенствах (6) и (7) и учитывая, что Множества - определение и вычисление с примерами решения, имеем также неравенства

Множества - определение и вычисление с примерами решения (8)

Полученные неравенства (4)-(8) можно коротко записать так:

Множества - определение и вычисление с примерами решения

Примеры решения задач:

Пример №402

Докажите, что сумма, разность, произведение, натуральная степень и частное (если делитель не равен нулю) двух рациональных чисел всегда является рациональным числом.

Решение:

► Пусть заданы два рациональных числа Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения где Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения — целые, а Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения — натуральные числа. Поскольку сумма, разность, произведение, натуральная степень и частное двух обыкновенных дробей всегда являются обыкновенными дробями, то полученный результат всегда будет рациональным числом. Например,

Множества - определение и вычисление с примерами решения

где Множества - определение и вычисление с примерами решения — целое число, а Множества - определение и вычисление с примерами решения — натуральное.

Комментарий:

Любое рациональное число может быть записано как дробь Множества - определение и вычисление с примерами решения, где Множества - определение и вычисление с примерами решения — целое, Множества - определение и вычисление с примерами решения — натуральное число.

Чтобы доказать утверждение задачи, достаточно доказать, что сумма, разность, произведение и частное двух дробей вида Множества - определение и вычисление с примерами решения также будет дробью такого вида.

Пример №403

Докажите, что для любого натурального числа Множества - определение и вычисление с примерами решения число Множества - определение и вычисление с примерами решения или натуральное, или иррациональное.

Комментарий:

Для доказательства утверждения задачи можно использовать метод от противного: предположить, что заданное положительное число является рациональным ненатуральным (то есть дробью), и получить противоречие с условием или с каким-либо известным фактом.

Записывая Множества - определение и вычисление с примерами решения в виде несократимой дроби, следует учесть, что при натуральных значениях Множества - определение и вычисление с примерами решения это число всегда будет положительным.

Решение:

► Допустим, что Множества - определение и вычисление с примерами решения не является иррациональным числом (тогда это число рациональное) и не является натуральным числом. Следовательно, это число может быть только рациональной несократимой дробью Множества - определение и вычисление с примерами решения, где Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения — натуральные числа Множества - определение и вычисление с примерами решения. По определению квадратного корня имеем Множества - определение и вычисление с примерами решения то есть Множества - определение и вычисление с примерами решения. Учитывая, что Множества - определение и вычисление с примерами решения, получаем, что дробь Множества - определение и вычисление с примерами решения, равная натуральному числу Множества - определение и вычисление с примерами решения, должна быть сократимой.

Следовательно, у натуральных множителей, которые стоят в числителе и знаменателе этой дроби, должен быть общий натуральный делитель, отличный от 1. Но в числителе стоят только множители Множества - определение и вычисление с примерами решения, а в знаменателе — только множители Множества - определение и вычисление с примерами решения. Тогда числа Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения имеют натуральный делитель, отличный от 1, то есть дробь является сократимой дробью, что противоречит условию. Таким образом, наше предположение неверно, и для любого натурального числа Множества - определение и вычисление с примерами решения число Множества - определение и вычисление с примерами решения или натуральное, или иррациональное.

Например, поскольку числа Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения не являются натуральными числами Множества - определение и вычисление с примерами решения, то Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения — иррациональные числа.

Пример №404

Докажите, что Множества - определение и вычисление с примерами решения — число иррациональное.

Решение:

► Допустим, что число Множества - определение и вычисление с примерами решения рациональное. Тогда Множества - определение и вычисление с примерами решения Возведя обе части последнего равенства в квадрат, имеем Множества - определение и вычисление с примерами решения Отсюда Множества - определение и вычисление с примерами решения

Следовательно, Множества - определение и вычисление с примерами решения

Но правая часть этого равенства — рациональное число (поскольку по предположению Множества - определение и вычисление с примерами решения — рациональное число), а левая — иррациональное. Полученное противоречие означает, что наше предположение неверно и число Множества - определение и вычисление с примерами решенияМножества - определение и вычисление с примерами решения — иррациональное.

Комментарий:

Для доказательства утверждения задачи можно использовать метод «от противного» — допустить, что заданное число является рациональным, и получить противоречие с каким-либо известным фактом, например с тем, что Множества - определение и вычисление с примерами решения — иррациональное число.

При анализе полученных выражений используем результат задачи 1: если число Множества - определение и вычисление с примерами решения — рациональное, то числа Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения и их частное тоже будут рациональными.

Заметим, что знаменатель полученной дроби Множества - определение и вычисление с примерами решения

Пример №405

Решите уравнениеМножества - определение и вычисление с примерами решения

Решение

I способ

Множества - определение и вычисление с примерами решения

Ответ: Множества - определение и вычисление с примерами решения

Комментарий:

Заданное уравнение имеет вид Множества - определение и вычисление с примерами решения (в данном случае Множества - определение и вычисление с примерами решения). Его удобно решать, используя геометрический смысл модуля: Множества - определение и вычисление с примерами решения— это расстояние от точки 0 до точки Множества - определение и вычисление с примерами решения. Но расстояние 7 может быть отложено от 0 как вправо (получаем число 7), так и влево (получаем число -7). Следовательно, равенство Множества - определение и вычисление с примерами решения возможно тогда и только тогда, когда Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения.

II способ

Множества - определение и вычисление с примерами решения

Ответ: Множества - определение и вычисление с примерами решения

Комментарий:

С геометрической точки зрения Множества - определение и вычисление с примерами решения — это расстояние между точками Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения на координатной прямой. Запишем данное уравнение так: Множества - определение и вычисление с примерами решения. Тогда равенство Множества - определение и вычисление с примерами решения означает, что расстояние от точки Множества - определение и вычисление с примерами решения до точки -5 равно 7. На расстоянии 7 от точки -5 находятся точки 2 и -12 (рис. 14). Таким образом, данное равенство выполняется тогда и только тогда, когда Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения то есть данное уравнение равносильно указанной в решении совокупности уравнений.

Пример №406

Решите неравенство Множества - определение и вычисление с примерами решения

Решение:

Множества - определение и вычисление с примерами решения

Решая эти неравенства (рис. 15), получаем

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Следовательно, Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения

Ответ: Множества - определение и вычисление с примерами решения

Комментарий:

Заданное неравенство имеет вид Множества - определение и вычисление с примерами решения (в данном случае Множества - определение и вычисление с примерами решения), и его можно решать, используя геометрический смысл модуля. С геометрической точки зрения, Множества - определение и вычисление с примерами решения — это расстояние от точки 0 до точки Множества - определение и вычисление с примерами решения. На расстоянии 6 от 0 находятся числа 6 и -6.

Тогда неравенству Множества - определение и вычисление с примерами решения удовлетворяют все те и только те точки, которые находятся в промежутке Множества - определение и вычисление с примерами решения то есть Множества - определение и вычисление с примерами решения Для решения полученного двойного неравенства его удобно заменить соответствующей системой.

  • Рациональные уравнения
  • Рациональные неравенства и их системы
  • Геометрические задачи и методы их решения
  • Прямые и плоскости в пространстве
  • Функции, их свойства и графики
  • Параллельность в пространстве
  • Перпендикулярность в пространстве
  • Векторы и координаты в пространстве

Математика — это точная абстрактная наука, оперирующая своими специальными понятиями, структурами и символами. Основными методами в математических исследованиях являются строгие логические рассуждения, а объектами изучения — математические модели. Но абстрактность математики не означает ее отрыв от реальной жизни. Реальные задачи описываются в математических терминах, как правило в безразмерном виде. Это есть так называемая
математическая модель явления. При решении уже поставленной математической задачи используются абстрактные математические методы.

Одна и та же математическая модель может описывать свойства различных реальных явлений. Само реальное явление рассматривается вновь после решения математической задачи и ее анализа, на основании которого могут быть сделаны выводы
не только о состоянии явления, но и о его развитии. В этом смысле без математики нет науки. Еще великий Леонардо да Винчи писал: «Никакой достоверности нет в науках там, где нельзя применить ни одну из математических наук, ив том, что не имеет связи с математикой.» И еще: » Ни одно человеческое исследование не может называться истинной наукой, если оно не прошло через математические доказательства.»

Математические методы играют огромную роль в образовании современного высококвалифицированного специалиста в технических областях, предоставляя ему аппарат исследования, дисциплинируя, приучая к строгим логическим рассуждениям.
Поскольку язык и методы математики широко используются при современном преподавании всех естественно-научных и технических дисциплин, математика изучается с первого семестра в любом высшем техническом учебном заведении, и на нее выделяется значительная часть бюджета времени студента.

Под множеством понимают любой набор определенных и различимых между собой объектов, рассматриваемых как единое целое. Это высказывание не является определением, поскольку слово « множество» заменено словом «набор». Близкими к понятию «множество» являются понятия: собрание, совокупность, комплекс, система и т. п. Вместе с тем здесь имеется три важных момента.

Объекты, входящие во множество, определенные (т. е. для каждого объекта можно однозначно сказать, принадлежит ли он данному множеству или нет), различимы между собой (во множестве не может быть двух или более одинаковых объектов) и все объекты, входящие во множество, мыслятся как единое целое (все объекты рассматриваются в совокупности, а от свойств отдельных объектов абстрагируются).

Множества обозначают прописными буквами латинского алфавита. Объекты, входящие во множество, называют элементами и их обозначают строчными буквами. Множество, состоящее из конечного числа элементов, называется конечным, в противном случае множество называется бесконечным.

Множество может быть задано при помощи правила, позволяющего определить, является ли данный объект элементом множества или нет. В записи правило, задающее множество, отделено вертикальной чертой. Например, пусть множество В есть множество решений уравнения Множество тогда В можно записать так Множество Элементами множества В являются числа 2 и 3, то есть Множество

Конечное множество может быть задано перечислением входящих в него и разделенных запятой элементов, например, МножествоМножество может содержать и всего лишь один элемент. Множество, не содержащее вообще ни одного эле-

мента, называется пустым и обозначается символом МножествоНапример, пусть Множество есть множество точек на плоскости, удовлетворяющих условию Множество При Множествоокружность, при Множество одна точка, а при Множествопустое множество.

Для указания того факта, что объект принадлежит данному множеству, используют знак МножествоНапример, МножествоМножествоЕсли же объект не принадлежит данному множеству, то пишут знак МножествоНапример, Множество

Множество В называется подмножеством множества А, если каждый элемент В одновременно является элементом множества А. Это записывается так: Множество

Пример:

Пусть заданы множества МножествоОчевидно, что В есть подмножество А, т. е. Множество Из определения следует, что множество А есть подмножество самого себя, т. е. МножествоГоворят, что А — самое широкое подмножество А. Пустое множество является самым узким подмножеством любого множества. Множество А и пустое множество Множествоназываются несобственными подмножествами множества А. Все другие подмножества А называются собственными подмножествами А.

Пример:

Если Множеството оно имеет, следующие подмножества: МножествоМножествоВсего 8 подмножеств.

Если конечное множество А состоит из п элементов, то оно имеет ровно Множество подмножеств. Из них ровно Множество являются собственными подмножествами. Элементами множества могут также выступать и другие множества. В этом случае говорят не о множестве множеств, а о системе множеств. Частным случаем системы множеств является система всех подмножеств данного множества А и обозначается Р(А). Так, система подмножеств множества А из предыдущего примера имеет вид

Множество

Замечание. Не следует путать символы Множествои Множество. Символ Множествоупотребляется для обозначения отношения элемента к множеству. Символ Множество употребляется для обозначения отношения множества к множеству.

Зафиксированное каким-либо образом множество объектов, допустимых при данном рассмотрении, называют базовым или универсумом. Базовое множество обозначают буквой МножествоПримерами универсума являются: числа в арифметике, слова в языкознании, законы в юриспруденции и т.п.

Операции над множествами

Множества можно складывать и вычитать, то есть совершать операции.

Равенство множеств

Множества А и В считаются равными, если они состоят из одних и тех же элементов. Равенство множеств обозначают так: А=В. Если множества не равны, то пишут: А МножествоВ. Отсюда следует, что запись равенства двух множеств «А=В» эквивалентна записи Множество

Пример. Доказать, что множество Множестворавно множеству В корней уравнения МножествоМножество

Для доказательства решим уравнение. Получим: МножествоМножествоМножествоСледовательно, Множество или МножествоЗатем непосредственной подстановкой убеждаемся, что любое из чисел 0,2, 3 удовлетворяет уравнению, следовательно Множество или МножествоТеперь можно записать, что А=В.

Объединение (сумма) множеств

Объединением множеств А и В называется такое множество С, каждый элемент которого содержится хотя бы в одном из множеств А или В. Обозначается: МножествоПример. Если Множество

Можно рассматривать объединение Множествомножеств:

Множество

при этом в А входят все элементы, которые входят хотя бы в одно из множеств МножествоНапример, множество всех дей-

ствительных чисел Множествосостоит из множества положительных чисел Множествомножества отрицательных чисел Множествои множества Множествосодержащего один элемент — ноль, то есть Множество

Для наглядного представления соотношений между несколькими подмножествами какого-либо универсума часто используются круги Эйлера или диаграммы Венна. Универсум представляется множеством всех точек некоторого прямоугольника, а его подмножества — соответствующими кругами. Операция объединения и другие операции иллюстрируются кругами Эйлера представленными на рис. 1.1-1.5.

Пересечение (умножение) множеств

Пересечением множеств А и В называется множество D, составленное из общих для множеств А и В элементов. Обозначение: МножествоНапример: Множество

Можно рассматривать пересечение Множество множеств:

Множество

при этом в А входят только те элементы, которые входят во все множества МножествоПересечение двух множеств иллюстрируется на рис 1.2.

Пусть есть некоторое множество А. Говорят, что задано разбиение множества А на классы Множество если

Множество

для всех Множество причем Множество

Множество
Множество

Классы — это такие подмножества разбиваемого множества, которые не имеют общих элементов, а их объединение образует исходное множество А. Следовательно, каждый элемент множества А входит в один и только в один класс.

Разность двух множеств

Разностью двух множеств А и В называется множество G, содержащее лишь те элементы из А, которые не входят в В. Обозначение: Множество Отметим, что в А могут находиться не все элементы из вычитаемого множества В (см. рис. 1.3). Например, Множество

Если В — подмножество Множество то разность Множество называется дополнением к В до А. Например, если Множество и Множеството множество Множество дополнение к В до А. Операция дополнения иллюстрируется на рис. 1.4. Дополнение к А до универсума Множествоимеет особое обозначение: Множество(см. рис. 1.5).

Пример. Пусть МножествоТакое множество называется множеством неотрицательных чисел.

Тогда Множествоэто множество отрицательных чисел.

Операции над множествами подчиняются определенным законам. Перечислим их.

1.Коммутативный или переместительный закон

Множество

2.Ассоциативный или сочетательный закон

Множество

Так как порядок выполнения операций несущественен, то скобки в записи опускают.

3.Дистрибутивный или распределительный закон:

Множество

4.Закон идемпотентности:

Множество

5.Закон поглощения:

Множество

6.Закон двойственности де Моргана:

Множество

Множество

10.Если Множество и одновременно Множество

Множество

Из законов (1-12) следует принцип двойственности: всякое равенство, тождественно выполняемое в теории множеств, переходит также в тождественно выполняющееся равенство при замене знака объединения Множество на знак пересечения Множество множество универсум Множество на пустое множество Множество и наоборот.

Прямое произведение множеств

Кортежем называют любую выделенную упорядоченную совокупность объектов (элементов кортежа). Синонимами понятия «кортеж» являются: упорядоченная система, упорядоченная совокупность, вектор, упорядоченный набор, «Множество-ка» и др. Отличие кортежа от множества заключается в том, что компоненты кортежа упорядочены и могут полностью или частично совпадать. Два кортежа называются равными, если они имеют

одинаковую длину, и все их соответствующие компоненты совпадают.

Элементы, составляющие кортеж, называются компонентами, которые в силу упорядоченности имеют номер: первый компонент, второй компонент, … Множество-ый компонент. Длиной кортежа называют число компонентов в кортеже. Когда вместо термина «кортеж» употребляется термин «вектор», то говорят соответственно о координатах и размерности вектора.

Примеры кортежей: Множество Это кортеж N длины 5, первый компонент которого — 8, второй — 7, третий — 4 и т. д.; Множествов этом случае Множествовторой, а Множествочетвертый компонент кортежа М.

Прямым произведением двух множеств А и В (обозначается Множествоназывается множество, состоящее из всех тех и только тех пар, первый компонент которых принадлежит А, второй -В. Если первый сомножитель имеет Множество элементов, а второй — Множеството их прямое произведение имеет Множествоэлементов, каждый из которых — упорядоченная пара. Например, если Множествои МножествоВ общем случае, если МножествоМножествоТем самым прямым произведением Множество множеств Множество называется множество всех кортежей длины Множество (Множество-ок), первый компонент которых принадлежит Множествовторой Множество-тый — Множество т. е.

Множество

где Множество-ый элемент множества Множество

Если все множества Множестворавны между собой, то есть Множество то прямое произведение множеств обозначается как Множество

Множество

Например: пусть R — множество действительных чисел, тогда Множество множество упорядоченных пар вида МножествоГеометрически R — множество точек числовой оси, тогда Множествомножество точек плоскости, где Множество координаты этих точек. Прямое произведение часто называют декартовым произведением множеств. Множество Р называется графиком, если

каждый его элемент является упорядоченной парой, следовательно, любое подмножество множества Множествоможно назвать графиком.

Проекцией кортежа Множество на і-ю ось Множествоназывается і-ый компонент кортежа, т. е. МножествоПроекция точки плоскости на первую ось Множествоназывается абсциссой, на вторую ось — ординатой МножествоИз определения прямого произведения следует, что оно не коммутативно, т. е. Множество

Пример:

Пусть А — отрезок [1,3], В — отрезок [2,5]. Тогда Множествомножество точек прямоугольника, заштрихованного на рис. 1.6, Множествопрямоугольник, заштрихованный на рис. 1.7.

Множество

Пример:

Пусть А — множество, элементами которого являются буквы, цифры и все знаки операций и препинания. Такое множество называют алфавитом. Тогда Множествомножество всех слов длины Множество.

Природа компонентов прямого произведения обычно отличается от природы элементов сомножителей. Например, пусть Q — множество участников шахматного турнира, тогда Множествопри всех Множествоесть множество пар участников, причем Множествоиграет белыми фигурами, Множествочерными.

Понятие соответствия

Пусть заданы два множества Множество. Если для каждого элемента Множествоуказан элемент Множествос которым сопоставляется Множеството говорят, что между множествами Множество установлено соответствие. Иначе говоря, соответствием называется тройка множеств Множество Множество Множество называется областью отправления, Множество — областью прибытия, Множество — графиком соответствия. Если Множеството множество первых проекций Множество называется областью определения соответствия, множество вторых проекций Множество— областью значений этого соответствия, Множествографик соответствия.

Два соответствия равны тогда и только тогда, когда равны их области отправления, области прибытия и графики. Пример. Заданы четыре разных соответствия, имеющие одинаковые области отправления и прибытия:

Множество

На рис. 1.8а, 1.86, 1.8в, и 1.8г. различия этих соответствий видны достаточно наглядно.

Множество

В соответствии Множествомножество всех Множество которые сопоставляются элементу Множество называется образом МножествоМножество же всех Множество которым сопоставляют элемент Множествоназывается прообразом Множество

Соответствие называется всюду определенным, если множество Множество т. е. его область определения, совпадает с областью отправления (в противном случае говорят о частичном соответствии). Если же Множеството соответствие называют сюръективным, или накрывающим. Это означает, что область значений соответствия совпадает с его областью прибытия. На рис. 1.8 а и 1.8 б представлено всюду определенное сюръективное соответствие. Соответствия, представленные на рис.18 в и 1.8 г, не сюръективны, а соответствие, изображенное на рис. 1.8, г не всюду определенное.

Соответствие Множество называется функциональным (или однозначным), если образом любого элемента из Множество является единственный элемент из МножествоГрафик такого соответствия называется функциональным. Это означает, что в нем нет пар с одинаковыми первыми и различными вторыми компонентами. Например, соответствие, представленное на рис. 1.8 б, нефункционально. Соответствие называется инъективным, если любому элементу из Множество соответствует единственный элемент из Множество, на рис. 1.8 в изображено инъективное соответствие.

Соответствие между Множество называется взаимно-однозначным (или биективным), если оно всюду определено, сюръективно, функционально и инъективно.

Пусть Множество — множества вещественных чисел. В этом случае график соответствия Множество может быть представлен некоторой линией на плоскости. Например. На рис. 1.9 представлено функциональное соответствие, но оно не инъективно (некоторым Множество соответствует более одного Множество), не всюду определено (Множество определен не для всех Множество), не сюръективно (Множество проектируется не на все Множество) и не биективно. На рис. 1.10 представлено нефункциональное соответствие, которое не всюду определено, сюръективно и не биективно. На рис. 1.11 представлено взаимно-однозначное соответствие.

Множество

Мощность множества

Мощность множества характеризует количество элементов этого множества. Множества равномощны, если между их элементами можно установить взаимно-однозначное соответствие. Число элементов в конечном множестве А называется кардинальным числом и обозначается |А|. Подсчет элементов конечного множества заключается в установлении взаимно-однозначного соответствия между этими элементами и конечной последовательностью натуральных чисел.

Множество называется бесконечным, если оно равномощно хотя бы одному из его собственных подмножеств. Бесконечное множество А называется счетным, если оно равномощно множеству всех натуральных чисел N. Примеры счетных множеств: множество целых чисел, четных чисел, рациональных чисел. Счетное множество образуется при объединении счетного множества конечных множеств (например, множество слов в любом конечном алфавите) и т. д. Счетным будет и объединение счетного множества счетных множеств (множество всех векторов с натуральными компонентами). Множество А называется не более чем счетным, дискретным, если оно конечно (в частности, пусто) или счетно. Счетное множество среди бесконечных множеств имеет наименьшую мощность.

Рассмотрим все вещественные числа на отрезке Множество Эти числа не могут быть пронумерованы, следовательно, их множество не образует счетное множество, оно несчетно. По определению, множество, равномощное множеству всех вещественных чисел

единичного отрезка числовой оси, имеет мощность континуума (непрерывное множество). Мощность множества континуума превышает мощность счетного множества. Любой конечный отрезок числовой оси равномощен единичному отрезку. Более того, любой конечный отрезок равномощен и всей числовой оси. Например, между отрезком Множество и множеством Множествоможно установить такое соответствие: Множество

Множества наибольшей мощности не существует. Это следует из того, что мощность любого множества А всегда строго меньше мощности множества всех его подмножеств Множество

Множества — основные понятия

Под множеством понимается совокупность каких-либо объектов, называемых элементами этого множества. Например, можно говорить о множестве студентов данного вуза, множестве учебников по математике, множестве треугольников, множестве действительных чисел и т. д. Множества, содержащие конечное число элементов, называются конечными (множество студентов, множество учебников). Множества с бесконечным числом элементов называются бесконечными (множество треугольников, множество действительных чисел).

Множество обычно обозначается заглавными латинскими буквами A, B, С, …, а их элементы — малыми а, b, с, ….

Утверждение ’’элемент х принадлежит множеству А” записывается так : «х ∈ А ”, а противоположное утверждение ” элемент х не принадлежит множеству А” записывается так : ”х ∉ А ”.

Определение:

Если все элементы множества А принадлежат также множеству В, то говорят, что ” А содержится в В” или: ” А является подмножеством В”, и записывают так: A В.

Определение:

Два множества называются равными (совпадающими), если они состоят из одних и тех же элементов: A = B.

Пример:

Сформулируйте словами утверждение:
A=B⇔ A ⊂ B и B ⊂ A и докажите его.

Конечное множество можно задать перечислением его элементов. Так, запись A = {1;2;3} означает, что множество А состоит из трех чисел 1,2,3. При этом порядок перечисления элементов не играет роли: {1;2;3} = {3;2;1}.

Бесконечное множество можно задать, написав условие, которое выполняется для всех элементов данного множества и не выполняется для других. Запись
В = {x | 1 < х < 2}
означает множество всех чисел, больших одного, но меньших двух, т.е. интервал (1;2).

Множество удобно схематически изображать в виде ’’диаграмм Эйлера” — геометрических фигур на плоскости, взаимное расположение которых отражает отношение между множествами. Так, например, если A ⊂ B и B ⊂ C, то A изображается частью В₁ а В частью C (рис. 1). C помощью диаграммы Эйлера на рис. 1 наглядно видно свойство транзитивности операции включения множеств: A ⊂ B ⊂ C ⟹ A ⊂ C.

множества

Рис. 1. Диаграмма Эйлера

Определение:

Множество называется пустым, если оно не содержит ни одного элемента. Пустое множество обозначается символом ⊘.

Так, например, множество отрицательных натуральных чисел пусто.

Операции над множествами

Определение:

Пересечением множеств A и B называется множество С, состоящее из всех элементов, одновременно входящих и в А, и в В. Это записывается следующим образом: A ∩ В = С.

Иллюстрация пересечения двух множеств с помощью диаграмм Эйлера приведена на рис. 2, где множество C заштриховано.

множества

Рис. 2. Пересечение множеств А и В

Пример:

Если множество А есть интервал (1 ;5) а множество В есть интервал (2;7), то пересечение множеств A и B есть интервал (2;5).

Свойства операции пересечения множеств приведем без доказательств:

  1. A ∩ В = В ∩ А(коммутативность).
  2. A ∩ (В ∩ С) = (A ∩ В) ∩ C = A ∩ В ∩ С(ассоциативность).
  3. A ⊂ В ⟹ А ∩ В = А.
  4. A∩A= А.
  5. A ∩ ⊘ = ⊘

Определение:

Объединением множеств A и B называется множество С, состоящее из всех элементов, каждый из которых принадлежит хотя бы одному из данных множеств или А, или В, или A u B одновременно. Это обозначается следующим образом : A В = С.

множества

Рис. 3. Объединение множеств А и В

Иллюстрация объединения с использованием диаграмм Эйлера приведена на рис. 3, где множество C заштриховано.

Пример:

Если множество А есть отрезок [1;3], множество В есть отрезок [2;5], то A B есть отрезок B=[1;5].

Свойства операции объединения множеств приведем без доказательств:
1) A ∪ B=B ∪ A (коммутативность).
2) A ∪ (B∪C)=(A ∪ B) ∪ C=A ∪ B ∪ C (ассоциативность).
3) A∩(B∪C)=(A∩B) ∪ (A∩C) (дистрибутивность).
4) A ⊂ B ⇒A ∪ B=B.
5) A ∪ A=A.
6) A ∪ ⊘=A.

Определение:

Разностью множеств А и В называется множество С, состоящее из всех элементов, принадлежащих множеству А, но не принадлежащих В. Разность A u B обозначается АВ и изображена штриховкой на рис. 4.

Операция вычитания множеств не коммутативна : A∖B≠B∖A.

Пример:

Если А = (1; 10), В = (3; 20), то АВ=(1;3], ВА =[10,20).

множества

Рис. 4. Разность множеств А и В

Кванторы общности и существования

При изложении материала мы будем использовать знак множества, называемый квантором общности, и знак Ǝ, называемый квантором существования. Символ множестваозначает: ’’для любого х«, ’’для всех х”, ’’для каждого х«, ’’какое бы ни было х«. Запись множества> 0 означает: ’’для всех положительных x” Запись множества∈ M читается: ’’для всех x, принадлежащих множеству М”.

Обозначение Ǝх означает: ’’существует такое х, что …”, ”по крайней мере для одного х…”, запись Ǝх > 0 читается: ’’существует такое положительное число х, что…”, запись Ǝх₁ ,x₂ Є M означает: ’’существуют такие х₁ ,x₂ — элементы множества М, что …”.

Нам также неоднократно придется использовать символы ⇒ и ⇔.

Запись логического следования А ⇒ В означает, что если верно утверждение А, то верно и утверждение В, то-есть из А следует В.

Запись логической равносильности ⇔ означает, что из А следует В и наоборот, из В следует А.

Так, например, запись: множества> ƎN множества> N ⇒ | f (x) — b| < ε читается следующим образом: ’’для любого ε больше 0 существует N такое, что для любых х, больших N, будет выполняться неравенство | f (x) — b∣< ε.”

Необходимое и достаточное условие

Любая теорема может быть сформулирована в виде: если выполняется условие А, то верно утверждение В. Будем называть это прямой теоремой и схематически запишем в виде:

Теорема:

А ⇒ В.

В качестве примера приведем теорему, называемую достаточным условием экстремума непрерывной функции, изучаемую в курсе математики средней школы.

Теорема:

Если функция f непрерывна в точке а и производная f меняет знак при переходе через эту точку, то а является точкой экстремума функции f.

Условие А стоит после слова «если», утверждение В написано после
слова «то».

Определение:

А называется достаточным условием для
выполнения В. В свою очередь, В является необходимым условием для выполнения А.

Применительно к теореме 1.2 это выглядит следующим образом.
Достаточным условием для существования экстремума непрерывной функции f в точке а является изменение знака ее производной при переходе через эту точку.

Для лучшего усвоения введенных понятий рассмотрим очевидно справедливое утверждение не из области математики.

Теорема:

Если человек здоров, то у него есть голова.

Здесь здоровье является достаточным условием наличия у человека головы. Наоборот, наличие головы является необходимым условием здоровья. Подумайте, будет ли это условие достаточным для того, чтобы человек был здоров? Реально ли вообще сформулировать достаточное условие того, что человек здоров?

Обозначим А утверждение, заключающееся в отрицании утверждения А(читается «не А»). Если справедлива прямая теорема 1.1, то методом «от противного» легко можно доказать справедливость следующего утверждения, которое называется
«противоположная к обратной теорема»:

Теорема:

В ⇒ А.

Доказательство:

Имеем А ⇒ В, нужно доказать, что В⇒ А Предположим противное: В ⇒ А, но в соответствии с теоремой 1.1 А ⇒ В. Полученное противоречие (В ⇒ В) доказывает теорему.

Аналогично можно доказать, что если справедлива теорема 1.4, то верна теорема 1.1, т. е. эти утверждения равносильны.

Для теоремы 1.2 противоположной к обратной будет теорема: ’’Если точка а не является точкой экстремума функции f ̕ непрерывной в этой точке, то производная f ̕ не меняет знак при переходе через эту точку”.

Для теоремы 1.3 противоположным к обратному будет утверждение: ’’Если у человека нет головы, то он не здоров”.

Проведите доказательство этого утверждения самостоятельно методом ”от противного».

Наряду с прямой теоремой 1.1 можно рассмотреть утверждение, называемое «обратной теоремой” :

Теорема:

В ⇒ А.

Однако обратная теорема не всегда справедлива, если верна прямая. Так, например, для теоремы 1.3 обратное утверждение: «Если у человека есть голова, то он здоров”, очевидно, не верно.

Если все же теорема 1.5 справедлива, то методом «от противного” исходя из нее доказывается справедливость утверждения, называемого «противоположная теорема”:

Теорема:

А ⇒ В

Наоборот, из теоремы 1.6 вытекает справедливость теоремы 1.5, т.е. эти утверждения равносильны. Заметим, что из прямой теоремы 1.1 не обязательно следует справедливость противоположной теоремы 1.6.

Приведенные связи удобно запоминать, представляя себе следующий ’’логический квадрат» (рис. 5):

множества

Рис. 5. Логический квадрат

Если наряду с прямой теоремой выполняется также обратная теорема, то А является ’’необходимым и достаточным” условием для В. То же самое можно сказать про В по отношению к А.

Так, например, то, что треугольник прямоугольный, является необходимым и достаточным условием того, что квадрат одной из сторон равен сумме квадратов двух других.

Множество N натуральных чисел

Определение:

Числа 1,2,3,… называются натуральными.

Сумма и произведение натуральных чисел будет числом натуральным, а разность и частное — не всегда. При вычитании натуральных чисел может получится отрицательное число, а при делении — не целое. Например, при делении множестваполучится целая часть 2 и 1 в остатке, что записывается следующим равенством: множества.

Приводя к общему знаменателю, получим равенство: 7 = 2 ∙ 3 + 1. В этих равенствах 7 называется делимым, 3 — делителем, 2 — целой частью и 1 — остатком (остаток всегда меньше делителя). Если остаток равен нулю, то говорят, что делимое делится на делитель, как, например, 6 делится на 3. Если натуральное число, большее единицы, делится только на 1 и на себя (что всегда справедливо), то оно называется простым. Простыми числами являются числа 2,3,5,7,11,13,17,19,23 и т. д. Любое натуральное число может быть представлено в виде произведения простых сомножителей. Например : 12 = 1 ∙ 2 2 3, 18 = 1 2 ∙ 3 3, 7 = 1 ∙ 7 и т. д.

Определение:

Наименьшим общим кратным двух данных натуральных чисел называется наименьшее из чисел, которые делятся на каждое из них.

Для любых двух натуральных чисел всегда найдется наименьшее общее кратное, поскольку их произведение всегда делится на каждое из двух данных.

Наименьшее общее кратное 12 и 18 равно 36. Для того чтобы найти наименьшее общее кратное двух чисел, нужно первое число помножить на простые множители, входящие в разложение второго числа и не входящие в разложение первого: 12 ∙ 3 = 36.

Определение:

Наибольшим общим делителем двух данных натуральных чисел называется наибольшее из чисел, на которые делится каждое из них.

Для любых двух натуральных чисел всегда найдется наибольший общий делитель, поскольку любые два числа всегда делятся на единицу. Если у двух натуральных чисел нет других общих делителей кроме единицы, они называются взаимно простыми. Наибольший общий делитель 12 и 18 равен 6. Для того, чтобы найти наибольший общий делитель двух чисел, нужно перемножить общие простые множители, входящие в разложение и одного, и другого числа: 1 ∙ 2 ∙ 3 = 6.

Множество Z целых чисел

Определение:

Натуральные, отрицательные натуральные числа и ноль образуют множество целых чисел (множество Z).

Сумма, произведение и разность целых чисел является целым числом, а частное — не всегда. Иногда множество отрицательных целых чисел обозначается Z_.

Множество натуральных чисел является подмножеством множества целых чисел: N ⊂ Z.

Множество Q рациональных чисел

Определение:

Рациональными числами называются числа вида множества, где m — целое (m Є Z), n — натуральное (n Є N), тип взаимно простые. Множество рациональных чисел обозначается Q.

Множество целых чисел является подмножеством множества рациональных чисел, т. к. любое целое число m можно рассматривать как рациональное, представив в виде множества. Сумма, произведение, разность, частное рациональных чисел ( при ненулевом знаменателе) является числом рациональным, однако корень из рационального числа — не всегда, как, например, множества,множества и т.д.

Всякое рациональное число множества можно представить в виде десятичной дроби, конечной или периодической. И наоборот, любая конечная или периодическая десятичная дробь может быть записана в виде простой дроби.

Пример:

множества=0,5; множества=0,8 ; множества=0,666…=0,(6) ; множества=7,31(06).

Две последние десятичные дроби бесконечные периодические. Повторяющиеся цифры называются периодом дроби и пишутся в скобках, количество этих цифр называется длиной периода. Для обратного преобразования конечной десятичной дроби ее нужно представить в виде простой и сократить: 0,8=множества=множества. На самом деле разница между конечной дробью и периодической непринципиальная. Так, 0,5=0,4(9).

Перевод периодической десятичной дроби в простую объясним на примере.

Пример:

Записать в виде простой дроби 0,(6).

Решение:

Периодическую дробь 0,(6) обозначим за x: 0,(6)=x, тогда, т. к. 10‧х — 10-0,666… = 6,666…, легко заметить, что 10∙х = 6 х. Решая это уравнение, получаем: 9‧x=6⇔x =множества = множества.

Определение:

Целой частью числа называется наибольшее целое число, не превосходящее данное. Целая часть числа х обозначается [x].

Примеры:

[3,56]=3; [0,12]=0; [-0,12]=-1; [-множества]=-4;
[5]=5; [0]=0.

Определение:

Дробной частью числа называется разность между самим числом и его целой частью. Дробная часть числа обозначается {x}. Она строго меньше единицы и находится в пределах : 0 ≤ {x} < 1.

Примеры:

{3,56}=0,56; {0,12}=0,12; {-0,12}=0,88;
{множества}=множества; {5}=0; {0}=0.

Множество J иррациональных чисел

Определение:

Иррациональным числом называется бесконечная непериодическая десятичная дробь.

Примерами иррациональных чисел являются √2, √3, ∛11, π, е, и т. д. Заметим, что J ∩Q = ⊘ Иррациональное число нельзя представить в виде простой дроби, его также невозможно ’’выписать до конца” (представить в виде конечной десятичной дроби), поэтому запись √2 = 1,41 ошибочна, следует писать √2 ≈ 1,41.

Заданное бесконечной непериодической дробью иррациональное число определяет две последовательности конечных (рациональных) десятичных дробей, называемых десятичными приближениями по недостатку и по избытку. Например, для √2 можно написать:
1 √2<2,
1,4< √2<1,5,
1,41< √2<1,42.

В инженерных расчетах при замене иррациональных чисел их рациональными приближениями достаточно во всех вычислениях брать на один знак больше, чем требуется в результате, и затем округлить результат.

Для иррациональных чисел можно также определить целую и дробную части, причем для х ∈ J ⇒ {τ} ∈ J.

Множество R действительных чисел

Определение:

Все рациональные и иррациональные числа образуют множество действительных (вещественных) чисел: R = QuJ.

В множестве действительных чисел всегда выполнимы сложение, вычитание, умножение, деление (не на ноль), возведение в любую действительную степень положительного числа, извлечение корня нечетной степени из отрицательного числа.

В множестве действительных чисел невозможно извлечение корня четной степени из отрицательного числа.

Числовая ось

Множеству действительных чисел можно дать простую геометрическую интерпретацию. Выберем на прямой положительное направление (указывается стрелкой), начало отсчета и единицу масштаба. Такая прямая называется числовой осью. Каждой ее точке можно поставить в соответствие единственное действительное число следующим образом: положительное число х изображается точкой, расположенной на оси на расстоянии х в направлении стрелки (на рис. 6 справа от О), отрицательное с другой стороны (на рис. 6 слева от О) на расстоянии х от О.

Число х называется координатой соответствующей точки на числовой оси. Из двух чисел больше будет то, которое расположено на числовой оси дальше в направлении стрелки (на рис. 6 — правее).

множества

Рис. 6. Числовая ось

Например, -1 > -2.

Числовые промежутки

Если известны два действительных числа а и b, a < b, то можно определить следующие множества действительных чисел, находящихся между двумя данными — числовые промежутки.

Отрезок (сегмент) [α; b]= {x | a ≤ х ≤ b},
Интервал (a; b)= {x | a < х < b}.
В частности, можно рассматривать бесконечные интервалы:

(- ∞; +∞)={x∈R}, (a;+∞)={x|x>a}, (- ∞ ;b)={x|x<b}.
Полуинтервал, [a;b)={x∣a≤x<b}, (a;b]={x∣a<x≤b}.

В частности, можно рассматривать бесконечные полуинтервалы: [a;+∞)={x∣x≥a}, (-∞;b]={x∣x≤b}.

Числовые промежутки изображают на числовой оси, причем если граничная точка принадлежит промежутку — она закрашена, если нет — изображается светлым кружком (’’выкалывается”). На рис 7 изображен полуинтервал (2;5].

множества

Рис. 7. Полуинтервал (2;5]

Числовые промежутки будем выделять штриховкой или утолщенной линией.

Примеры с решением на тему: «Множества«

При решении примеров данного практического занятия используется материал средней школы и материал лекции 1. Применение метода интервалов для решения неравенств иллюстрируется примерами 1.2-1.5

Пример:

Пусть A = [-3;5],B = (-5;7),C = [1;2). Найдите множество: A₀ = (4 ∩ В) U (В ∩ С).

Решение:

Для нахождения результата операций над числовыми промежутками их удобно изображать на числовых осях, расположенных одна под другой с согласованным началом и одинаковым масштабом. Если исходные промежутки А и В заштриховать, то их пересечением будет множество точек, заштрихованных на каждой из осей (рис. 8), а их объединением — множество точек, заштрихованных хотя бы на одной из осей (рис. 9).

Пользуясь этим правилом, последовательно получим A ∩ В, В ∩C и, наконец, (Л ∩ В) ∪ (В ∩ С) (рис. 8, 10, 11).
Ответ: A₀ ≈ [-3; 5].

Пример:

Найдите элементы множества:
A₀ = {x | (2 — 3x)(x + 4)(x — 2) > 0}.

Решение:

Неравенство (2 — 3x)(х + 4)(x — 2) > 0 решим методом интервалов, для чего нанесем на числовую ось значения х, при которых левая часть неравенства обращается в ноль: x₁ =множества,x₂ = -4,х₃ = 2. (рис. 12)

множества

Рис. 8. Нахождение пересечения [—3; 5] ∩ (—5; 7)
множества
Рис. 9. Нахождение объединения [-3; 5] ∪ (-5; 7)
множества
Рис. 10. Нахождение пересечения (—5; 7) ∩ [1; 2]

Сами эти значения не удовлетворяют неравенству, поэтому соответствующие точки “выколоты».

Знаки выражения в левой части неравенства определим, подставляя в него по одному значению из каждого интервала, на которые все множество R разбилось точками x₁,x₂,х₃. Отметим штриховкой те интервалы, на которых выражение в левой части неравенства положительно. Это множество является искомым.

Ответ: A₀=(-∞; -4) ∪ (множества; 2).

множества

Рис. 11. Решение примера 1.1
множества
Рис. 12. Решение примера 1.2

Пример:

Задайте характеристическим свойством множество: A₀ — множество всех натуральных чисел, меньших 5 или больших 10.

Решение:

В условии требуется,чтобы натуральные числа были меньше 5 или больше 10, т.е. искомое множество есть объединение двух подмножеств: множества натуральных чисел, меньших 5 и больших 10.

Ответ: A₀ = {x|x < 5, х ∈ N} ∪ {x|x > 10, х ∈ N}.

Пример:

Решите систему неравенств:
множества

Решение:

Решение системы неравенств есть пересечение множеств решений каждого из входящих в систему неравенств. Аналогично тому, как это делалось при решении примера 1.2, решим каждое из неравенств системы методом интервалов и найдем их пересечение (рис 13).

Ответ: х ∈ (-1; 2,5).

Пример:

Решите совокупность систем неравенств:
множества

множества

Рис. 13. Решение примера 1.4

Решение:

Решение совокупности систем неравенств есть объединение решений каждой системы, входящей в совокупность. Для решения разложим каждый многочлен в произведение с помощью корней:
множества

Решение совокупности систем методом интервалов представлено на рис. 14

множества

Рис. 14. Решение примера 1.5

Ответ: х ∈ (-2; 1)

Множества

Понятие множества является одним из основных понятий математики. Оно не сводится к другим понятиям и не оп­ределяется. Вместо определения приводят лишь примеры, поясня­ющие его смысл. Так, можно говорить о множестве всех учеников данной школы, о множестве всех собак на земном шаре, о множе­стве всех клеток данного человеческого тела, о множестве всех кар­тофелин в данном мешке, о множестве всех натуральных чисел, о множестве всех треугольников на данной плоскости, о множестве всех точек данного круга и т. д.

Когда в математике говорят о множестве, то объединяют некоторые предметы в одно целое — множество, состоящее из этих пред­метов. Основатель теории множеств Георг Кантор (1845—1918) выразил это следующими словами: «Множество есть многое, мыслимое как единое».

Предметы (объекты), составляющие некоторое множество, называются его элементами. То обстоятельство, что объект а является элементом множества А, записывается так: Множества (словами: а есть элемент множества А; а принадлежит А; а содержится в А; А содержит а). Если объект а не является элементом мно­жества А, то это записывается так: Множества (словами: а не есть эле­мент множества А; а не принадлежит А; а не содержится в А; А не содержит а).

Например, если А есть множество всех четных натуральных чисел, то Множества

Множество иногда можно задать перечислением всех его элементов. В этом случае употребляют фигурные скобки, в которые помещают названия всех элементов множества, разделенные запя­тыми. Так, {1, 2, 3) обозначает множество, состоящее из чисел «один», «два», «три» и только из них.

Вообще некоторое множество считается заданным, если указано некоторое свойство, которым обладают все его элементы и не обла­дают никакие другие объекты. Такое свойство называется характе­ристическим свойством множества.

Характеристическим свойством множества {1, 2, 3) может быть свойство совпадать с одним из членов списка, приведенного в фигур­ных скобках. Другим характеристическим свойством этого же множества является свойство быть корнем уравнения

Множества

Числовые множества

Множества могут состоять из объектов самой различной природы. Их элементами могут быть буквы, ато­мы, числа, уравнения, точки, углы и т. д. Именно этим объясняется чрезвычайная широта теории множеств и ее приложимость к са­мым разным областям знания (математике, механике, физике, лингвистике, экономике и т. д.). Для математики особо важную роль играют множества, составленные из «математических» объек­тов— корней уравнений, геометрических фигур и т. д. Чаще все­го нам будут встречаться числовые множества, то есть множества, элементами которых являются числа. Примерами числовых мно­жеств являются: а) множество всех действительных чисел; б) множество всех рациональных чисел; в) множество всех положительных чисел; г) множество всех чисел, удовлетворяющих неравенству Множества д) множество всех чисел вида Множества

Некоторые числовые множества имеют особые названия. Если даны два числа а и b, а < b, то множество всех чисел, удовлетворяющих неравенству Множества называют числовым отрезком или,

Множества

если это не вызывает недоразумений, просто отрезком и обознача­ют [а, b]. На числовой оси ему соответствует отрезок с концами а и b (рис. 1).

Множество чисел, удовлетворяющих неравенству а < х< b , называют числовым промежутком или, короче, промежутком и обозначают (а, b). На числовой оси ему соответствует отрезок, у которого отброшены концевые точки (рис. 2).

Множество чисел, удовлетворяющих неравенствам вида х > а (или х<а), называют (числовым) лучом. Его обозначают (а, Множества)

Множества

(или (—Множества, а)) (рис. 3). Иногда нам будут встречаться множества чисел, удовлетворяющих неравенствам Множества или Множества (рис. 4). Их называют (числовыми) полуотрезками и обозначают [а, b) и (а, b]. Заметим, что квадратная скобка означает, что соответствующий

Множества

конец включается в множество, а круглая — что он исключается.

Пустое множество

Введение понятия множества в математи­ку оказалось очень полезным. Из-за того что элементами множеств могут быть вещи самой различной природы, одни и те же утвержде­ния, касающиеся множеств, можно истолковать и как утверждения о натуральных числах, и как утверждения о точках геометрических фигур, и как утверждения о множестве слов и т. д. Таким образом, понятия и теоремы теории множеств обладают большой общностью. Этим и объясняется то, что язык теории множеств применяется в самых различных областях математики.

В математике приходится иногда рассматривать множества, содержащие только один элемент, и даже множества, не имеющие ни одного элемента. Множество, не содержащее ни одного элемен­та, называют пустым. Его обозначают знаком Множества. На первый взгляд может показаться, что понятие пустого множества излишне. Но когда множество задано своим характеристическим свойством, заранее неизвестно, пусто оно или нет. Например, пусть некоторое множество состоит из всех прямоугольников с неравными диаго­налями. То, что свойство «быть прямоугольником с неравными диагоналями» задает пустое множество, составляет утверждение геометрической теоремы: «Во всяком прямоугольнике диагонали равны». Точно так же из теоремы Пифагора следует, что множество прямоугольных треугольников, для которых квадрат гипотенузы не равен сумме квадратов катетов, пусто. Вот еще несколько приме­ров задания пустого множества характеристическим свойством: а) множество рациональных чисел r таких, что Множества б) множество всех точек пересечения двух параллельных прямых; в) множество треугольников, сумма углов которых отлична от 180°; г) множество квадратных уравнений, имеющих более двух раз­ личных корней; д) множество решений системы уравнений

Множества

О некотором множестве может быть неизвестно, является ли оно пустым множеством или нет. Так, до сих пор неизвестно, пусто ли множество натуральных чисел n таких, что n > 2, а уравнение Множества

имеет положительные целочисленные решения (в этом состоит из­вестная проблема Ферма).

Пустое множество единственно: нет двух разных пустых множеств.

Подмножество

Пусть даны два множества A и B, причем каждый элемент первого множества является элементом второго множества. Тогда множество А называют подмножеством (или частью) множества В. В этом случае пишут: Множества

Примеры подмножеств: а) числовой отрезок [1,3] есть подмножество числового отрез­ка [0, 4];

Множества

б) множество всех квадратов есть подмножество множества всех прямоугольников; в) множество всех целых чисел есть подмножество множества всех рациональных чисел.

Отметим, что пустое множество Множества является подмножеством любого множества А. Каждое множество А яв­ляется одним из своих подмножеств. Эти два подмножества ( 0 и все множество) называют несобственными. Все остальные подмножества называют собственными.

Множества часто изображают наглядно как множество точек геометрической фигуры. Тогда подмножество — это множество то­ чек части фигуры (рис. 5).

Пересечение множеств

Пусть даны множества А, В, С, … . Их пересечением называют множество X, содержащее те и только те элементы, которые входят в каждое из заданных множеств. Пере­ сечение двух множеств А и В обозначают АВ или Множества

Если множества А и В состоят из точек некоторых геометрических фигур, то Множества — множество общих точек этих фигур, то есть множество точек пересечения этих фигур в обычном смысле (рис. 6).

Пересечение множеств называют также их произведением, а операцию пересечения — умножением множеств. Можно показать,

Множества

что многие свойства пересечения множеств напоминают свойства ум­ножения чисел.

Примеры пересечения множеств: а) пересечением числового отрезка [0, 4 ] с числовым отрезком [2, 5] является числовой отрезок [2, 4] (рис. 7);

Множества

б) пересечение числового отрезка [0, 2] с числовым отрезком [3, 5] пусто; в) пересечение множества всех ромбов с множеством всех прямоугольников есть множество всех квадратов; г) пересечением множества четных натуральных чисел с множеством натуральных чисел, делящихся на 3, является множество натуральных чисел, делящихся на 6.

Сложение множеств

Суммой (или объединением) множеств А, В, С, . . . называют множество X, состоящее из тех и только тех элементов, которые входят хотя бы в одно из этих («слагае­мых») множеств. Сумму двух мно­жеств А и В обозначают А + В или Множества. Мы увидим позже, что некоторые свойства суммы мно­жеств напоминают свойства сум­мы чисел.

Множества

Если какой-нибудь элемент вхо­дит в несколько слагаемых множеств, то в сумме он берется лишь один раз. Например, суммой числового отрезка [0, 4] и числового отрезка [2, 5] является числовой отрезок [0, 5]. При этом точки отрезка [2, 4] входят в оба слагаемые, но в сумме они берутся лишь один раз. Впрочем, выражения «некоторый элемент берется в данном множестве пять раз» и т. п., как это следует из принятого нами понимания терминов «множество» и «элемент», просто не имеют смысла.

Примеры а) Обозначим через А множество точек некоторой плоской области и через В — множество точек другой области (рис. 8). Тогда их суммой будет множество точек заштрихованной фигуры, ограни­ченной на рис. 8 жирной линией. б) Обозначим через А множество успевающих учеников в классе, через В — множество девочек в этом классе и через С — множество неуспевающих мальчиков. Тогда Множестваявляется мно­жеством всех учеников этого класса. (Имеют ли множества А и В общие элементы?) в) Обозначим через Множества множество всех положительных дробей со знаменателем n. Тогда Множества является множест­вом всех положительных дробей, то есть дробей вида Множества, где m и n — натуральные числа. г) Обозначим через Множества множество правильных n-угольников. Тогда Множества является множеством всех правильных многоугольников. д) Обозначим через A множество целых чисел вида 4n — 1, а через В — множество целых чисел вида 4n + 1. Тогда Множества — множество всех нечетных целых чисел.

Разбиение множеств

Пусть множество X является суммой множеств A, В, С. . . , причем никакие два из них не имеют общих элементов. Тогда говорят, что множество X разбито на (непересекающиеся) подмножества А, В, С, . . . .

Примеры разбиения множеств: а) Множество натуральных чисел разбивается на подмножества четных чисел и нечетных чисел. б) Множество всех учеников в классе разбивается на множе­ства учеников, фамилия которых начинается на букву «А», учени­ков, фамилия которых начинается на букву «Б», и т. д. вплоть до буквы «Я». Какое из этих множеств пусто, если взять ваш класс? Какие из этих множеств пусты для любого класса? в) Множество всех векторов на плоскости можно разбить на непересекающиеся подмножества, относя к одному подмножеству все векторы, равные друг другу по длине, параллельные и одинаково направленные. г) Это же множество можно разбить иначе, относя к одному под­ множеству векторы, выходящие из одной точки плоскости.

Вычитание множеств

Если даны два множества A и В, то их разностью называют такое множество X = A В или (А — В), в которое входят все элементы из Л, не принадлежащие множест­ву В. При этом не предполагается, что множество В является час­тью множества A. Таким образом, при вычитании множества В из множества A из A удаляют общую часть (пересечение) A и В:

Множества

Например, если A — множество всех учащихся IX класса данной школы, а В — множество всех девочек, которые учатся в этой школе, то A В — множество всех мальчиков, обучающихся в IX классе этой школы.

В случае, когда В — часть множества А, А В называют дополнением к В в множестве А и обозначают Множества (разумеется, одно и то же множество В имеет разные дополнения в разных содержащих его множествах А). Например, дополнением множества четных чисел в множестве всех целых чисел является множество нечетных чисел. Дополнением множества всех квадратов в множестве прямоугольников является множество всех прямоугольни­ков с неравными сторонами, а дополнением того же множества квадратов в множестве всех ромбов — множество ромбов с неравными диагоналями.

Отображение множеств

Пусть даны два множества X и У и пусть име­ется правило Множества ставящее в соответствие каждому элементу Множества некоторый определенный Множества. Тогда говорят, что задано отображение Множества множества X в множество У. Элемент, соответствующий х в силу правила Множества обозначают Множества и пишут: Множества. Элемент у называют образом элемента х при отобра­жении Множества а элемент х называют прообразом элемента у при отображении Множества Отображение Множества называют также функцией, заданной на множестве X и при­нимающей значения во множестве У. Множество X называют областью опре­деления функции Множества

Если всякий Множества является образом некоторого Множества при отображе­нии Множества, то отображение Множества называют отображением множества X на множест­во У. В этом случае множество У называется областью значений функции Множества.

Приведем примеры отображений множеств: а) Пусть X — множество всех действительных чисел, У — множество всех неотрицательных чисел. Равенство Множества связывающее с элементом множества X элемент у множества У, задает отображение X на У. При этом числу 2 соответствует число 4, числу 6 — число 36 и т. д. б) Пусть X — множество всех действительных чисел, отличных от чис­ла 3, У — множество всех действительных чисел. Равенство Множества, связывающее с элементом х множества X элемент множества У, задает отобра­жение X в У. Является ли это отображение отображением на У? в) Пусть X — множество всех кругов, а У — множество всех действи­тельных чисел. Поставим каждому кругу в соответствие длину его радиуса. Мы получим отображение множества X в множество У. Другое отображе­ние X в У получится, если поставить каждому кругу в соответствие его пло­щадь. г) Пусть X — множество всех треугольников, а У — множество всех окружностей. Поставим каждому треугольнику в соответствие вписанную в него окружность. Получим отображение множества X в У. Другое отобра­жение X в У получится, если поставить в соответствие каждому треуголь­нику описанную вокруг него окружность. д) Пусть У — множество всех деревьев на земном шаре, а X — множе­ство всех плодов, растущих на этих деревьях. Поставим каждому плоду в соответствие дерево, на котором он растет. Получим отображение множества X в множество У.

Пусть Множества — отображение множества X в множество У и пусть Множества Множество всех элементов вида уМножестваназывается образом мно­жества Множества при отображении Множества и обозначается Множества

Рассмотрим некоторый элемент у из множества У и возьмем все элементы х из X, отображающиеся в у при отображении Множества. Множество всех этих элемен­тов называют полным прообразом элемента у при отображении Множества и обознача­ют Множества. В первом примере в) полным прообразом положительного числа r является множество всех кругов радиуса r. В первом примере г) полным прооб­разом любой данной окружности является множество всех треугольников, опи­санных вокруг этой окружности.

Если полный прообраз каждого элемента у из У при отображении Множества или пуст, или состоит только из одного элемента, то отображение Множества называется вложением в У. Например, функцияМножества с отрезком [1, 4] в качестве облас­ти определения определяет вложение этого отрезка в действительную ось.

Если Множества есть отображение множества X на множества У и полный прообраз каждого элемента у из У состоит лишь из одного элемента, то отображение Множества называется взаимно-однозначным отображением множества X на множество У. Иными словами, отображение взаимно-однозначно, если каждый элемент из его области значений является образом одного и только одного элемента его области определения.

Краткие исторические сведения

Теоретико-множественные представ­ления в неявной форме давно использовались математиками. Геометры древ­ней Греции в III веке до н. э. рассматривали «геометрические места точек», то есть множества точек, обладающих тем или иным свойством. Однако труд­ности, связанные с понятием бесконечности, привели к тому, что в течение длительного времени математики избегали рассматривать геометрические фигуры как множества точек.

Исследования по бесконечным множествам начали чешский ученый Б. Больцано (1781— 1841) и немецкий математик Г. Кантор (родился в 1845 г. в Петербурге, умер в 1918 г. в Галле). Труд Больцано был опубликован лишь через много лет после его смерти. Основные заслуги в развитии теории мно­жеств принадлежат Кантору. Он пришел к проблемам этой теории, исходя из сравнительно узкой математической задачи (вопроса о сходимости и рас­ходимости тригонометрических рядов). Однако вскоре ему и его последова­телям стало ясно, что теория множеств имеет важнейшее значение для раз­личных областей математики. Сейчас теория множеств дает общепринятый язык для многих разделов математики. В целом ряде случаев применение теоретико-множественных понятий позволило привести в систему многие ветви математики. Большой вклад в теорию множеств сделан трудами со­ветских математиков П. С. Александрова, А. Н. Колмогорова, Н. Н. Лузина, П. С. Новикова, М. Я. Суслина и других. Советская школа теории множеств оказала сильное влияние на развитие этой части математики во всем мире.

Вскоре после создания теории множеств выяснилось, что «наивная» трак­товка понятия бесконечного множества может привести к противоречиям. Исследования в этом направлении потребовали развития математической логики. Первоначально эта область математики была очень далека от практических приложений, но впоследствии ее принципы составили идейную ос­нову конструирования электронных вычислительных машин и программиро­вания вычислений на этих машинах.

Правила действий над высказываниями, во многом известные еще Ари­стотелю (создателю формальной логики), были более подробно сформулиро­ваны Г. В. Лейбницем, которого часто считают создателем математической логики. Алгебраическую форму этим правилам придали английские матема­тика Дж. Буль (1815— 1864) и А. де Морган (1806—1871). По сути дела, эти правила совпадают с указанными выше правилами действий над множест­вами. Большой вклад в развитие математической логики внесли Г. Фреге, Б. Рассел, Д. Гильберт, К. Гёдель, А. Тарский, советские математики П. С. Новиков, А. Н. Колмогоров, А. А. Марков и другие.

Дополнение к различным типам множеств

Различные типы множеств

Различные типы множеств

Различные типы множеств

Различные типы множеств

Различные типы множеств

Различные типы множеств

Различные типы множеств

Различные типы множеств

Различные типы множеств

Различные типы множеств

Различные типы множеств

Смотрите также:

Предмет математический анализ

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Формулы и правила дифференцирования
  45. Дифференциальное исчисление
  46. Дифференциальные уравнения
  47. Дифференциальные уравнения первого порядка
  48. Дифференциальные уравнения высших порядков
  49. Дифференциальные уравнения в частных производных
  50. Тригонометрические функции
  51. Тригонометрические уравнения и неравенства
  52. Показательная функция
  53. Показательные уравнения
  54. Обобщенная степень
  55. Взаимно обратные функции
  56. Логарифмическая функция
  57. Уравнения и неравенства
  58. Положительные и отрицательные числа
  59. Алгебраические выражения
  60. Иррациональные алгебраические выражения
  61. Преобразование алгебраических выражений
  62. Преобразование дробных алгебраических выражений
  63. Разложение многочленов на множители
  64. Многочлены от одного переменного
  65. Алгебраические дроби
  66. Пропорции
  67. Уравнения
  68. Системы уравнений
  69. Системы уравнений высших степеней
  70. Системы алгебраических уравнений
  71. Системы линейных уравнений
  72. Системы дифференциальных уравнений
  73. Арифметический квадратный корень
  74. Квадратные и кубические корни
  75. Извлечение квадратного корня
  76. Рациональные числа
  77. Иррациональные числа
  78. Арифметический корень
  79. Квадратные уравнения
  80. Иррациональные уравнения
  81. Последовательность
  82. Ряды сходящиеся и расходящиеся
  83. Тригонометрические функции произвольного угла
  84. Тригонометрические формулы
  85. Обратные тригонометрические функции
  86. Теорема Безу
  87. Математическая индукция
  88. Показатель степени
  89. Показательные функции и логарифмы
  90. Множество действительных чисел
  91. Числовые множества
  92. Преобразование рациональных выражений
  93. Преобразование иррациональных выражений
  94. Геометрия
  95. Действительные числа
  96. Степени и корни
  97. Степень с рациональным показателем
  98. Тригонометрические функции угла
  99. Тригонометрические функции числового аргумента
  100. Тригонометрические выражения и их преобразования
  101. Преобразование тригонометрических выражений
  102. Комбинаторика
  103. Вычислительная математика
  104. Прямая линия на плоскости и ее уравнения
  105. Прямая и плоскость
  106. Линии и уравнения
  107. Прямая линия
  108. Уравнения прямой и плоскости в пространстве
  109. Кривые второго порядка
  110. Кривые и поверхности второго порядка
  111. Числовые ряды
  112. Степенные ряды
  113. Ряды Фурье
  114. Преобразование Фурье
  115. Функциональные ряды
  116. Функции многих переменных
  117. Метод координат
  118. Гармонический анализ
  119. Вещественные числа
  120. Предел последовательности
  121. Аналитическая геометрия
  122. Аналитическая геометрия на плоскости
  123. Аналитическая геометрия в пространстве
  124. Функции одной переменной
  125. Высшая алгебра
  126. Векторная алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

Множества точек, задаваемые алгебраическими уравнениями и неравенствами

Числовые множества

Множества могут состоять из объектов самой различной природы. Их элементами могут быть буквы, атомы, книги, люди и т.д. Для математики особо важную роль играют множества, составленные из “математических” объектов – чисел, точек, геометрических фигур и т.п. Примерами числовых множеств являются:

а) множество всех действительных чисел R;

б) множество всех рациональных чисел Q;

в) множество всех натуральных чисел N;

г) множество всех чисел вида , где n принимает все натуральные значения.

В предлагаемой лекции мы рассмотрим примеры числовых множеств специального вида.

Множества точек на прямой

Числовые промежутки

Пример, имеющий важные применения, – соответствие между множеством действительных чисел R и множеством точек числовой прямой, т.е. прямой, на которой выбраны начало отсчета (ему сопоставлено число 0) и масштаб, однозначно определяющий равномерную шкалу. Каждой точке прямой соответствует ровно одно действительное число – координата этой точки, и обратно, каждому действительному числу x сопоставляется точка прямой с координатой x. Точка, соответствующая большему числу, находится правее, меньшему числу – левее. Данное соответствие позволяет множество чисел интерпретировать на геометрическом языке как множество точек прямой.

Интервалы

Открытым интерваломназывается множество всех чисел х, которые удовлетворяют неравенствам a x и x²

Заштрихованная часть числовой прямой содержит все точки, принадлежащие соответствующему интервалу. Незакрашенные кружочки означают, что эти точки не принадлежат интервалу, а закрашенные, наоборот, означают, что эти точки принадлежат интервалу.

Бесконечные интервалы.Интервал (–¥, a) (или (–¥, a]) – это множество всех чисел х, удовлетворяющих неравенству x a (или x ³ a). Интервал (–¥, +¥) – это множество R всех действительных чисел. Эти интервалы геометрически изображаются так:

Фигурирующие в этих обозначениях символы +¥ и –¥ ни в коем случае нельзя понимать как действительные числа. Наличие символа +¥ в обозначении интервала означает, что интервал содержит любые сколь угодно большие числа (например, интервал (а, +¥) содержит все числа, большие а). По аналогии с обычным интервалом можно записать, что интервал (а, +¥) состоит из всех чисел х – таких, что a a.

Точно так же наличие символа –¥ в обозначении интервала означает, что в этот интервал входят все отрицательные числа, абсолютные величины которых могут быть сколь угодно большими. Неравенство x > –¥, равно как и неравенство –¥

Пример.Пусть A, B, C – множества действительных чисел: A = (–4, 7); B = [0, 10], C = [–1, 4). Числовые промежутки A, B, C изображены на рисунке 3. Светлыми кружками обозначены концы промежутка, не принадлежащие ему (так, у интервала оба конца – светлые); закрашенными – принадлежащие промежутку.

AB = [0, 7); A È B = (–4, 10]; A B = (–4, 0); B A = [7, 10]; C A = Æ; A C = (–4, –1) È [4, 7).

Упражнение. Покажите на числовой прямой множества BC, B È C, B C, C B, A ∩ C,
A
È C , , , и представьте эти промежутки с помощью введенных выше обозначений.

Замечание. Следует отметить, что одинаковым образом определяются и обозначаются числовые промежутки как в области действительных чисел (и тогда промежуток содержит бесконечное множество чисел), так и в области целых чисел (тогда, например, целочисленный отрезок [–3, 2] содержит 6 чисел: <–3, –2, –1, 0, 1, 2>, а интервал (–3, 2) содержит 4 числа:
<–2, –1, 0, 1>. Разница определяется тем, какое множество выбрано в качестве универсального

Множества точек, задаваемые алгебраическими уравнениями и неравенствами

С каждым уравнением связаны два числовых множества. Первое из них – область определения уравнения. Это множество состоит из всех значений х, для которых имеют смысл обе части уравнения. Второе множество – это множество его корней, то есть чисел, при подстановке которых в уравнение оно обращается в тождество.

Пример 1. Уравнение имеет своей областью определения множество [–4, +¥). Найдем его корни. Возведем обе части уравнения в квадрат:

Решим полученное квадратное уравнение:

Оба числа x1 = 0 и x2 = 5 принадлежат множеству [–4, +¥), однако число x2 = 5 является посторонним корнем уравнения (это показывает простая проверка: ). Таким образом, множество корней данного уравнения <0>Ì [–4, +¥). На прямой эти множества изображаются так:

Пример 2. Уравнение |x| = 3 имеет своей областью определения множество (–¥, +¥). Найдем его корни. По определению абсолютной величины числа х имеем

.

Поэтому данное уравнение можно представить в виде совокупности двух уравнений: х = 3 и
х = 3. Откуда получим два корня: x1 = 3, x2 = –3. Геометрически эти решения можно истолковать так: расстояние от x1 до начала отсчета О и расстояние x2 до начала отсчета О равны 3 (рисунок 4).

Пример 3. Неравенство |x| 3 имеет своими решениями объединение двух множеств:
(–¥, –3) È (3, +¥). Геометрически условие |x| > 3 означает, что расстояние от точки х до начала отсчета больше 3. Множество решений этого неравенства изображено на рисунке 7.

В случае неравенства |xx0| 0, множество решений имеет вид (x0a, x0 + a) и является открытым интервалом длины 2а с центром в точке (рисунок 8).

Множество решений неравенства |xx0| > a, где a > 0, представляет собой объединение двух множеств (–¥, x0a) È (x0 + a, +¥). Эти множества изображены на рисунке 9.

Операции над множествами

Пересечение множеств

Рассмотрим два множества: множество друзей Джона и множество друзей Майкла.

Друзья Джона = < Том,
Фред,
Макс,
Джорж >
Друзья Майкла = < Лео,
Том,
Фред,
Эван >

Видим, что Том и Фред одновременно являются друзьями Джона и Майкла.

Говоря на языке множеств, элементы Том и Фред принадлежат как множеству друзей Джона, так и множеству друзей Майкла.

Зададим новое множество с названием «Общие друзья Джона и Майкла» и в качестве элементов добавим в него Тома и Фреда :

Общие друзья Джона и Майкла =

В данном случае множество «Общие друзья Джона и Майкла» является пересечением множеств друзей Джона и Майкла.

Пересечением двух (или нескольких) исходных множеств называется множество, которое состоит из элементов, принадлежащих каждому из исходных множеств.

В нашем случае элементы Том и Фред принадлежат каждому из исходных множеств, а именно: множеству друзей Джона и множеству друзей Майкла.

Обозначим множество друзей Джона через букву A , множество друзей Майкла — через букву B , а множество общих друзей Джона и Майкла обозначим через букву C :

Тогда пересечением множеств A и B будет множество C и записываться следующим образом:

Символ означает пересечение.

Говоря о множестве, обычно подразумевают элементы, принадлежащие этому множеству. Символ пересечения ∩ читается, как союз И. Тогда выражение A ∩ B = C можно прочитать следующим образом:

«Элементы, принадлежащие множеству A И множеству B, есть элементы, принадлежащие множеству C».

«Друзья, одновременно принадлежащие Джону И Майклу, есть общие друзья Джона и Майкла».

Теперь представим, что у Джона и Майкла нет общих друзей. Для удобства, как и прежде обозначим множество друзей Джона через букву A , а множество друзей Майкла через букву B

В этом случае говорят, что исходные множества не имеют общих элементов и пересечением таких множеств является пустое множество. Пустое множество обозначается символом ∅

Пример 2. Рассмотрим два множества: множество A , состоящее из чисел 1, 2, 3, 5, 7 и множество B, состоящее из чисел 1, 2, 3, 4, 6, 12, 18

Зададим новое множество C и добавим в него элементы, которые одновременно принадлежат множеству A и множеству B

Множество С является пересечением множеств A и B , поскольку элементы множества C одновременно принадлежат множеству A и множеству B

Пример 3. Рассмотрим два множества: множество A, состоящее из чисел 1, 5, 7, 9 и множество B , состоящее из чисел 1, 4, 5, 7

Зададим новое множество C и добавим в него элементы, которые одновременно принадлежат множеству A и множеству B

Множество С является пересечением множеств A и B , поскольку элементы множества C одновременно принадлежат множеству A и множеству B.

Пример 4. Найти пересечение следующих множеств:

Пересечением множеств A , B и C будет множество, состоящее из элементов, принадлежащих каждому из множеств A , B и C . Этими элементами являются числа 3 и 9.

Зададим новое множество D и добавим в него элементы 3 и 9. Затем с помощью символа пересечения запишем, что пересечением множеств A, B и C является множество D

Чтобы найти пересечение, вовсе необязательно задавать множества с помощью букв. Если элементов мало, то множество можно задать прямым перечислением элементов.

К примеру, пусть первое множество состоит из элементов 1, 3, 5, а второе из элементов 2, 3, 5 . Пересечением в данном случае является множество, состоящее из элементов 3 и 5 . Чтобы записать пересечение, можно воспользоваться прямым перечислением:

Числовые промежутки, которые мы рассмотрели в предыдущих уроках, тоже являются множествами. Элементами таких множеств являются числа, входящие в числовой промежуток.

Например, отрезок [2; 6] можно понимать, как множество всех чисел от 2 до 6. Для наглядности можно перечислить все целые числа, принадлежащие данному отрезку:

Следует иметь ввиду, что мы перечислили только целые числа. Отрезку [2; 6] также принадлежат и другие числа, не являющиеся целыми, например, десятичные дроби. Десятичные дроби располагаются между целыми числами, но их количество настолько велико, что перечислить их не представляется возможным.

Еще пример. Интервал (2; 6) можно понимать, как множество всех чисел от 2 до 6, кроме чисел 2 и 6. Ранее мы говорили, что интервал это такой числовой промежуток, границы которого не принадлежат ему. Для наглядности можно перечислить все целые числа, принадлежащие интервалу (2; 6) :

Поскольку числовые промежутки являются множествами, то мы можем находить пересечения между различными числовыми промежутками. Рассмотрим несколько примеров.

Пример 5. Даны два числовых промежутка: [2; 6] и [4; 8] . Найти их пересечение.

Оба промежутка обрамлены квадратными скобками, значит их границы принадлежат им.

Для наглядности перечислим все целые числа, принадлежащие промежуткам [2; 6] и [4; 8] :

Видно, что числа 4, 5, 6 принадлежат как первому промежутку [2; 6] , так и второму [4; 8] .

Тогда пересечением числовых промежутков [2; 6] и [4; 8] будет числовой промежуток [4; 6]

Изобразим промежутки [2; 6] и [4; 8] на координатной прямой. На верхней области отметим числовой промежуток [2; 6] , на нижней — промежуток [4; 8]

Видно, что числа, принадлежащие промежутку [4; 6] , принадлежат как промежутку [2; 6] , так и промежутку [4; 8] . Можно также заметить, что штрихи, входящие в промежутки [2; 6] и [4; 8] пересекаются в промежутке [4; 6] . В такой ситуации, когда перед глазами есть координатная прямая, понятие пересечения множеств можно понимать в прямом смысле, что очень удобно.

Пример 6. Найти пересечение числовых промежутков [−2; 3] и [4; 7]

Оба промежутка обрамлены квадратными скобками, значит их границы принадлежат им.

Для наглядности перечислим все целые числа, принадлежащие промежуткам [−2; 3] и [4; 7] :

−2, −1, 0, 1, 2, 3 ∈ [−2; 3]

Видно, что числовые промежутки [−2; 3] и [4; 7] не имеют общих чисел. Поэтому их пересечением будет пустое множество:

Если изобразить числовые промежутки [−2; 3] и [4; 7] на координатной прямой, то можно увидеть, что они нигде не пересекаются:

Пример 7. Дано множество из одного элемента < 2 >. Найти его пересечение с промежутком (−3; 4)

Множество, состоящее из одного элемента < 2 >, на координатной прямой изображается в виде закрашенного кружка, а числовой промежуток (−3; 4) это интервал, границы которого не принадлежат ему. Значит границы −3 и 4 будут изображаться в виде пустых кружков:

Пересечением множества < 2 >и числового промежутка (−3; 4) будет множество, состоящее из одного элемента < 2 >, поскольку элемент 2 принадлежит как множеству < 2 >, так и числовому промежутку (−3; 4)

На самом деле мы уже занимались пересечением числовых промежутков, когда решали системы линейных неравенств. Вспомните, как мы решали их. Сначала находили множество решений первого неравенства, затем множество решений второго. Затем находили множество решений, которые удовлетворяют обоим неравенствам.

По сути, множество решений, удовлетворяющих обоим неравенствам, является пересечением множеств решений первого и второго неравенства. Роль этих множеств берут на себя числовые промежутки.

Например, чтобы решить систему неравенств , мы должны сначала найти множества решений каждого неравенства, затем найти пересечение этих множеств.

В данном примере решением первого неравенства x ≥ 3 является множество всех чисел, которые больше 3 (включая само число 3). Иначе говоря, решением неравенства является числовой промежуток [3; +∞)

Решением второго неравенства x ≤ 6 является множество всех чисел, которые меньше 6 (включая само число 6). Иначе говоря, решением неравенства является числовой промежуток (−∞; 6]

А общим решением системы будет пересечение множеств решений первого и второго неравенства, то есть пересечение числовых промежутков [3; +∞) и (−∞; 6]

Если мы изобразим множество решений системы на координатной прямой, то увидим, что эти решения принадлежат промежутку [3; 6] , который в свою очередь является пересечением промежутков [3; +∞) и (−∞; 6]

Поэтому в качестве ответа мы указывали, что значения переменной x принадлежат числовому промежутку [3; 6], то есть пересечению множеств решений первого и второго неравенства

Пример 2. Решить неравенство

Все неравенства, входящие в систему уже решены. Нужно только указать те решения, которые являются общими для всех неравенств.

Решением первого неравенства является числовой промежуток (−∞; −1) .

Решением второго неравенства является числовой промежуток (−∞; −5) .

Решением третьего неравенства является числовой промежуток (−∞; 4) .

Решением системы будет пересечение числовых промежутков (−∞; −1), (−∞; −5) и (−∞; 4) . В данном случае этим пересечением является промежуток (−∞; −5) .

На рисунке представлены числовые промежутки и неравенства, которыми эти числовые промежутки заданы. Видно, что числа, принадлежащие промежутку (−∞; −5) , одновременно принадлежат всем исходным промежуткам.

Запишем ответ к системе с помощью числового промежутка:

Пример 3. Решить неравенство

Решением первого неравенства y > 7 является числовой промежуток (7; +∞) .

Решением второго неравенства y является числовой промежуток (−∞; 4) .

Решением системы будет пересечение числовых промежутков (7; +∞) и (−∞; 4) .

В данном случае пересечением числовых промежутков (7; +∞) и (−∞; 4) является пустое множество, поскольку эти числовые промежутки не имеют общих элементов:

Если изобразить числовые промежутки (7; +∞) и (−∞; 4) на координатной прямой, то можно увидеть, что они нигде не пересекаются:

Объединение множеств

Объединением двух (или нескольких) исходных множеств называют множество, которое состоит из элементов, принадлежащих хотя бы одному из исходных множеств.

На практике объединение множеств состоит из всех элементов, принадлежащих исходным множествам. Поэтому и говорят, что элементы такого множества принадлежат хотя бы одному из исходных множеств.

Рассмотрим множество A с элементами 1, 2, 3 и множество B с элементами 4, 5, 6.

Зададим новое множество C и добавим в него все элементы множества A и все элементы множества B

В данном случае объединением множеств A и B является множество C и обозначается следующим образом:

Символ ∪ означает объединение и заменяет собой союз ИЛИ. Тогда выражение AB = C можно прочитать так:

Элементы, принадлежащие множеству A ИЛИ множеству B, есть элементы, принадлежащие множеству C.

В определении объединения сказано, что элементы такого множества принадлежат хотя бы одному из исходных множеств. Данную фразу можно понимать в прямом смысле.

Вернёмся к созданному нами множеству C , куда входят все элементы множеств A и B . Возьмём для примера из этого множества элемент 5. Что можно про него сказать?

Если 5 является элементом множества C , а множество С является объединением множеств A и B , то можно с уверенностью заявить, что элемент 5 принадлежит хотя бы одному из множеств A и B . Так оно и есть:

Возьмем ещё один элемент из множества С , например, элемент 2. Что можно про него сказать?

Если 2 является элементом множества C , а множество С является объединением множеств A и B , то можно с уверенностью заявить, что элемент 2 принадлежит хотя бы одному из множеств A и B . Так оно и есть:

Если мы захотим объединить два или более множества и вдруг обнаружим, что один или несколько элементов принадлежат каждому из этих множеств, то в объединение повторяющиеся элементы будут входить только один раз.

Например, рассмотрим множество A с элементами 1, 2, 3, 4 и множество B с элементами 2, 4, 5, 6.

Видим, что элементы 2 и 4 одновременно принадлежат и множеству A , и множеству B . Если мы захотим объединить множества A и B , то новое множество C будет содержать элементы 2 и 4 только один раз. Выглядеть это будет так:

Чтобы при объединении не допустить ошибок, обычно поступают так: сначала в новое множество добавляют все элементы первого множества, затем добавляют элементы второго множества, которые не принадлежат первому множеству. Попробуем сделать такое объединение с множествами A и B .

Итак, у нас имеются следующие исходные множества:

Зададим новое множество С и добавим в него все элементы множества A

Теперь добавим элементы из множества B , которые не принадлежат множеству A . Множеству A не принадлежат элементы 5 и 6 . Их и добавим во множество C

Пример 2. Друзьями Джона являются Том, Фред, Макс и Джордж. А друзьями Майкла являются Лео, Том, Фред и Эван. Найти объединение множеств друзей Джона и Майкла.

Для начала зададим два множества: множество друзей Джона и множество друзей Майкла.

Друзья Джона = < Том,
Фред,
Макс,
Джорж >
Друзья Майкла = < Лео,
Том,
Фред,
Эван >

Зададим новое множество с названием «Все друзья Джона и Майкла» и добавим в него всех друзей Джона и Майкла.

Заметим, что Том и Фред одновременно являются друзьями Джона и Майкла, поэтому мы добавим их в новое множество только один раз, поскольку сразу двух Томов и двух Фредов не бывает.

Все друзья Джона и Майкла =

В данном случае множество всех друзей Джона и Майкла является объединением множеств друзей Джона и Майкла.

Друзья Джона ∪ Друзья Майкла = Все друзья Джона и Майкла

Пример 3. Даны два числовых промежутка: [−7; 0] и [−3; 5] . Найти их объединение.

Оба промежутка обрамлены квадратными скобками, значит их границы принадлежат им.

Для наглядности перечислим все целые числа, принадлежащие этим промежуткам:

−7, −6, −5, −4, −3,−2, −1 , 0 ∈ [−7; 0]

−3,−2, −1 , 0, 1, 2, 3, 4, 5 ∈ [−3; 5]

Объединением числовых промежутков [−7; 0] и [−3; 5] будет числовой промежуток [−7; 5] , который содержит все числа промежутка [−7; 0] и [−3; 5] без повторов некоторых из чисел

−7, −6, −5, −4, −3,−2, −1, 0, 1, 2, 3, 4, 5 ∈ [−7; 5]

Обратите внимание, что числа −3,−2, −1 принадлежали и первому промежутку и второму. Но поскольку в объединение допускается включать такие элементы только один раз, мы включили их единоразово.

Значит объединением числовых промежутков [−7; 0] и [−3; 5] будет числовой промежуток [−7; 5]

Изобразим на координатной прямой промежутки [−7; 0] и [−3; 5] . На верхней области отметим числовой промежуток [−7; 0] , на нижней — промежуток [−3; 5]

Ранее мы выяснили, что промежуток [−7; 5] является объединением промежутков [−7; 0] и [−3; 5] . Здесь полезно вспомнить про определение объединения множеств, которое было приведено в самом начале. Объединение трактуется, как множество, состоящее из всех элементов, принадлежащих хотя бы одному из исходных множеств.

Действительно, если взять любое число из промежутка [−7; 5] , то окажется, что оно принадлежит хотя бы одному из промежутков: либо промежутку [−7; 0] либо промежутку [−3; 5] .

Возьмём из промежутка [−7; 5] любое число, например число 2 . Поскольку промежуток [−7; 5] является объединением промежутков [−7; 0] и [−3; 5] , то число 2 будет принадлежать хотя бы одному из этих промежутков. В данном случае число 2 принадлежит промежутку [−3; 5]

Возьмём ещё какое-нибудь число. Например, число −4 . Это число будет принадлежать хотя бы одному из промежутков: [−7; 0] или [−3; 5] . В данном случае оно принадлежит промежутку [−7; 0]

Возьмём ещё какое-нибудь число. Например, число −2 . Оно принадлежит как промежутку [−7; 0] , так и промежутку [−3; 5] . Но на координатной прямой оно указывается только один раз, поскольку в одной точке сразу два числа −2 не бывает.

Не каждое объединение числовых промежутков является числовым промежутком. Например, попробуем найти объединение числовых промежутков [−2 ; −1] и [4 ; 7].

Идея остаётся та же самая — объединением числовых промежутков [−2 ;−1] и [4 ; 7] будет множество, состоящее из элементов, принадлежащих хотя бы одному из промежутков: [−2; −1] или [4; 7] . Но это множество не будет являться числовым промежутком. Для наглядности перечислим все целые числа, принадлежащие этому объединению:

Получили множество < −2, −1, 4, 5, 6, 7 >. Это множество не является числовым промежутком по причине того, что числа, располагающиеся между −1 и 4 , не вошли в полученное множество

Числовой промежуток должен содержать все числа от левой границы до правой. Если одно из чисел отсутствует, то числовой промежуток теряет смысл. Допустим, имеется линейка длиной 15 см

Эта линейка является числовым промежутком [0; 15], поскольку содержит все числа в промежутке от 0 до 15 включительно. Теперь представим, что на линейке после числа 9 сразу следует число 12.

Эта линейка не является линейкой в 15 см, и её нежелательно использовать для измерения. Также, её нельзя назвать числовым промежутком [0; 15] , поскольку она не содержит все числа, которые должна была содержать.

Решение неравенств, содержащих знак ≠

Некоторые неравенства содержат знак (не равно). Например, 2x ≠ 8 . Чтобы решить такое неравенство, нужно найти множество значений переменной x , при которых левая часть не равна правой части.

Решим неравенство 2x ≠ 8 . Разделим обе части данного неравенства на 2, тогда получим:

Получили равносильное неравенство x ≠ 4 . Решением этого неравенства является множество всех чисел, не равных 4. То есть если мы подставим в неравенство x ≠ 4 любое число, которое не равно 4, то получим верное неравенство.

Подставим, например, число 5

5 ≠ 4 — верное неравенство, поскольку 5 не равно 4

7 ≠ 4 — верное неравенство, поскольку 7 не равно 4

И поскольку неравенство x ≠ 4 равносильно исходному неравенству 2x ≠ 8 , то решения неравенства x ≠ 4 будут подходить и к неравенству 2x ≠ 8 . Подставим те же тестовые значения 5 и 7 в неравенство 2x ≠ 8 .

Изобразим множество решений неравенства x ≠ 4 на координатной прямой. Для этого выколем точку 4 на координатной прямой, а всю оставшуюся область с обеих сторон выделим штрихами:

Теперь запишем ответ в виде числового промежутка. Для этого воспользуемся объединением множеств. Любое число, являющееся решением неравенства 2x ≠ 8 будет принадлежать либо промежутку (−∞; 4) либо промежутку (4; +∞). Так и записываем, что значения переменной x принадлежат (−∞; 4) или (4; +∞) . Напомним, что для слова «или» используется символ ∪

В этом выражении говорится, что значения, принимаемые переменной x , принадлежат промежутку (−∞; 4) или промежутку (4; +∞).

Неравенства, содержащие знак , также можно решать, как обычные уравнения. Для этого знак заменяют на знак = . Тогда получится обычное уравнение. В конце решения найденное значение переменной x нужно исключить из множества решений.

Решим предыдущее неравенство 2x ≠ 8 , как обычное уравнение. Заменим знак ≠ на знак равенства = , получим уравнение 2x = 8 . Разделим обе части данного уравнения на 2 , получим x = 4 .

Видим, что при x , равном 4, уравнение обращается в верное числовое равенство. При других значениях равенства соблюдаться не будет. Эти другие значения нас и интересуют. А для этого достаточно исключить найденную четвёрку из множества решений.

Пример 2. Решить неравенство 3x − 5 ≠ 1 − 2x

Перенесем −2x из правой части в левую часть, изменив знак, а −5 из левой части перенесём в правую часть, опять же изменив знак:

Приведем подобные слагаемые в обеих частях:

Разделим обе части получившегося неравенства на 5

Решением неравенства x ≠ 1,2 является множество всех чисел, не равных 1,2 .

Изобразим множество решений неравенства x ≠ 1,2 на координатной прямой и запишем ответ в виде числового промежутка:

В этом выражении говорится, что значения, принимаемые переменной x принадлежат промежутку (−∞; 1,2) или промежутку (1,2; +∞)

Решение совокупностей неравенств

Рассмотрим ещё один вид неравенств, который называется совокупностью неравенств. Такой тип неравенств, возможно, вы будете решать редко, но для общего развития полезно изучить и их.

Совокупность неравенств очень похожа на систему неравенств. Различие в том, что в системе неравенств нужно найти множество решений, удовлетворяющих каждому неравенству, образующему эту систему.

А в случае с совокупностью неравенств, нужно найти множество решений, удовлетворяющих хотя бы одному неравенству, образующему эту совокупность.

Совокупность неравенств обозначается квадратной скобкой. Например, следующая запись из двух неравенств является совокупностью:

Решим данную совокупность. Сначала нужно решить каждое неравенство по отдельности.

Решением первого неравенства x ≥ 3 является числовой промежуток [3; +∞) . Решением второго неравенства x ≤ 6 является числовой промежуток (−∞; 6] .

Множество значений x , при которых верно хотя бы одно из неравенств, будет принадлежать промежутку [3; +∞) или промежутку (−∞; 6] . Так и записываем:

В этом выражении говорится, что переменная x , входящая в
совокупность принимает все значения, принадлежащие промежутку [3; +∞) или промежутку (−∞; 6] . А это то, что нам нужно. Ведь решить совокупность означает найти множество решений, удовлетворяющих хотя бы одному неравенству, образующему эту совокупность. А любое число из промежутка [3; +∞) или промежутка (−∞; 6] будет удовлетворять хотя бы одному неравенству.

Например, число 9 из промежутка [3; +∞) удовлетворяет первому неравенству x ≥ 3. А число −7 из промежутка (−∞; 6] удовлетворяет второму неравенству x ≤ 6.

Посмотрите внимательно на выражение x ∈ [3; +∞) ∪ (−∞; 6], а именно на его правую часть. Ведь выражение [3; +∞) ∪ (−∞; 6] представляет собой объединение числовых промежутков [3; +∞) и (−∞; 6] . Точнее, объединение множеств решений первого и второго неравенства.

Стало быть, решением совокупности неравенств является объединение множеств решений первого и второго неравенства.

Иначе говоря, решением совокупности будет объединение числовых промежутков [3; +∞) и (−∞; 6]

Объединением числовых промежутков [3; +∞) и (−∞; 6] является промежуток (−∞; +∞) . Точнее, объединением числовых промежутков [3; +∞) и (−∞; 6] является вся координатная прямая. А вся координатная прямая это все числа, которые только могут быть

Ответ можно оставить таким, каким мы его записали ранее:

либо заменить на более короткий:

Возьмём любое число из полученного объединения, и проверим удовлетворяет ли оно хотя бы одному неравенству.

Возьмем для примера число 8. Оно удовлетворяет первому неравенству x ≥ 3.

Возьмем еще какое-нибудь число, например, число 1. Оно удовлетворяет второму неравенству x ≤ 6

Возьмем еще какое-нибудь число, например, число 5 . Оно удовлетворяет и первому неравенству x ≥ 3 и второму x ≤ 6

Пример 2. Решить совокупность неравенств

Чтобы решить эту совокупность, нужно найти множество решений, которые удовлетворяют хотя бы одному неравенству, образующему эту совокупность.

Для начала найдём множество решений первого неравенства x . Этим множеством является числовой промежуток (−∞; −0,25) .

Множеством решений второго неравенства x ≥ −7 является числовой промежуток [−7; +∞).

Решением совокупности неравенств будет объединение множеств решений первого и второго неравенства.

Иначе говоря, решением совокупности будет объединение числовых промежутков (−∞; −0,25) и [−7; +∞)

Объединением числовых промежутков (−∞; −0,25) и [−7; +∞) является является вся координатная прямая. А вся координатная прямая это все числа, которые только могут быть

Ответ можно оставить таким, каким мы его записали ранее:

либо заменить на более короткий:

Пример 3. Решить совокупность неравенств

Решим каждое неравенство по отдельности:

Множеством решений первого неравенства x является числовой промежуток (−∞; −3) .

Множеством решений второго неравенства x ≤ 0 является числовой промежуток (−∞; 0] .

Решением совокупности неравенств будет объединение множеств решений первого и второго неравенства.

Иначе говоря, решением совокупности будет объединение числовых промежутков (−∞; −3) и (−∞; 0]

Объединением числовых промежутков (−∞; −3) и (−∞; 0] является числовой промежуток (−∞; 0]

Ответ можно оставить таким, каким мы его записали ранее:

Урок на тему «Метод областей». 11-й класс

Класс: 11

Презентация к уроку

«Считай несчастным тот день и тот час,
вк оторый ты не усвоил ничего нового и ничего
не прибавил к своему образованию».
Я.А Коменский

Тип урока: урок-обобщения и систематизации знаний учащихся.

Цели урока:

  • создать условия для систематизации, обобщения знаний и умений обучающихся по применению различных методов решения неравенств;
  • воспитание нравственных качеств личности, таких как ответственность, аккуратность, дисциплинированность;
  • воспитание культуры общения.
  • развитие у учащихся умений выделять главное, существенное в изучаемом материале, обобщать изучаемые факты, логически излагать свои мысли;
  • развитие психических процессов, таких как память, внимание, мышление, а также наблюдательности, активности, самостоятельности.

Задачи:

  • формировать умение классифицировать неравенства по методам решения;
  • закрепить навыки решения неравенств различными методами;
  • отрабатывать навыки самоконтроля с целью подготовки к итоговой аттестации;
  • воспитывать чувство коллективизма, ответственности.

Оборудование:

  • Компьютер
  • Мультимедийный проектор, звуковые колонки
  • Программа «MicrosoftPowerPoint 2003»

Методы обучения:

  • частично-поисковый метод,
  • репродуктивный,
  • обобщающий.

План урока.

План урока рассчитан на 2 учебных часа (90 мин)

  1. Организационный момент.
  2. Вступительное слово учителя.
  3. Повторение теории.
  4. Решение неравенств различными методами (варианты ЕГЭ)
  5. Самостоятельная работа с самопроверкой.
  6. Итог урока.
  7. Рефлексия.

Ход урока

I. Организационный момент

«То, что мы знаем, — ограничено, а то чего
мы не знаем, — бесконечно».

Приветствие учащихся.Ученики под руководством учителя проверяют наличие дневника, рабочей тетради, инструментов, отмечаются отсутствующие, проверяется готовность класса к уроку, учитель психологически настраивает детей на работу на уроке.Формулируется тема и цели урока. Знакомство с этапами урока.

II. Вступительное слово учителя

Для успешного исследования многих задач повышенной сложности полезно уметь строить не только графики функций, но и множества точек плоскости, координаты которых удовлетворяют заданным уравнениям, неравенствам или их системам. Эффективно строить на координатной плоскости такие множества позволяет метод областей. Это весьма полезный прием можно назвать обобщающим методом интервалов.
Метод областей особенно полезен при решении уравнений или неравенств с параметром. Применение метода интервалов в таких случаях затруднено, так как взаимное расположение точек, отмечаемых на числовой оси, может изменяться в зависимости от значений параметра. Это означает необходимость сравнивать их между собой и рассматривать различные случаи. В этой ситуации нам может помочь метод областей.

III. Повторение теории

Метод интервалов на координатной прямой и метод областей на координатной плоскости.

Точка х=а разбивает числовую прямую на два множества, задаваемые неравенствами x a

Всякая действительная кривая на координатной плоскости, заданная уравнением F(x;y)=0 разбивает координатную плоскость на конечное число областей, в каждой из которых для всех точек области выполняется только одно из неравенств: F(x;y)>0 или F(x;y) kx+p или y c

Решением системы неравенств с двумя переменными являются координаты точек пересечения множеств, удовлетворяющих одному из неравенств системы

Уравнение y= k(x-x0) + y0 задает множество прямых, проходящих через точку с координатами (x0,y0).

При изменении значений параметра прямые y= k(x-x0) + y0 «поворачиваются» вокруг данной точки. При увеличении параметра прямая поворачивается «против часовой стрелки», при уменьшении – «по часовой стрелке».

Уравнение y=kx+p при фиксированном значении параметра k = k0 задает семейство прямых, параллельных прямой y=kx+p проходящей через начало координат

Если точка с координатами лежит «выше» прямой заданной уравнением y=kx+p, то ее координаты удовлетворяют неравенству , если же точка лежит «ниже», то неравенству

Задача

Пусть M – множество точек плоскости с координатами (x; y) таких, что числа x, y, 6-2x являются сторонами некоторого треугольника. Найдите его площадь.

Если три числа являются сторонами некоторого треугольника, то это числа положительные и каждое из них меньше суммы двух других чисел. Поэтому, координаты точек, удовлетворяющих условию задачи, будут задаваться системой линейных неравенств с двумя переменными:

Геометрическое место точек на плоскости

Множество точек плоскости, равноудаленных от данной точки на расстояние, равное положительной величине R, называется окружностью.
Уравнением окружности называется уравнение вида

Множество точек, удаленных от данной точки на положительное расстояние, меньшее R, называется кругом. Круг задается неравенством

Множество точек, лежащих вне круга, задается неравенством

Геометрическое место точек на плоскости

Квадратным трехчленом относительно переменной, называется выражение

Графиком квадратного трехчлена является кривая, называемая параболой.
Расположение параболы зависит от знака старшего коэффициента и знака дискриминанта квадратного трехчлена

Парабола разбивает плоскость на часть, лежащую «над» параболой и лежащую «под» параболой. Первая задается неравенством

, а вторая –

Метод областей при решении задач с параметрами

1. Свойства функций

2. Графический прием

Параметр – «равноправная» переменная Þ отведем ему координатную ось, т.е. задачу с параметром будем рассматривать как функцию f(x ;a) >0

Общие признаки задач подходящих под рассматриваемый метод:

  • В задаче дан один параметр а и одна переменная х
  • Они образуют некоторые аналитические выражения F(x;a), G(x;a)
  • Графики уравнений F(x;a)=0,G(x;a)=0 строятся несложно
  1. Строим графический образ
  2. Пересекаем полученный график прямыми, перпендикулярными параметрической оси
  3. «Считываем» нужную информацию

Обобщенный метод областей («переход» метода интервалов с прямой на плоскость)

Неравенства с одной переменной

Неравенства с двумя переменной

  1. ОДЗ
  2. Граничные линии
  3. Координатная плоскость
  4. Знаки в областях
  5. Ответ по рисунку

IV. Решение неравенств

Пример №1

Найти все значения параметра p, при каждом из которых множество решений неравенства не содержит ни одного решения неравенства

Применим обобщенный метод областей.

1. Построим граничные линии

2. Определяем знаки в полученных областях и получаем решение 1 неравенства

3. Из полученного множества исключим решение

Пример № 2

При каких значениях параметра а система неравенств не имеет решений.

1. Рассмотрим 1 неравенство и получаем

2. Рассмотрим 2 неравенство и получаем

3. Заметим, что исходная система неравенств равносильна системе:

4. Изобразим систему неравенств в виде плоской фигуры на координатной плоскости. Для этого введём параметрическую плоскость Oax

5. Мы получили плоскую фигуру, множество точек которой является решением системы.

Таким образом, отвечая на вопрос задачи, решений системы нет при

Пример №3

При каких положительных значениях параметраа система уравнений имеет ровно 4 решения.

1. Запишем систему в следующем виде:

2. Построим график 1 уравнения.

3. Построим график 2 уравнения – семейство окружностей с центром в точке (2; 0) и радиусом а.

Ответ: при

V. Самостоятельная работа с самопроверкой

На координатной плоскости изобразите множество точек, удовлетворяющих неравенству

1. ОДЗ:

2. Строим граничные линии:

3. Они разбивают плоскость на восемь областей, определяя знаки подстановкой в отдельных точках, получаем решение.

Ответ: заштрихованная область на рисунке

На координатной плоскости изобразите множество точек, координаты которых удовлетворяют неравенству

  1. На координатной плоскости нарисуем линии определённые равенствами x-y=0 и xy-1=0, которые разбивают плоскость на несколько областей.
  2. Определяем знаки в областях.

Ответ: заштрихованная область на рисунке

VI. Итог урока

(подвожу итог, комментирую работу учащихся, сообщаю оценки за урок.)

VII. Рефлексия.

Ребята. На этом урок окончен. Спасибо за урок!

Литература.

  1. П. И. Горнштейн, В.Б.Полонский, М.С.Якир. Задачи с параметрами. 3-е издание, дополненное и переработанное. — М.: Илскса, Харьков: Гимназия, 2005,- 328 с.
  2. Черкасов О. Ю., Якушев А. Г. Математика: интенсивный курс подготовки к экзамену.
  3. Экзаменационные материалы для подготовки к ЕГЭ-2007. Математика. М.: ООО «РУСТЕСТ», 2006. — 108с. Сост. — Клово А.Г.
  4. Задачи с параметром и другие сложные задачи. Козко А.И., Чирский В.Г. М.: МЦНМО, 2007. — 296с.
  5. ЕГЭ 2011. Математика. Задача С5. Козко А.И., Панферов В.С., Сергеев И.Н., Чирский В.Г.
источники:

Операции над множествами

http://urok.1sept.ru/articles/664756

Решение некоторых математических задач предусматривает операции над множествами такие как пересечение, объединение, разность. Под множеством подразумевают объединение некоторых предметов в одно целое. Для совершения подобных действий требуется знание некоторых правил, которые позволят найти пересечение, объединение и разность множеств. О таких правилах пойдёт речь далее.

Обозначение множеств. Как записать объединение и пересечение множеств

Определения

Объединение множеств – это ряд таких элементов, при которым каждый из них представляет собой элемент одного из первоначальных множеств.

Пересечение множеств — заключает в себе все элементы, общие для первоначальных множеств.

При записи обозначения пересечения множеств и объединения множества чисел, используют специальный порядок символов. Самый лёгкий способ обозначить множество — это применение фигурных скобок, в середине которых элементы записаны через запятую.

А = {7, 3, 15, 31}

С помощью такой записи можно задать множество, если оно включает небольшое конечное число элементов. В связи с этим чаще применяется многофункциональный способ определения множеств – посредством характеристического свойства, которое свойственно всем элементам множества, которым не владеют объекты вне множества.

A = {x | P(x)} или A = {x : P(x)}

P(x) – характеристическое свойство множества A.

В таком виде объединение записывается следующим образом:

AUB={x|xєAvxєB}

Объединение множеств
Объединение множеств

а пересечение множеств записывается как:

AՈB={x|xєAᴧxєB}

Пересечение множеств
Пересечение множеств

Где символы v / , обозначают «или» / «и», символ | обозначает «таких что».

Чтобы обозначить множества, как числовые интервалы, при записи применяют скобки круглой и квадратной формы. К примеру, запись [4,24), выражает цифровой диапазон от 4 до 24, при этом число 4 входит в состав множества, а 24 нет. Числа менее 24 принадлежат этому множеству.

Найти пересечение и объединение множеств. Операции над множествами

Важно

U – обозначает объединение множеств A и B;

Ո – обозначает пересечение множеств A и B.

Чтобы легче запомнить данные знаки пересечения и объединения множеств, можно мысленно представить, что символ объединения U напоминает сосуд с открытым верхом, туда есть возможность что-то положить.

Символ пересечения Ո наоборот, выглядит как перевёрнутая ёмкость, в который невозможно поместить какой-либо предмет. Так же символ обозначающий пересечение Ո можно прочитать как «И».

Тогда выражение AՈB=C, читается так: “Все элементы, входящие в состав множества A и множества B, составляют элементы, которые принадлежат множеству C».

Правила нахождения объединения и пересечения и разности множеств

При формировании объединения числовых множеств, следует последовательно записать полностью части одного множества и их дополнить недостающими элементами из остальных. Операцию объединения в отдельных случаях называют сложением множеств и обозначают знаком «+».

Рассмотрим пример объединения числовых множеств A={0,1,2,3,4,5,6,7,8,9} и B={2,4,6,8,10}. К имеющимся числовым составляющим множества A 1,2,3,4,5,6,7,8,9 прибавим недостающую часть из множества B 10. Получившееся в результате объединения множество чисел будет выглядеть так {0,1,2,3,4,5,6,7,8,9,10}. Соответственно запись этого объединения:

AUB={0,1,2,3,4,5,6,7,8,9,10}

Чтобы составить пересечение числовых множеств, следует последовательно выбирать части одного множества и удостовериться, входят ли они в другие исследуемые множества, входящие в их число и составляют пересечение.

Для того, чтобы найти пересечение этих же множеств, друг за другом, последовательно проанализируем числа множества A на их наличие в множестве чисел B. Начнём проверку с самого первого числа в множестве A это число 0. В множестве B данное число отсутствует и не войдёт в совокупность пересечения. Смотрим далее, число 1 из множества A так же имеется в составе множества B. Затем следует число 2, которое принадлежит множеству B и, следовательно, пересечению. Идущее за ним 3 не принадлежит A и B не входит в перечисление. Число 4 входит в A и B, значит войдёт и в объединение. Далее продолжаем проверять числа по аналогии. Итак, пересечение множеств A={0,1,2,3,4,5,6,7,8,9} и B={2,4,6,8,10} состоит из чисел 2,4,6,8. При записи выглядит так:

AՈB={2,4,6,8}

Выполнение записи пересечения и объединения нескольких множеств

Если требуется выполнить операции с более чем двумя множествами, например: A, B, C, принцип действия подобный предыдущим примерам. В первую очередь находим пересечения A и B. Только затем пересечение полученного множества с C.

Следовательно, процесс нахождения пересечения более двух множеств осуществляется в несколько этапов.

Например, дано три множества A = {1,2,3,7,9}, B = {1,3,5,7,9} и C = {3,4,5,8,9}. Сначала находим пересечение AՈB = {3,9}, затем сравниваем полученное множество с C, это будут те же 3 и 9. Получаем, что пересечение A, B, C выглядит следующим образом:

AՈBՈC={3,9}

При определении объединений двух и более множеств, к числам первого множества последовательно добавляют отсутствующие элементы из второго, третьего и последующих множеств. К примеру, даны следующее множества A = {1,4}, B = {4,3,} и C = {1,3,6,7}. К числовым элементам 1 и 4 из множества A, прибавляем число 4 из множества B. Теперь, к получившемуся множеству 1,3,4 прибавляем цифры 6 и 7 из множества C. В конечном результате получаем объединение:

AUBUC = {1,3,4,6,7}

Для нахождения пересечения совсем не нужно писать много букв. Когда элементов не много, то множество возможно задать элементарным перечислением. Например, первое множество включает в себя числа 1,3,5, второе состоит из элементов 2,3,5. В данном случае, пересечение будет состоять из элементов 3 и 5. Для записи можно использовать прямое перечисление: {1,3,5} Ո {2,3,5} = {3,5}

Основные свойства объединения и перечисления множеств

  1. Коммутативность или перестановка. Распространяется на все компоненты при любом их количестве.
    • AUB = BUA
    • AՈB = BՈA
  2. Ассоциативность или расстановка скобок. Позволяет опускать скобки и делать решение проще.
    • (AՈB)ՈC = AՈ(BՈC)
    • (AUB)UC = AU(BUC)
  3. Раскрытие скобок или дистрибутивность.
    • (AUB)ՈC=(AՈC)U(BՈC)
    • (AՈB)UC=(AUC)Ո(BUC)

Разностью A и B называется множество, которое включает в себя все элементы, каждое из которых принадлежит множеству A и не принадлежит множеству B. Обозначается AB. Приведём пример, найдём разность множеств A = {1,2,3,4,5} и множества B = {2,4,6,8}. Первый вариант находим разность множества A. Запись будет выглядеть так: AB={1,3,5}, в которую не входят элементы, принадлежащие только B числа 6 и 8. Разность множества B при этом выглядит так: BA={6,8}, сюда соответственно не входят числа, принадлежащие только A.

Для закрепления материала пройденных уроков, рассмотрим ещё несколько примеров. Дана задача: A = {0,5,8,10}, B = {3,6,8,9} и X = {0,1,3} Y = {2,4,6}. Найдите пересечение, объединение для A, B и разность множеств X, Y. Решение:

Сначала найдём объединение исходных множеств A U B = {0,3,5,6,8,9,10}.

Затем пересечение A Ո B = {8}

Разность XY = {0,1,3} YX = {2,4,6}

Для того, чтобы выполнить операции над множествами пересечения, объединения, разность в количестве больше двух, следует рассматривать элементы, входящие в первое их них. Затем определить, относится ли этот элемент к каждому из проверяемых множеств. Если данное обстоятельство не соблюдено, то элемент не относится к пересечению. При проверке, лучше выбирать множество с наименьшим количеством элементов в составе.

Кроме перечисленных действий пересечения и объедения существует дополнение множеств и многие другие операции.

Нет времени решать самому?

Наши эксперты помогут!

Отображение множеств с помощью координатной прямой

Для того, чтобы исследовать и обозначать множества, удобно применять выделение числовых промежутков на координатной прямой. Каждая выбранная точка разделяет находящиеся на ней числа на два открытых луча. Приведём пример, точка с координатами 42,7 сформирует промежутки, которые можно записать как (-∞,42,7) и (42,7, +∞). Наше выражение заключено в круглые скобки, это значит, что сама точка 42,7 ни одному из этих промежутков не принадлежит. Числовая прямая, которая записывается как R = (-∞,+∞), при таком варианте из нашего примера, представляет объединение:

(-∞,42,7) U {42,7} U (42,7+∞).

При добавлении нашей рассматриваемой точки 42,7 к одному из представленных (-∞,42,7) или (42,7, +∞) числовых лучей, в таком случае промежуток перестанет быть открытым. При записи выражения нужно будет использовать квадратные скобки, которые обозначают, что точка входит в промежуток. Запись будет выглядеть так: (-∞,42,7] и [42,7+∞). Тем самым множество действительных чисел на координатной прямой будет выглядеть так:

(-∞,42,7] U (42,7+∞) или (-∞,42,7) U [42,7+∞).

На числовой прямой можно выполнять большое количество действий. Такую прямую можно разделить на отрезки не точкой, как в предыдущем примере, а лучом или отрезком. Все выявленные закономерности так же будут соблюдены. Кроме того, они выполняются при разделении самих числовых промежутков. Рассмотрим пример, точка с координатой 18 на промежутке (8,34] разделит его на следующие промежутки (8,18) U {18} U (18,34]. Дополнив точкой, один из промежутков, получатся следующее записи: (8,18] U (18,34], (8,18) U [18,34]. Примем за разделяющую точку цифру 34, которая включается в состав рассматриваемого промежутка и ограничивает его справа. В результате получим объединение множеств {34} и интервала (8,34) либо (8,34] = (8,34) U {34}

Аналогичные закономерности объективны и в ситуации, когда координатная прямая разделяется на промежутки несколькими точками. К примеру, точки -5, 0 и 6 разделят её на промежутки (-∞,-5), (-5,0), (0,6), (6,+∞), при этом множество действительных чисел (-∞,-5) U {-5} U (-5,0) U {0} U (0,6) U {6} U (6,+∞).

Благодаря координатной прямой достаточно просто и легко рассматривать пересечения и объединения множеств. Они указываются друг под другом на координатных прямых с идентичными направлениями отсчёта и точками. При записи отображения множеств координатные прямые обозначают слева квадратной скобкой, фигурные скобки используются, чтобы показать пересечение.

С помощью дополнительной координатной прямой, которую располагают ниже исходной, показываются искомые пересечения или объединение. На ней поперечными чертами отмечают граничные точки первичных множеств, а после выяснения характера точек, их заменяют полями или сплошными. На рисунке вхождение промежутка в объединение показывается штриховкой, отсутствие вхождения – полой точкой, а вхождение – сплошной.

Графически пересечение A и B показывается промежутками, над которыми имеется штриховка, дополненная отдельными точками, которые принадлежат обоим множествам. На рисунке объединение проявляется там, где показана штриховка хотя бы у одного из множеств и сплошные точки.

В приведённых примерах объединения и пересечения множеств указаны только целые числа. Отрезкам на координатной прямой так же принадлежат и другие числа, которые целыми не являются, такие как десятичные дроби. При определении пересечения и определения множеств, класс чисел намного шире, чем представлен в упражнениях, они находятся между целыми числами и количество их очень велико, перечислять которые не представляется возможным.

В математике важную
роль играют множества, составленные из
«математических» объектов – чисел,
точек, геометрических фигур и т.д.
Примерами числовых множеств являются:

  • множество
    всех действительных чисел R;

  • множество
    всех рациональных чисел Q;

  • множество
    всех натуральных чисел N;

  • множество
    всех целых чисел Z;

  • множество
    всех иррациональных чисел L.

Рассмотрим
основные понятия, характеризующие
множество точек на прямой.

1. Интервалы.Еслиaиbдва действительных числа иa<b, то множество всех
чиселx, удовлетворяющих
неравенствуa<x<b, называетсяоткрытым интервалом(числовым
промежутком) и обозначается (a,b). Сюда же относятся
интервалы (– ∞; + ∞), (– ∞;a),
(b; + ∞).

Открытый
интервал не имеет ни наименьшего, ни
наибольшего числа: какое бы число x

(a;
b)
мы не взяли, обязательно на этом
интервале найдутся такие x΄
и x˝,
что x΄
> x,
x˝
< x.
Множество всех точек любого интервала
является бесконечным. На числовой
прямой открытые интервалы изображаются
следующим образом:

Замкнутый
интервал

(числовой отрезок) [a;
b]
состоит из всех чисел x,
для которых a
x
b,
или [a;
b]
= (a;
b)

{a}

{b}.
На числовой прямой замкнутые интервалы
изображаются следующим образом:

Интервалы
смешанного типа

состоят из всех чисел x,
для которых:

a
x
< b,
или
[a,
b)
= (a,
b)

{a};

a
< x
b,
или
(a,
b]
= (a,
b)

{b};

∞ <
x
a,
или
(– ∞, a]
= (– ∞, a)

{a};

b
x
< + ∞, или
[b,
+ ∞) = (b,
+ ∞) 
{b}.

На числовой прямой
смешанные интервалы изображаются
следующим образом:

2.
Окрестность
точки
.
Окрестностью
точки
х0
называется любой открытый интервал,
содержащий эту точку. Возьмем какое-либо
положительное число ε.
ε-окрестностью
точки х0
называется открытый интервал с центром
в точке х0
и длиной 2ε,
то есть интервал (х0
ε;
х0
+ ε).

3. Множества
точек, задаваемых алгебраическими
уравнениями и неравенствами
. С каждым
уравнением связаны два числовых
множества. Первое из них –область
определения уравнения
. Это множество
состоит из всех значенийx,
для которых имеют смысл обе части
уравнения. Второе множество – этомножество корней уравнения, то есть
чисел, при подстановке которых в
уравнение, оно обращается в тождество.

Пример
6.1.
Областью
определения уравнения

=
2 – x

является
множество [- 4; + ∞), так как x
+ 4 ≥ 0, x
≥ 4.

Найдем корни
уравнения. Возведем обе части в квадрат

x
+ 4 = (2 – x)2; x2
– 5x
= 0; х·(х
– 5) = 0;

х1
= 0; х2
= 5.

Оба
числа х1
= 0 и х2
= 5 принадлежат множеству [- 4; + ∞), однако
число х2
= 5 является посторонним корнем уравнения
(это показывает простая проверка:

2 – 5). Таким образом, множество корней
данного уравнения {0}
[- 4; + ∞). На числовой прямой эти множества
изображаются так:

Те же рассуждения
относятся и к алгебраическим неравенствам.

Пример
6.2.
Решить
систему неравенств

Первое
неравенство х
– 2 ≤ 0 имеет множество решений х
≤ 2, или х

(– ∞; 2]:

Во втором неравенстве
находим корни:

х2
– 5х
– 6 = 0; х1
= – 1, х2
= 6.

Решением его
будет интервал х(– 1; 6):

Чтобы
получить решение системы неравенств,
нужно найти пересечение множеств (– ∞;
2] 
(– 1; 6). Покажем эти множества на числовой
прямой:

Как видно из
рисунка, пересечением является интервал
смешанного типа х(– 1; 2], на котором штриховки накладываются
друг на друга. ◄

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Вытянулись рукава у свитера как исправить
  • Найти песню ты так прекрасна как цветок
  • 0x80070005 как исправить windows 10 при установке
  • Как в экселе найти среднее квадратичное отклонение
  • Почему видео отстает от звука на компьютере как исправить

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии