Содержание:
Множества
Понятие множества является одним из исходных понятий математики в том смысле, что его нельзя определить с помощью более простых, чем оно само, понятий. В повседневной жизни часто приходится рассматривать набор некоторых объектов как единое целое. Скажем, когда биолог изучает флору и фауну некоторой местности, он делит организмы на виды, а виды на семейства. При этом каждый вид рассматривается как единое целое, состоящее из организмов.
Множество может состоять из объектов различной природы. Например, вес реки Азии или все слова в словаре могут рассматриваться как множества.
Знаменитый немецкий математик Г. Кантор (1845 -1918) дал следующую описательную формулировку: «Множество есть совокупность, мыслимая как единое целое».
Объекты, составляющие множество, называются его элементами.
Обычно, для удобства, множество обозначается заглавными буквами латинского алфавита, например, А, В, С,…, а его элементы — прописными.
Множество А, состоящее из элементов а, b, с, … , будем записывать в виде A = {а, b, с,…}. Отметим, что записи {6, 11} , {11, 6} , {11, 6, 6, 11} означают одно и то же множество.
При ведем примеры множеств. Например, множество {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} — множество цифр десятичной системы счисления ,
То, что х является элементом множества А, будем обозначать как а то, что он не является его элементом, будем обозначать как
Эти записи в первом случае читаются как «элементах принадлежит А», а во втором случае как «элемент х не принадлежит А».
Например, для множества имеем
однако
Если число элементов, составляющих множество, конечно, то такое множество будем называть конечным, в противном случае бесконечным. Например, множество конечно, а множество
всех натуральных чисел бесконечно.
В качестве еще одного примера бесконечного множества можно привести множество всех натуральных чисел, не меньших 13.
Обозначим через число всех элементов конечного множества А. Если, например,
в силу того, что число всех его элементов равно 6. Множество, не содержащее ни одного элемента, называется пустым и обозначается так: 0
Пустое множество 0 считается конечным и для него я(0)= 0.
Для бесконечного множества А принято, что
Если вес элементы множества А также принадлежат множеству В, то говорят, что множество А — подмножество множества В и обозначают так: . В этом случае также говорят, что «множество А лежит во множестве В» или «множество А — часть В».
Во множестве {а} лежат два подмножества:
Множество {а, b} имеет четыре подмножества:
так как все элементы первого множества также являются элементами второго.
Если множество А имеет элементы, не принадлежащие В, то множество А не может быть подмножеством В. Этот факт мы будем записывать так:
Например, пусть А={ 1, 2, 3, 4}, В={2, 3, 4, 5}. Так как Очевидно, что справедливы соотношения:
Если то эти множества состоят из одних и тех же элементов. Такие множества называются равными (совпадающими), и этот факт мы будем записывать так: А = В.
Например, множество всех правильных треугольников совпадает со множеством всевозможных треугольников, у которых все углы равны. Причина этого заключается в том, что у любого правильного треугольника
все углы равны, и, наоборот, если у треугольника все углы равны, то он является правильным.
Напомним основные числовые множества:— множество натуральных чисел;
— множество целых чисел;
— множество рациональных чисел;
Множество действительных чисел
Объединение и пересечение множеств
1) Множество, состоящее из элементов, принадлежащих хотя бы одному из множеств А, В, называется объединением множеств.
Объединение множеств А, В обозначается через
Например, если
2) Множество, состоящее из элементов, принадлежащих обоим множествам А, В, называется пересечением множеств. Пересечение множеств А. В обозначается через
Например, если
Множества, не имеющие общих элементов, называются не пересекающимися.
Пример:
Для множеств
a) определите, какие из утверждений верны, а какие неверны:
b) найдите множества:
c) определите, какие из утверждений верны, а какие неверны:
Решение:
а) Так как число 4 не является элементом множества М, то утверждение неверно. Так как число 6 не является элементом множества, утверждение
истинно.
b). так как только числа 3 и 9 — элементы обоих множеств. Для того, чтобы найти множество
выпишем элементы, принадлежащие либо М либо N:
= {2, 3, 4, 5, 6, 7, 8, 9, 10};
c) Утверждение ложно, ибо существуют элементы множества М, не принадлежащие N. Утверждение
истинно, ибо в множестве У есть элементы из {9, 6, 3}.
В некоторых случаях для задания множества указывается характеристическое свойство, истинное для всех элементов множества и ложное для остальных. Если мы кратко запишем тот факт, что элемент х удовлетворяет свойству Р как Р(х), то множество всех элементов, удовлетворяющих свойству Р обозначается так:
Например, запись читается следующим образом: «множество всех целых чисел, больших или равных -2, по меньших или равных 4».
На числовом луче это множество изображается так:
Видно, что и оно, конечно, при этом
Аналогично запись читается так: «множество всех действительных чисел, больших или равных -2, но меньших 4».
На числовом луче это множество изображается так:
Видно, что, и оно бесконечно, при этом
Пример:
a) Как читается эта запись?
b) Выпишите последовательно элементы этого множества.
c) Найдите
Решение:
a) «Множество всех целых чисел, больших 3 и меньших или равных 10»;
b).
c).
Рассмотрим множество всех натуральных чисел, больших или равных 1, но меньших или равных 8. Пусть нас интересуют только его подмножества.
В таком случае, обычно вводится множество называемое универсальным множеством.
Множество А содержащее все элементы универсального множества U, не являющиеся элементами множества А, называется дополнением множества А.
Например, если — универсальное множество, то дополнение множества
имеет вид
Очевидно, что
т.е. множества А и А’ не имеют общих элементов, а также вес составляющие их элементы образуют в совокупности универсальное множество U.
Пример:
Пусть U универсальное множество. Найдите С’, если:
а) С = {все четные числа); b).
Решение:
Пример:
Пусть
Выпишите все элементы множеств:
Решение:
Пример:
Пусть {числа, кратные 4 и меньшие 50} и Q = {числа, кратные 6 и меньшие 50}. a) выпишите элементы множеств Р, Q;
b) найдите с) Найдите
d) проверьте выполнение равенства
Решение:
Значит, равенство является верным.
Диаграммы Венна
Например, на этом рисунке изображено множество А, лежащее внутри универсального множества Закрашенная область вне круга означает дополнение А ’ множества А:
Если и
, то они изображаются на диаграмме Венна следующим образом:
Мы знаем, что если то любой элемент множества В принадлежит множеству А. Значит, на соответствующей диаграмме Венна круг, обозначающий множество В, лежит в круге, обозначающем множество А:
Все элементы пересечения лежат как в А, так и в В. Значит, на соответствующей диаграмме Венна закрашенная область изображает множество
Все элементы объединения A U В принадлежат либо А, либо В, либо обоим одновременно. Значит, на соответствующей диаграмме Венна область, соответствующая множеству A U В, изображается следующим образом:
Пример:
Пусть Изобразите на диаграмме
Венна множества:
Решение:
Удобно на диаграмме Венна множества раскрашивать.
Например, на рисунке раскрашены множества А,
Высказывание
Высказывание — это повествовательное предложение, утверждающее что-либо о чем-либо, при этом непременно истинное или ложное. Вопросительные предложения, повествовательные предложения, описывающие личное отношение субъекта, например «Зеленый цвет приятен», не являются высказываниями. Отметим, что существуют высказывания, истинность или ложность которых не определяются однозначно.
Например, высказывание «Этот писатель родился в Ташкенте» может быть истинным по отношению к некоторым писателям и ложным по отношению к другим.
Пример:
Укажите, какие из предложений являются высказываниями. В случае, когда предложение является высказыванием, однозначно ли определяется его истинность — ложность?
а) 20:4=80; b) 25-8=200;
с) Где мой карандаш? d) У тебя глаза голубые.
Решение:
a) Это высказывание и оно ложно, так как 20:4=5;
b) это высказывание и оно истинно;
c) это вопросительное предложение и поэтому оно не является высказыванием;
d) это высказывание. Истинность-ложность его определяется неоднозначно, так как применительно к некоторым людям оно истинно, а к другим — ложно.
Мы будем обозначать высказывания буквами p,q,r … .
Например, р: во вторник прошел дождь; q: 20:4=5; r: х — четное число. Для построения нескольких сложных высказываний служат символы, называемые логическими связками: (конъюнкция, «и», «но»),
(дизъюнкция, «или»),
(отрицание,» не ….»,»неверно, что ….»).
Рассмотрим их подробней.
Отрицание
Для высказывания р высказывание вида «не р» или «неверно, что р» называется отрицанием высказывания р и обозначается как
Например,
отрицанием высказывания
р: Во вторник шел дождь
является высказывание
: Во вторник дождя не было;
Отрицанием высказывания
р: У Мадины глаза голубые
является высказывание
: У Мадины глаза не голубые.
Ясно, что если р истинно, то ложно, и наоборот, если р ложно, то
истинно. Этот факт иллюстрируется так называемой таблицей истинности. Такая таблица позволяет, исходя из высказывания р, заключить об истинности
или ложности
нового высказывания
1 Буквы Т и F — начальные буквы английских слов «true» (истинно) и «false» (ложно) соответственно.
Пример:
Составьте отрицание высказывания:
Решение:
Удобно находить отрицание высказывания с помощью диаграмм Венна. Например, рассмотрим высказывание:
р: «Число х больше, чем 10 «.
На диаграмме U — множество всех чисел, множество Р — множество истинности высказывания р, то есть множество всех х , для которых это высказывание истинно. Множество Р’ является множеством истинности отрицания : «Число х меньше или равно 10».
Пример:
На множестве рассмотрим высказывание р: х- простое число. Найдите множества истинности высказываний
Решение:
Пусть множество Р — множество истинности высказывания р, а множество Р’ — множество высказывания . Тогда эти множества изображаются на диаграмме Венна следующим образом:
Конъюнкция
Высказывание, образованное из двух высказываний с помощью связки «и», называется конъюнкцией заданных высказываний.
Конъюнкция высказываний р, q обозначается через
Например, конъюнкция высказываний,
р: Эльдар на завтрак ел плов;
q: Эльдар на завтрак ел самсу.
имеет вид:
Эльдар на завтрак ел плов и самсу.
Видно, что высказывание верно, если Эльдар на завтрак ел и плов и самсу, то есть высказывание
истинно при истинности обоих высказываний. Если хотя бы одно из высказываний р, q ложно, то высказывание
является ложным. Конъюнкция высказываний р, q имеет следующую таблицу истинности:
истинно, когда оба высказывания р, q истинны.
ложно, когда хотя бы одно из высказываний р, q ложно.
Первый и второй столбцы таблицы составлены из всех возможных значений истинности высказываний р, q.
На диаграмме Р — множество истинности высказывания р, Q — множество истинности высказывания q , а множество истинности высказывания является множеством
на котором истинны оба высказывания:
Дизъюнкция
Высказывание, образованное из двух высказываний с помощью связки «или», называется дизъюнкцией заданных высказываний.
Дизъюнкция высказываний р, q обозначается через
Например, дизъюнкция высказываний,
р: Эльдар сегодня посетит библиотеку,
q: Эльдар сегодня посетит театр .
имеет вид:
Эльдар сегодня посетит библиотеку или театр.
Высказывание истинно, когда сегодня Эльдар посетит либо библиотеку, либо театр, либо и то и другое.
Высказывание будет ложным, лишь когда оба высказывания р, q будут ложными одновременно.
Дизъюнкция имеет следующую таблицу истинности:
pVq истинно, когда хотя бы одно из высказываний р, q истинно.
pVq ложно, когда оба высказывания p, q ложны.
На диаграмме Р — множество истинности высказывания р, Q — множество истинности высказывания q, а множество истинности высказывания pVq является множество , на котором истинно хотя бы одно высказывание:
Логическая равносильность
Составим, используя буквы и символы логических связок таких, как отрицание, конъюнкция и дизъюнкция, символическую запись более сложных высказываний естественного языка, при этом не обращая внимания на их истинность или ложность.
Объединяя таблицы истинности для отрицания, конъюнкции и дизъюнкции, можно составить таблицы истинности для более сложных высказываний:
Пример 1. Составьте таблицу истинности высказывания
1 шаг.
Выпишем таблицу и заполним сначала первый и второй столбец всеми возможными значениями истинности р и q:
2 шаг. Учитывая значения истинности q, заполним третий столбец значениями истинности
3 шаг Учитывая значения истинности p и заполним четвертый столбец значениями истинности
Высказывание, являющееся истинным всегда, называется законом логики или тавтологией.
То, что высказывание является законом логики, можно доказать при помощи таблицы истинности.
Пример:
Докажите, что высказываниеявляется тавтологией.
Заполним таблицу истинности:
Решение:
Видно, что высказывание принимает только истинные значения (см. третий столбец). Поэтому данное высказывание является тавтологией.
Если для двух высказываний соответствующие их значениям истинности столбцы одинаковы, то эти высказывания называются логически равносильными.
Пример:
Докажите, что следующие высказывания являются логически равносильными
Решение:
Составим таблицы истинности для высказываний
Так как у высказываний соответствующие значениям истинности столбцы одинаковы, то эти высказывания являются логически равносильными.
Мы будем обозначать этот факт так:
Импликация
Высказывание, образуемое из двух высказываний с помощью связки «если …., то …» называется импликацией этих двух высказываний.
Импликация «Если р, то q» обозначается как и имеет также следующие интерпретации «Из р следует (вытекает) q», «Высказывание р достаточно для q «, «Высказывание q необходимо для р».
При этом высказывание р называется достаточным условием для q, а высказывание q — необходимым условием для р.
высказывание q — необходимым условием для р.
Рассмотрим , например, высказывания
р: У Сардора есть телевизор; q: Сардор будет смотреть кино.
Тогда высказывание означает:
Если у Сардора есть телевизор, то он будет смотреть кино.
Точно также
Для того, чтобы Сардор смотрел кино достаточно, чтобы у него был телевизор.
Можно заметить, что высказывание ложно, лишь когда высказывание р истинно, а высказывание q ложно, а в остальных случаях — истинно. Поэтому имеем следующую таблицу истинности:
Из высказываний и логических связок, не обращая на значения истинности, можно составить более сложные высказывания.
Пример:
Рассмотрим высказывания
р: «Анора часто смотрит кинофильмы»;
q: «Барно часто смотрит кинофильмы
r: «Барно не сдаст экзамен»;
s: «произойдет чудо».
Имеем: 1. «Анора часто смотрит кинофильмы, а Барно — нет».
2. «Если Анора часто смотрит кинофильмы, то Барно нет».
3. «Если Барно часто смотрит кинофильмы, то она или не сдаст экзамен или произойдет чудо».
4. «Если Барно часто смотрит кинофильмы и при этом не произойдет чуда, то Барно не сдаст экзамен».
5. «Либо Барно часто смотрит кинофильмы и произойдет чудо, либо Барно не сдаст экзамен».
Эквиваленция
Высказывание вида называется эквиваленцией высказываний и обозначается так:
Запись читается как «высказывание р необходимо и достаточно для q» или как «высказывание р истинно лишь при выполнении q».
Пример:
р: х — четно, q: последняя цифра числа х четна. Выразите высказывание
Решение:
Рассмотрим высказывание,: Если х- четно, то его последняя цифра четна;
Если последняя цифра числа х четна, то х — четно.
Тогда запись читается , как «Для того чтобы число х было четно, необходимо и достаточно, чтобы последняя его цифра была четной». ^ Теперь для заданных высказываний р и q составим таблицу истинности высказывания
:
Видно, что высказывание будет истинным, лишь когда высказывания р и q принимают одинаковые значения истинности (то есть когда они оба одновременно истинны или одновременно ложны ).
Конверсия
Конверсией высказывания называется высказывание
Конверсия имеет следующую таблицу истинности:
Пример:
Рассмотрим высказывания
р: треугольник равнобедренный,
q: два угла треугольника равны.
Выразите на естественном языке высказывание и его конверсию.
Решение:
Если треугольник равнобедренный, то у него два угла равны.
Если два угла треугольника равны, то он равнобедренный .
Инверсия
Инверсией высказывания называется высказывание
Инверсия имеет следующую таблицу истинности:
Эта таблица совпадает с таблицей истинности высказывания . Поэтому конверсия и инверсия логически равносильны.
Контрапозиция
Контрапозицией высказывания называется высказывание
Контрапозиция имеет следующую таблицу истинности:
Эта таблица совпадает с таблицей истинности высказывания Поэтому импликация и контрапозиция логически равносильны.
Пример:
Рассмотрим высказывание. Все учителя живут поблизости от школы». Составим его контрапозицию.
Решение:
Данное высказывание можно сформулировать так: «Если этот человек — учитель, что он живет поблизости от школы».
Это предложение имеет форму , где
р: этот человек — учитель,
q: этот человек живет поблизости от школы.
Контрапозиция имеет вид:
«Если этот человек не живет поблизости от школы, то он не является учителем.
Пример:
Рассмотрим высказывания:
р: Самандар находится в библиотеке, q: Самандар читает книгу.
Составьте имликацию, конверсию, инверсию и контрапозицию
Решение:
Отметим, что импликация и конверсия логически не равносильны, так как , например , Самандар может читать книгу и в классе.
Предикаты и кванторы
В некоторых предложениях участвуют переменные, при этом подставив вместо них конкретные значения, получим высказывания. Такие предложения называются предикатами.
Пример:
Пусть задан предикат Определите истинность или ложность высказываний
Решение:
В некоторых предикатах переменную можно определить исходя из контекста.
Например, в предложениях «Этот писатель родился в Ташкенте» и «Он родился в Ташкенте» переменными являются словосочетание». «Этот писатель» и местоимение «он» соответственно. Если вместо переменной подставить значение «Абдулла Кадыри», получим истинное высказывание «Абдулла Кадыри родился в Ташкенте». Если вместо переменной подставить значение «Шекспир», получим ложное высказывание «Шекспир родился в Ташкенте».
Обозначив переменную через х, вышеуказанные предложения можно записать в виде «х родился в Ташкенте».
В предикате могут участвовать одно или несколько переменных. В зависимости от количества переменных, участвующих в предикате, будем обозначать его так:
Используя совместно с предикатом специальные символы (квантор всеобщности, «для всех … «) и
(квантор существования, «существует такой, что ….»), можно образовать новые высказывания
Например, новое высказывание вида говорит о том, что для всех значений х верно Р(х), высказывание вида
говорит о том, что значений х верно Р(х).
К примеру, рассмотрим предикат Р(х): «х родился в Самарканде». Тогда высказывание читается как «все родились в Самарканде», а высказывание
— «некоторые родились в Самарканде».
Приведем примеры, в которых можно определить истинность-ложность высказываний вида
Пример:
Пусть Докажите истинность высказывания:
Решение:
Проверим:
Значит, высказывание, истинно.
Следует отметить, что для того, чтобы доказать ложность высказывания достаточно, привести пример хотя бы одного значения х такого, что высказывание
, ложно.
Действительно, при
Любое значениех, которое показывает, что высказывание ложно, называется контрпримером.
Пример:
Докажите истинность высказывания
Решение:
Так как то высказывание,
истинно.
Если же , то высказывание
ложно, ибо
Приведем два важных закона логики, связанных с операцией отрицания:
Для понимания смысла этих законов приведем пример.
Если запись означает
«Среди моих одноклассников
не существует отличников», тогда запись означает логически равносильное ему утверждение «Все мои одноклассники не являются отличниками».
Точно также, формула означает высказывание «Неверно, что все мои одноклассники — отличники «, а формула
означает логически равносильное ему высказывание «Некоторые мои одноклассники не являются отличниками».
Очевидно, что с помощью кванторов и предиката можно построить зависящие от одной переменной предикаты вида:
из которых, в свою очередь, можно построить всказывания вида:
В то время, когда смысл высказываний
а также смысл высказываний
,одинаков, оказывается, что высказывания
не являются равносильными.
Рассмотрим, например, предикат Р(х,у): человек у — отец моего одноклассника х.
В этом случае = означает высказывание «у каждого моего одноклассника есть отец»; а
означает высказывание «существует такой человек, который является отцом всех моих одноклассников».
Аналогично можно показать, что высказывания,не являются равносильными (приведите примеры самостоятельно).
С помощью кванторов и предикатов можно построить и другие законы логики. Например, высказывание «Если все вороны черные, то ни одна не черная птица не является вороной «, служит примером закона логики вида:
Законы правильного мышления (аргументации)
В процессе познания действительности мы приобретаем новые знания. Некоторые из них непосредственно, в результате воздействия предметов внешнего мира на органы чувств. Но большую часть знаний мы получаем пу тем выведения новых знаний из знаний уже имеющихся. Чтобы научиться стройно и последовательно излагать свои мысли, правильно делать выводы, необходимо пользоваться законами логики. Определенность, непротиворечивость, последовательность и обоснованность являются обязательными качествами правильного мышления. Законы логики устанавливают необходимые связи в последовательном ряду мыслей и умозаключений.
Суждение представляет собой форму мышления, в которой что-либо утверждается или отрицается о предметах, их свойствах или отношениях. Например, в суждении «Железо-металл» утверждается связь между предметом (железо) и его признаком (являться металлом). В суждении «Яйцо появилось раньше курицы » утверждается связь между двумя предметами (яйцо и курица). Так как суждение выражается в форме повествовательного предложения, причем суждение может быть либо истинным, либо ложным, то каждое суждение имеет форму высказывания.
Умозаключение- это такая форма мышления, посредством которой из одного или нескольких суждений, называемых посылками, по определенным правилам получается некоторое суждение, называемое заключением или выводом.
Пусть S-совокупность исходных суждений (посылок), Р- заключение. В этом случае, умозаключение имеет логическую форму вида Совокупность высказываний S будем называть основанием, а высказывание Р- следствием. Основание и следствие будем связывать словом «следовательно» и отделять горизонтальной чертой:
. Рассмотрим простой пример.
Если Собир занимается спортом, то будет здоров. Собир занимается спортом. Следовательно, Собир будет здоров.
Найдем логическую форму этого умозаключения.
Пусть р: Собир занимается спортом; q: Собир будет здоров. Тогда умозаключение имеет вид:
Так следствие вытекает из суждений и р, то умозаключение имеет следующую логическую форму
Составим соответствующую таблицу истинности:
Получили тавтологию. Это показывает правильность умозаключения, то есть мы из данного основания получили правильное следствие.
Пример:
Покажите неправильность умозаключения:
Если треугольник имеет три стороны, то 2+4-7.
Следовательно, треугольник имеет три стороны.
Решение:
Найдем логическую форму этого умозаключения.
р: треугольник имеет три стороны.
q: 2+4=7
Имеем:
Так как здесь следует q, то наше умозаключение имеет логическую форму
Составим соответствующую таблицу истинности:
В результате мы не получили тавтологию. Это показывает неверность умозаключения, то есть мы из данного основания не получили правильное следствие.
Ниже мы приведем некоторые правила правильных умозаключений:
Доказательство верности вышеуказанных умозаключений мы оставляем учащимся в качестве упражнения.
Софизмы и парадоксы
— представляют собой преднамеренные, сознательно совершаемые ошибки, рассчитанные на то, чтобы выдать ложь за истину, тем самым вводя человека в заблуждение.
Одним из первых соответствующие примеры привел математик Зенон, живший в 5 веке до нашей эры в Древней Греции. Например, Зенон «доказал», что быстроногий Ахиллес никогда не догонит неторопливую черепаху, если в начале движения она находится впереди Ахиллеса. Приведем его рассуждения. Допустим, Ахиллес бежит в 10 раз быстрее, чем черепаха, и находи тся позади нее на расстоянии в 100 шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползет 10 шагов.
За то время, за которое Ахиллес пробежит 10 шагов, черепаха проползет еще 1 шаг, и так далее. Процесс будет длиться до бесконечности, Ахиллес так никогда и не догонит черепаху.
Примеры Зенона связаны с понятиями бесконечности и движения, которые имели большое значение в развитии физики и математики.
Некоторые софизмы обсуждали в переписке между собой наши великие соотечественники Беруни и Ибн Сино, а также они встречаются в произведениях Фараби.
Приведем простейшие примеры на софизмы и обсудим их.
Пример:
Куда пропали 1000 руб? Три друга отобедали в кафе, после чего официант дал им счет на 25000 руб. Каждый из трех друзей достал по купюре в 10000 руб, в итоге они отдали официанту 30000 руб. На сдачу официант отдал 5000 руб более мелкими купюрами. Друзья взяли по 1000 руб себе, а оставшиеся 2000 руб отдали другу на такси. Один из друзей стал рассуждать: «Каждый из нас потратил по 9000 руб, что в итоге составляет 27000 руб. Затем 2000 руб отдали на такси, значит, в итоге получается 29000 руб. Куда пропали 1000 руб?»
Решение:
Основной «подвох» в этом рассуждении заключается в том, что 2 От древнегреческого уловка.
расчеты сделаны неверно. Действительно, трое друзей сложились по 9000 руб и получили 27000 руб. Из этих денег 25000 руб заплатили за обед, а 2000 руб заплатили за такси. Следовательно, общая трата составила 27000 руб. Тс 2000 руб находятся внутри 27000 руб.
Пример:
Упростим верное равенство: 20-16-4=25-20-5
2(10—8—2)=25—20—5
2-2-(5—4—1)=5-(5—4—1)
Сократим левую и правую часть последнего равенства на общий делитель (5-4-1). В итоге получим равенство 2-2=5.
Основной «подвох» в этом рассуждении заключается в том, что мы поделили обе части равенства 2-2-(5-4-1)=5-(5-4-1) на нуль.
— странное мнение, высказывание, расходящееся с общепринятыми мнениями, научными положениями, а также мнение, противоречащее здравому смыслу. Сам термин «парадокс» использовался в античной философии для обозначения всякого странного, оригинального мнения.
Парадоксы, обычно, возникают в теориях, логические основы которых не определены полно.
Пример:
Парадокс лжеца. Рассмотрим высказывание «То, что я утверждаю сейчас — ложь».
Если это высказывание истинно, значит, исходя из его содержания, верно то, что данное высказывание -ложь. Но если оно -ложь, тогда неверно то, что оно утверждает, то есть утверждение о ложности данного высказывания неверно, значит, данное высказывание истинно. Таким образом, цепочка рассуждений возвращается в начало.
Пример:
Прилагательное русского языка назовем рефлексивным, если оно обладает свойством, которое определяет.
Например, прилагательное «русский» — рефлексивное, а прилагательное «английский» — нерефлексивное, прилагательное «трехсложный» — рефлексивное (это слово состоит из трех слогов), а прилагательное «четырехсложный» — нерефлсксивное (состоит из пяти слогов). Вроде бы ничто не мешает нам определить множество {все рефлексивные прилагательные}. Но давайте рассмотрим прилагательное «нерефлексивный». Оно рефлексивное или нет?
Можно заявить, что прилагательное «нерефлексивный» не является ни рефлексивным, ни нерефлексивным. Действительно, если это слово рефлексивное, то по своему смыслу, оно нерефлексивное. Если же это от древнегреческого — неожиданный, странный слово нерефлексивное, то, в силу того, что оно обладает свойством, которое определяет, оно является рефлексивным. Противоречие.
Пример:
Два взаимно пересекающихся множества А, В делят универсальное множество на четыре части:
Следовательно, число элементов универсального множества является суммой количеств элементов этих частей.
На следующей диаграмме мы заключили известные количества элементов частей универсального множества в круглые скобки:
Здесь, например, обоим множествам А, В принадлежат 4 элемента, а 3 элемента не принадлежат ни одному из них.
Так как произвольный элемент множества U, принадлежит только одному из этих 4 частей , то число элементов множества U равно 7+4+6+3=20.
Пример:
Используя рисунок, найдите число элементов следующих множеств:
d). Множество элементов, принадлежащих Р, но не принадлежащих Q
е) Множество элементов, принадлежащих Q, но не принадлежащих Р;
f) Множество элементов, не принадлежащих ни Р, ни Q.
Пример:
Если
a) Найдите
b) Сколько элементов содержит множество элементов, принадлежащих А, но не принадлежащих В‘?
Решение:
Составим диаграмму Венна:
Из того, что Следовательно, b=6, а=8, с= 11, d=5.
Из диаграммы получаем следующее:
b) Число элементов, принадлежащих А, но не принадлежащих В, равно а= 8
Пример:
Из 27 учеников, посещающих спортивную секцию, 19 имеют темные волосы, 14 — черные глаза, а 11 имеют и темные волосы и черные глаза одновременно.
a) Изобразите эту информацию с помощью диаграммы Венна. Объясните ситуацию.
b) Найдите число учеников, которые I имеют или темные волосы или черные глаза; II темноволосых, но не черноглазых?
Решение:
а) Пусть Qs — множество темноволосых, a Qk множество черноглазых учеников.
Изобразим ситуацию на диаграмме:
b) Используя диаграмму, определим следующее:
I количество учеников, имеющих или темные волосы или черные глаза:
II количество темноволосых учеников, не обладающих черными глазами:
Пример:
На футбольном соревновании город представляют три команды А, В и С. 20 процентов населения города болеют за команду И, 24 процента — за В, 28 процентов — за С. 4 процента жителей болеют и за С и за И, 5 процент, жителей болеют и за В и за А, а 6 процентов жителей болеют и за В и за С. Кроме того, 1 процент населения болеет за все три команды.
Сколько процентов жителей:
a) болеют только за команду А;
b) болеют и за А и за В, но не болеют за команду С;
c) не болеют ни за одну из команд?
Решение:
Заполним для начала соответствующую диаграмму Венна.
а= 1, так как 1 процент жителей болеет за все команды.
a+d=4, так как 4 процента жителей болеет и за И и за В.
а+b=6, так как 6 процентов жителей болеют и за В и за С а+с=5, так как 5 процентов жителей болеют
—-
Множества
Понятие множества принадлежит к числу первичных, не определяемых через более простые. Под множеством понимается совокупность некоторых объектов, объединенных по определенному признаку. Объекты, которые образуют множество, называются элементами, или точками, этого множества.
Множества обозначаются прописными буквами, а их элементы — строчными. Если есть элемент множества А, то используется запись
если b не является элементом множества А, то записывают
Например, — множество А состоит из элементов 1;3;6;8.
Множество, не содержащее ни одного элемента, называется пустым и обозначается Например, множество действительных корней уравнения
есть пустое множество.
Два множества называются равными, если они состоят из одних и тех же элементов. Например, если т.е.
множества равны.
Объединением двух множеств А и В называется множество С, состоящее из элементов, принадлежащих хотя бы одному из данных множеств, т.е.
Пересечением двух множеств А и В называется множество D, состоящее из всех элементов, одновременно принадлежащих каждому из данных множеств А и В, т.е.
Разностью двух множеств А и В называется множество E, состоящее из всех элементов множества А, которые не принадлежат множеству В, т.е.
Пример 1. Даны множества Найти объединение, пересечение и разность множеств А и В.
Решение. Объединение двух данных множеств — их пересечение —
а разностью —
.
Множества, элементами которых являются действительные числа, называются числовыми.
Обозначения множеств:
— множество натуральных чисел.
— множество целых чисел;
— множество рациональных чисел;
R — множество действительных чисел;
I — множество иррациональных чисел;
— множество комплексных чисел.
Геометрически, каждому действительному числу соответствует точка числовой оси, и наоборот, каждой точке прямой — определенное действительное число.
Множество X, элементы которого удовлетворяют: неравенству называется отрезком
неравенству
называется интервалом
неравенствам
называются полуинтервалом соответственно
В дальнейшем все указанные множества мы объединяем термином промежуток X.
——
Множества и операции над ними
Под множеством будем понимать совокупность объектов, наделенных определенными свойствами. Эти свойства должны полностью определять данное множество, то есть являться признаками, по которым относительно любого объекта можно решить, принадлежит он данному множеству или нет. Синонимами термина «множество» являются термины «класс «семейство «совокупность». Объекты, из которых состоит данное множество, называют его элементами.
Чаще всего множество обозначают большими буквами латинского или греческого алфавита, а его элементы — малыми буквами. Если a — элемент множества A, то пишут a ∈ A (читают: «a принадлежит множеству A») или A 3 a (множество A содержит элемент a). Запись a ∈/ A означает, что a не является элементом множества A.
Множество обычно записывают одним из следующих способов:
A = {a , . . . , } или A = {x ∈ X : P (x)}.
Первая запись означает, что множество A состоит из элементов a, . . . , , то есть перечислены элементы, составляющие A, их может быть конечное число или бесконечно много. Вторая запись означает, что A есть совокупность всех тех объектов из множества X, для которых выполняется свойство P . Формально введем пустое множество — множество, не содержащее в себе никаких элементов, которое обозначим символом
.
Определение 1.1. Множества A и B называются равными (или совпадающими), если они состоят из одних и тех же элементов, то есть x ∈ A тогда и только тогда, когда x ∈ B .
Коротко это высказывание записывают: A = B, а отрицание этого утверждения — в виде: .
Определение 1.2. Если каждый элемент множества A является элементом множества B , то говорят, что A есть подмножество множества B (или A есть часть B ), и пишут A ⊂ B (читается: «Множество A содержится в множестве B») или B ⊃ A (читается: «Множестоо B содержит множество A»).
Отметим следующие свойства отношения включения:
1. A ⊂ A, то есть всякое множество есть подмножество себя самого;
2. Если A ⊂ B и B ⊂ C, то A ⊂ C (отношение включения транзитивно);
3. Если A ⊂ B и B ⊂ A, то A = B.
Удобно считать, что ⊂ A для любого множества A.
Пусть A и B — некоторые подмножества множества E. Введем наиболее простые операции с множествами.
Определение 1.3. Объединением множеств A и B называется множество, обозначаемое A ∪ B и состоящее из всех элементов, которые принадлежат или множеству A или B .
Таким образом, x ∈ A ∪ B , если x ∈ A, но x B , или x ∈ B , но x
A, или x ∈ A и x ∈ B. Очевидно, что A ∪ A = A, A ∪
= A.
Определение 1.4. Пересечением множеств A и B называют множество, обозначаемое A∩B и состоящее из всех элементов, каждый из которых принадлежит и A и B .
Если множества A и B не имеют общих точек, то A ∩ B =. Очевидно, что A∩A= A, A∩
=
.
Определение 1.5. Разностью множеств A и B называют множество, обозначаемое A B и состоящее из всех элементов множества A, которые не принадлежат множеству B .
Если A ⊂ B , то часто множество A B называют дополнением множества B до A. По определению A A = , A
= A.
Пример 1.1. Пусть A = {1,3,4,8, 15} ,B = {1,2,7,8, 12}. Тогда
A∪B = {1,2,3,4,7,8,12,15}, A∩B = {1, 8},
AB = {3, 4, 15}, BA= {2, 7, 12}
Определение 1.6. Набор, состоящий из двух элементов x1 и x2, называют упорядоченным, если известно, какой из этих элементов является первым, а какой — вторым. Такой упорядоченный набор называют упорядоченной парой и обозначают (x1, x2). Элементы x1 , x2 называют, соответственно, первой и второй координатами пары (x1, x2). Пары (x1, x2) и (y1 , y2) называют совпадающими, если x1 = y1 и x2 = y2 .
Определение 1.7. Декартовым (или, по-другому, прямым) произведением множеств A и B называют множество упорядоченных пар (x, y), где первый элемент x является элементом множества A, а второй y — элементом множества B . Это множество обозначают символом A × B .
Таким образом, A × B = { (x, y) | x ∈ A, y ∈ B}. Но, вообще говоря, A × B B × A. Известная всем плоскость с декартовой системой координат является декартовым произведением двух числовых прямых (осей).
Пусть A и B — числовые отрезки, помещенные на взаимно перпендикулярных осях плоскости. Упорядоченная пара (x, y) — это точка пересечения перпендикуляров, восстановленных в точках x ∈ A и y ∈ B . Произведением A × B является прямоугольник.
Логическая символика
В последующем, как и в большинстве математических текстов используется ряд специальных символов, многие из которых вводятся по мере надобности. Применяются распространенные символы математической логики ,
, ∃, ∀, которые читаются, соответственно, как «влечет» , «равносильно» , «существует» («найдется»), «любой» («каждый» , «для каждого» , «для любого» ).
Запись A B читают одним из следующих способов: A влечет B , B следует из A, B — необходимое условие A, A — достаточное условие (признак) B.
Запись A B читают одним из следующих способов: A равносильно B, A необходимо и достаточно для B , A верно тогда и только тогда, когда верно B . Квантор равносильности часто применяется в символьной записи определений и утверждений.
Запись «∃ x ∈ X » означает: существует элемент x из множества X .
Запись «∀ x ∈ X » означает: для любого элемента x из множества X или каков бы ни был элемент x из множества X .
Часто в символьной записи математических утверждений используют символ «:» или эквивалентный ему символ «| которые читают: «такой, что». В частности, запись «∃ x ∈ X : x2 — 1 = 0″ означает: существует такой элемент x в множестве X , что x2 — 1 = 0.
- Заказать решение задач по высшей математике
Множества
Множества и операции над ними
Понятие множества и его элементов
Элемент принадлежит множеству
Элемент не принадлежит множеству
В множестве нет элементов
Множество можно представить как совокупность некоторых объектов, объединенных по определенному признаку. В математике множество — одно из основных неопределяемых понятий.
Каждый объект, принадлежащий множеству , называется элементом этого множества.
Множество, не содержащее ни одного элемента, называется пустым множеством и обозначается
Подмножество
Если каждый элемент множества является элементом множества
, то говорят, что множество
является подмножеством множества
, и записывают так:
Используется также запись
, если множество
или является подмножеством множества
, или равно множеству
Равенство множеств
Два множества называются равными, если каждый элемент первого множества является элементом второго множества и, наоборот, каждый элемент второго множества является элементом первого множества
Пересечение множеств
Пересечением множеств и
называют их общую часть, то есть множество
всех элементов, принадлежащих как множеству
, так и множеству
Объединение множеств
Объединением множеств и
называют множество
, состоящее из всех элементов, принадлежащих хотя бы одному из этих множеств (
или
)
Разность множеств
Разностью множеств и
называется множество
, которое состоит из всех элементов, принадлежащих множеству
и не принадлежащих множеству
Дополнение множеств
Если все рассматриваемые множества являются подмножествами некоторого универсального множества , то разность
называется дополнением множества
. Другими словами, дополнением множества
называется множество, состоящее из всех элементов, не принадлежащих множеству
(но принадлежащих универсальному множеству
)
Объяснение и обоснование:
Понятие множества
Одним из основных понятий, которые используются в математике, является понятие множества. Для него не дается определения. Можно пояснить, что множеством называют произвольную совокупность объектов, а сами объекты — элементами данного множества. Так, можно говорить о множестве учеников в классе (элементы — ученики), множестве дней недели (элементы — дни недели), множестве натуральных делителей числа 6 (элементы — числа 1, 2, 3, 6) и т. д. В курсах алгебры и алгебры и начал анализа чаще всего рассматривают множества, элементами которых являются числа, и поэтому их называют числовыми множествами.
Как правило, множества обозначают прописными буквами латинского алфавита. Например, если множество состоит из чисел 1; 2; 3, то его обозначают так:
= {1; 2; 3}. Тот факт, что число 2 входит в это множество (является элементом данного множества
), записывается с помощью специального значка е следующим образом:
; а то, что число 5 не входит в это множество (не является элементом данного множества), записывается так:
.
Можно рассматривать также множество, не содержащее ни одного элемента, — пустое множество.
Например, множество простых делителей числа 1 — пустое множество.
Для некоторых множеств существуют специальные обозначения. Так, пустое множество обозначается символом , множество всех натуральных чисел — буквой
, множество всех целых чисел — буквой
, множество всех рациональных чисел — буквой
, а множество всех действительных чисел — буквой
. Множества бывают конечными и бесконечными в зависимости от того, какое количество элементов они содержат. Так, множества
и
— конечные, потому что содержат конечное число элементов, а множества
— бесконечные.
Множества задают или с помощью перечисления их элементов (это можно сделать только для конечных множеств), или с помощью описания, когда задается правило — характеристическое свойство, которое позволяет определить, принадлежит или нет данный объект рассматриваемому множеству. Например, множество задано перечислением элементов, а множество
четных целых чисел — характеристическим свойством элементов множества. Последнее множество иногда записывают так:
или так:
— здесь после вертикальной черточки записано характеристическое
.
В общем виде запись множества с помощью характеристического свойства можно обозначить так: , где
— характеристическое свойство. Например,
В этом случае и в записи решений тригонометрических уравнений и неравенств в разделе 3 запись
означает, что
принимает любое целое значение, что также можно записать как
Равенство множеств
Пусть — множество цифр трехзначного числа 312, то есть
, а
— множество натуральных чисел, меньших чем 4, то есть
. Поскольку эти множества состоят из одних и тех же элементов, то они считаются равными. Это записывают так:
. Для бесконечных множеств таким способом (сравнивая все элементы) установить их равенство невозможно. Поэтому в общем случае равенство множеств определяется следующим образом.
Два множества называются равными, если каждый элемент первого множества является элементом второго множества и, наоборот, каждый элемент второго множества является элементом первого множества.
Из приведенного определения равенства множеств следует, что в множестве одинаковые элементы не различаются. Действительно, например, , поскольку каждый элемент первого множества (1 или 2) является элементом второго множества и, наоборот, каждый элемент второго множества (1 или 2) является элементом первого. Поэтому, записывая множество, чаще всего каждый его элемент записывают только один раз.
Подмножество
Если каждый элемент множества является элементом множества
, то говорят, что множество
является подмножеством множества
.
Это записывают следующим образом:
Например, (поскольку любое натуральное число — целое),
(поскольку любое целое число — рациональное),
(поскольку любое рациональное число — действительное).
Полагают, что всегда , то есть пустое множество является подмножеством любого непустого множества.
Иногда вместо записи используется также запись
, если множество
является подмножеством множества
, или равно множеству
. Например,
Сопоставим определение равенства множеств с определением подмножества. Если множества и
равны, то: 1) каждый элемент множества
является элементом множества
, следовательно,
— подмножество
; 2) каждый элемент множества
является элементом множества
, следовательно,
— подмножество
.
Таким образом, два множества равны, если каждое из них является подмножеством другого.
Иногда соотношения между множествами удобно иллюстрировать с помощью кругов (которые часто называют кругами Эйлера—Венна). Например, рисунок 1 иллюстрирует определение подмножества, а рисунок 2 — отношения между множествами .
Операции над множествами
Над множествами можно выполнять определенные действия: пересечение, объединение, находить разность. Дадим определение этих операций и проиллюстрируем их с помощью кругов Эйлера—Венна.
Пересечением множеств и
называют их общую часть, то есть множество
всех элементов, принадлежащих как множеству
, так и множеству
.
Пересечение множеств обозначают знаком (на рисунке 3 приведена иллюстрация определения пересечения множеств).
Например, если то
.
Объединением множеств и
называют множество
, состоящее из всех элементов, принадлежащих хотя бы одному из этих множеств (
или
).
Объединение множеств обозначают знаком (на рисунке 4 приведена иллюстрация определения объединения множеств).
Например, для множеств и
из предыдущего примера
Если обозначить множество иррациональных чисел через
, то
.
Разностью множеств и
называется множество
, состоящее из всех элементов, которые принадлежат множеству
и не принадлежат множеству В.
Разность множеств обозначают знаком . На рисунке 5 приведена иллюстрация определения разности множеств.
Например, если
Если — подмножество
, то разность
называют дополнением множества В до множества
(рис. 6).
Например, если обозначить множество всех иррациональных чисел через , то
: множество
всех иррациональных чисел дополняет множество
всех рациональных чисел до множества
всех действительных чисел.
Если все множества, которые мы рассматриваем, являются подмножествами некоторого так называемого универсального множества (на рисунке его обычно изображают в виде прямоугольника, а все остальные множества — в виде кругов внутри этого прямоугольника, то разность
называют дополнением множества
(рис. 7). То есть дополнением множества
называется множество, состоящее из всех элементов, не принадлежащих множеству
, но принадлежащих универсальному множеству
.
Дополнение множества обозначается
(можно читать: «
с чертой» или «дополнение
»).
Например, если и
, то
. Для этого примера удобно использовать традиционную иллюстрацию множества действительных чисел на числовой прямой (рис. 8).
Числовые множества. Множество действительных чисел
Числовые множества:
Действительные числа
Числа, которые можно представить в виде бесконечной десятичной дроби
Рациональные числа
Можно представить в виде несократимой дроби , где
— целое, — натуральное число. Записываются в виде бесконечной периодической десятичной дроби
Иррациональные числа
Нельзя представить в виде несократимой дроби , где
— целое,
— натуральное число. Записываются в виде бесконечной непериодической десятичной дроби
Целые числа
Включают натуральные числа, числа, противоположные им, и число нуль
Дробные числа
Числа, состоящие из целого числа частей единицы
( — обыкновенная дробь, 1,23 — десятичная дробь:
)
Натуральные числа (целые положительные)
Для школьного курса математики натуральное число — основное не определяемое понятие
Число 0
Такое число, при сложение с которым любое число не изменяется
Целые отрицательные числа
Числа, противоположные натуральным
Модуль действительного числа и его свойства
Определение:
Модулем положительного числа называется само это число, модулем отрицательного числа называется число, противоположное ему, модуль нуля равен нулю
Геометрический смысл модуля
На координатной прямой модуль — это расстояние от начала координат до точки, изображающей это число.
Модуль разности двух чисел и
— это расстояние между точками
и
на координатной прямой
Свойства
1. Модуль любого числа — неотрицательное число
2. Модули противоположных чисел равны
3. , то есть
Каждое число не больше своего модуля
4. При
5. При
6. Модуль произведения равен произведению модулей множителей
7. Модуль дроби равен модулю числителя, деленному на модуль знаменателя (если знаменатель не равен нулю)
8.
9.
Модуль суммы не превышает суммы модулей слагаемых
10.
Объяснение и обоснование:
Числовые множества
В курсе математики вы встречались с разными числами: натуральными, целыми, рациональными, иррациональными, действительными. Представление о числах у человечества складывалось постепенно, под воздействием требований практики. Например, натуральные числа появились в связи с необходимостью подсчета предметов. Но для того чтобы дать ответ на вопрос «Сколько спичек в пустой коробке из-под спичек?», множества натуральных чисел недостаточно — для этого необходимо иметь еще и число нуль. Присоединяя к множеству
натуральных чисел число 0, получаем множество неотрицательных целых чисел. Его часто обозначают
. Одних только неотрицательных целых чисел оказалось недостаточно для решения задач практики (а следовательно, и математических задач, отображающих заданную реальную ситуацию). Так, для того чтобы охарактеризовать температуру воздуха выше и ниже нуля или движение тела в противоположных направлениях, необходимы противоположные натуральным числа, то есть отрицательные числа. Для натурального числа
противоположным считается число
, а для числа
противоположным считается число
. Нуль считают противоположным самому себе.
Натуральные числа, числа, противоположные натуральным, и число нуль составляют множество целых чисел.
Измерение величин привело к необходимости расширения множества целых чисел и введения рациональных чисел. Например, средняя многолетняя температура воздуха в январе в г. Харькове — , длительность урока — 45 минут, или
часа.
Таким образом, выбирая какую-либо единицу измерения, мы получаем числовое значение величин, которое может выражаться с помощью разных рациональных чисел — целых и дробных, положительных и отрицательных.
Целые и дробные числа составляют множество рациональных чисел.
Любое рациональное число можно записать в виде дроби , где
(то есть числитель
является целым числом, а знаменатель
— натуральным).
Рациональное число может быть записано разными дробями. Например,
Как видно из приведенных примеров, среди дробей, которые изображают данное рациональное число, всегда есть единственная несократимая дробь (для целых чисел — это дробь, знаменатель которой равен 1).
Обратим внимание, что рациональное число, записанное в виде дроби , где
, можно также записать в виде конечной или бесконечной периодической десятичной дроби, разделив числитель на знаменатель. Например,
.
Договоримся, что конечную десятичную дробь можно изображать в виде бесконечной, у которой после последнего десятичного знака, отличного от нуля, на месте следующих десятичных знаков записываются нули, например, .
Целые числа также договоримся записывать в виде бесконечной десятичной дроби, у которой справа от запятой на месте десятичных знаков стоят нули, например . Таким образом, любое рациональное число может быть записано как бесконечная периодическая дробь. Напомним, что у бесконечной периодической дроби, начиная с некоторого разряда, все десятичные знаки повторяются. Группу цифр, которая повторяется, называют периодом дроби; при записи дроби период записывают в скобках. Например,
.
Таким образом, каждое рациональное число может быть записано в виде бесконечной периодической десятичной дроби и наоборот, каждая бесконечная периодическая дробь задает рациональное число.
Обратим внимание, что любая периодическая десятичная дробь с периодом девять равна бесконечной десятичной дроби с периодом нуль, у которой десятичный разряд, предшествующий периоду, увеличен на единицу по сравнению с разрядом первой дроби. Например, бесконечные периодические дроби и
являются записью одного и того же рационального числа
. Действительно, учитывая, что сумма бесконечной убывающей геометрической прогрессии с первым членом
и знаменателем
вычисляется по формуле
, имеем:
В дальнейшем, записывая рациональные числа с помощью бесконечных периодических десятичных дробей, договоримся исключить из рассмотрения бесконечные периодические дроби, период которых равен девяти.
Каждое рациональное число можно изобразить точкой на координатной прямой (то есть прямой, на которой выбраны начало отсчета, положительное направление и единица измерения). Например, на рисунке изображены несколько рациональных чисел .
Однако на координатной прямой есть точки, изображающие числа, которые не являются рациональными. Например, из курса алгебры известно, что число не является рациональным. Это так называемое иррациональное число. Если построить квадрат со стороной, равной 1, на координатной прямой
(рис. 10), то его диагональ будет равна
. Тогда, проведя дугу окружности радиуса
с центром в точке
, получим точку
, координата которой равна
. Кроме числа
вы также встречались с иррациональными числами
и т. д.
Рациональные и иррациональные числа составляют множество действительных чисел . На координатной прямой каждому действительному числу соответствует единственная точка и, наоборот, каждой точке координатной прямой соответствует единственное действительное число (в этом случае говорят, что между множеством действительных чисел и множеством точек координатной прямой устанавливается взаимно однозначное соответствие).
Каждое действительное число может быть записано в виде бесконечной десятичной дроби: рациональные числа — в виде бесконечной периодической десятичной дроби, а иррациональные — в виде бесконечной непериодической десятичной дроби.
Напомним, что для сравнения действительных чисел и выполнения действий над ними (в случае, когда хотя бы одно из них не является рациональным) используются приближенные значения этих чисел. В частности, для сравнения двух действительных чисел последовательно рассматриваем их приближенные значения с недостатком с точностью до целых, десятых, сотых и т. д. до тех пор, пока не получим, что какое-то приближенное значение одного числа больше соответствующего приближенного значения второго. Тогда то число, у которого приближенное значение больше, и считается большим. Например, если
, то
(поскольку
).
Для выполнения сложения или умножения рассмотренных чисел и
последовательно записывают их приближенные значения с недостатком и с избытком (с точностью до целых, десятых, сотых и т. д.) и выполняют действия над полученными рациональными числами. В результате последовательно получаем значение суммы или произведения с необходимой точностью.
Как видим,
В курсе математического анализа доказывается, что в случае, когда приближенные значения чисел и
последовательно берутся с точностью до целых, десятых, сотых и т. д., то значения суммы
с недостатком и с избытком стремятся к одному и тому же числу, которое и принимается за значение суммы
(аналогично определяется и произведение
).
Модуль действительного числа и его свойства
Напомним определение модуля.
Модулем положительного числа называется само это число, модулем отрицательного числа — число, противоположное ему, модуль нуля равен нулю.
Это определение можно коротко записать несколькими способами. а при а > 0,
, или
или
или
При необходимости мы будем пользоваться любой из этих записей определения модуля. Для нахождения по определению необходимо знать знак числа
и использовать соответствующую формулу. Например,
На координатной прямой модуль числа — это расстояние от начала координат до точки, изображающей это число.
Действительно, если (рис. 11), то расстояние
Если , то расстояние
Модуль разности двух чисел и
— это расстояние между точками
и
на координатной прямой.
Для доказательства можно воспользоваться тем, что при параллельном переносе вдоль оси координат на единиц абсцисса соответствующей точки изменяется на
: к абсциссе данной точки прибавляется число
, то есть при
точка переносится вправо, а при
— влево. Обозначим на координатной прямой числа
соответственно точками
. На рисунке 12 эти точки изображены для случая
и
, хотя приведенное далее обоснование не зависит от знаков
и
.
При параллельном переносе вдоль оси на
единиц точка
перейдет в точку
, а точка
(с координатой
) — в точку с координатой
, то есть в точку
. Тогда
. Но расстояние
— это расстояние от точки
до начала координат, следовательно,
, а значит, и
.
Используя определение модуля и его геометрический смысл, можно обосновать свойства модуля, приведенные в таблице 2.
Например, учитывая, что — это расстояние от точки
до точки
, а расстояние может выражаться только неотрицательным числом, получаем
то есть модуль любого числа является неотрицательным числом.
Учитывая, что точки и
находятся на одинаковом расстоянии от точки
, получаем
это означает, что модули противоположных чисел равны.
Если то
а если
, то
. Следовательно, всегда
то есть каждое число не превышает его модуль.
Если в последнее неравенство вместо подставить
и учесть, что
, то получаем неравенство
. Отсюда
, что вместе с неравенством
свидетельствует о том, что для любого действительного числа а выполняется двойное неравенство
(1)
При неравенство
означает, что число
на координатной прямой находится от точки
на расстоянии, которое не превышает
(рис. 13), то есть в промежутке
. Наоборот, если число
находится в этом промежутке, то есть
. Следовательно,
при (2)
Обратим внимание, что последнее утверждение справедливо и при (тогда двум неравенствам удовлетворяет только одно значение
).
Аналогично при неравенство
означает, что число
на координатной прямой находится от точки
на расстоянии, которое больше или равно
(рис. 13),
то есть в этом случае или
. Наоборот, если число
удовлетворяет одному из этих неравенств, то
. Следовательно, при
неравенство
равносильно совокупности неравенств
или
, что можно записать так:
при
Свойства модуля произведения и модуля дроби фиксируют известные правила действий над числами с одинаковыми и разными знаками:
модуль произведения равен произведению модулей множителей, то есть
модуль дроби равен модулю числителя, деленному на модуль знаменателя (если знаменатель не равен нулю), то есть
Формулу для нахождения модуля произведения можно обобщить для случая нескольких множителей
(3)
Если в формуле (3) взять , получаем формулу
Используя последнюю формулу справа налево при и учитывая, что
при всех значениях
, получаем
. Следовательно,
. Для обоснования неравенства
(4)
запишем неравенство (1) для чисел и
:
Складывая почленно эти неравенства, получаем
Учитывая неравенство (2), имеем
(5)
то есть модуль суммы не превышает суммы модулей слагаемых. Если в неравенстве (4) заменить на
и учесть, что
, то получим неравенство
Если записать число так:
и использовать неравенство (4), то получим неравенство
. Отсюда
(6)
Если в неравенстве (6) заменить на
и учесть, что
, то получим неравенство
(7)
то есть модуль суммы двух чисел не меньше разности их модулей.
Меняя местами буквы и
в неравенствах (6) и (7) и учитывая, что
, имеем также неравенства
(8)
Полученные неравенства (4)-(8) можно коротко записать так:
Примеры решения задач:
Пример №402
Докажите, что сумма, разность, произведение, натуральная степень и частное (если делитель не равен нулю) двух рациональных чисел всегда является рациональным числом.
Решение:
► Пусть заданы два рациональных числа и
где
и
— целые, а
и
— натуральные числа. Поскольку сумма, разность, произведение, натуральная степень и частное двух обыкновенных дробей всегда являются обыкновенными дробями, то полученный результат всегда будет рациональным числом. Например,
где — целое число, а
— натуральное.
Комментарий:
Любое рациональное число может быть записано как дробь , где
— целое,
— натуральное число.
Чтобы доказать утверждение задачи, достаточно доказать, что сумма, разность, произведение и частное двух дробей вида также будет дробью такого вида.
Пример №403
Докажите, что для любого натурального числа число
или натуральное, или иррациональное.
Комментарий:
Для доказательства утверждения задачи можно использовать метод от противного: предположить, что заданное положительное число является рациональным ненатуральным (то есть дробью), и получить противоречие с условием или с каким-либо известным фактом.
Записывая в виде несократимой дроби, следует учесть, что при натуральных значениях
это число всегда будет положительным.
Решение:
► Допустим, что не является иррациональным числом (тогда это число рациональное) и не является натуральным числом. Следовательно, это число может быть только рациональной несократимой дробью
, где
и
— натуральные числа
. По определению квадратного корня имеем
то есть
. Учитывая, что
, получаем, что дробь
, равная натуральному числу
, должна быть сократимой.
Следовательно, у натуральных множителей, которые стоят в числителе и знаменателе этой дроби, должен быть общий натуральный делитель, отличный от 1. Но в числителе стоят только множители , а в знаменателе — только множители
. Тогда числа
и
имеют натуральный делитель, отличный от 1, то есть дробь является сократимой дробью, что противоречит условию. Таким образом, наше предположение неверно, и для любого натурального числа
число
или натуральное, или иррациональное.
Например, поскольку числа и
не являются натуральными числами
, то
и
— иррациональные числа.
Пример №404
Докажите, что — число иррациональное.
Решение:
► Допустим, что число рациональное. Тогда
Возведя обе части последнего равенства в квадрат, имеем
Отсюда
Следовательно,
Но правая часть этого равенства — рациональное число (поскольку по предположению — рациональное число), а левая — иррациональное. Полученное противоречие означает, что наше предположение неверно и число
— иррациональное.
Комментарий:
Для доказательства утверждения задачи можно использовать метод «от противного» — допустить, что заданное число является рациональным, и получить противоречие с каким-либо известным фактом, например с тем, что — иррациональное число.
При анализе полученных выражений используем результат задачи 1: если число — рациональное, то числа
и
и их частное тоже будут рациональными.
Заметим, что знаменатель полученной дроби
Пример №405
Решите уравнение
Решение
I способ
►
Ответ:
Комментарий:
Заданное уравнение имеет вид (в данном случае
). Его удобно решать, используя геометрический смысл модуля:
— это расстояние от точки 0 до точки
. Но расстояние 7 может быть отложено от 0 как вправо (получаем число 7), так и влево (получаем число -7). Следовательно, равенство
возможно тогда и только тогда, когда
или
.
II способ
Ответ:
Комментарий:
С геометрической точки зрения — это расстояние между точками
и
на координатной прямой. Запишем данное уравнение так:
. Тогда равенство
означает, что расстояние от точки
до точки -5 равно 7. На расстоянии 7 от точки -5 находятся точки 2 и -12 (рис. 14). Таким образом, данное равенство выполняется тогда и только тогда, когда
или
то есть данное уравнение равносильно указанной в решении совокупности уравнений.
Пример №406
Решите неравенство
Решение:
Решая эти неравенства (рис. 15), получаем
Следовательно, или
Ответ:
Комментарий:
Заданное неравенство имеет вид (в данном случае
), и его можно решать, используя геометрический смысл модуля. С геометрической точки зрения,
— это расстояние от точки 0 до точки
. На расстоянии 6 от 0 находятся числа 6 и -6.
Тогда неравенству удовлетворяют все те и только те точки, которые находятся в промежутке
то есть
Для решения полученного двойного неравенства его удобно заменить соответствующей системой.
- Рациональные уравнения
- Рациональные неравенства и их системы
- Геометрические задачи и методы их решения
- Прямые и плоскости в пространстве
- Функции, их свойства и графики
- Параллельность в пространстве
- Перпендикулярность в пространстве
- Векторы и координаты в пространстве
Математика — это точная абстрактная наука, оперирующая своими специальными понятиями, структурами и символами. Основными методами в математических исследованиях являются строгие логические рассуждения, а объектами изучения — математические модели. Но абстрактность математики не означает ее отрыв от реальной жизни. Реальные задачи описываются в математических терминах, как правило в безразмерном виде. Это есть так называемая
математическая модель явления. При решении уже поставленной математической задачи используются абстрактные математические методы.
Одна и та же математическая модель может описывать свойства различных реальных явлений. Само реальное явление рассматривается вновь после решения математической задачи и ее анализа, на основании которого могут быть сделаны выводы
не только о состоянии явления, но и о его развитии. В этом смысле без математики нет науки. Еще великий Леонардо да Винчи писал: «Никакой достоверности нет в науках там, где нельзя применить ни одну из математических наук, ив том, что не имеет связи с математикой.» И еще: » Ни одно человеческое исследование не может называться истинной наукой, если оно не прошло через математические доказательства.»
Математические методы играют огромную роль в образовании современного высококвалифицированного специалиста в технических областях, предоставляя ему аппарат исследования, дисциплинируя, приучая к строгим логическим рассуждениям.
Поскольку язык и методы математики широко используются при современном преподавании всех естественно-научных и технических дисциплин, математика изучается с первого семестра в любом высшем техническом учебном заведении, и на нее выделяется значительная часть бюджета времени студента.
Под множеством понимают любой набор определенных и различимых между собой объектов, рассматриваемых как единое целое. Это высказывание не является определением, поскольку слово « множество» заменено словом «набор». Близкими к понятию «множество» являются понятия: собрание, совокупность, комплекс, система и т. п. Вместе с тем здесь имеется три важных момента.
Объекты, входящие во множество, определенные (т. е. для каждого объекта можно однозначно сказать, принадлежит ли он данному множеству или нет), различимы между собой (во множестве не может быть двух или более одинаковых объектов) и все объекты, входящие во множество, мыслятся как единое целое (все объекты рассматриваются в совокупности, а от свойств отдельных объектов абстрагируются).
Множества обозначают прописными буквами латинского алфавита. Объекты, входящие во множество, называют элементами и их обозначают строчными буквами. Множество, состоящее из конечного числа элементов, называется конечным, в противном случае множество называется бесконечным.
Множество может быть задано при помощи правила, позволяющего определить, является ли данный объект элементом множества или нет. В записи правило, задающее множество, отделено вертикальной чертой. Например, пусть множество В есть множество решений уравнения тогда В можно записать так
Элементами множества В являются числа 2 и 3, то есть
Конечное множество может быть задано перечислением входящих в него и разделенных запятой элементов, например, Множество может содержать и всего лишь один элемент. Множество, не содержащее вообще ни одного эле-
мента, называется пустым и обозначается символом Например, пусть
есть множество точек на плоскости, удовлетворяющих условию
При
окружность, при
одна точка, а при
пустое множество.
Для указания того факта, что объект принадлежит данному множеству, используют знак Например,
Если же объект не принадлежит данному множеству, то пишут знак
Например,
Множество В называется подмножеством множества А, если каждый элемент В одновременно является элементом множества А. Это записывается так:
Пример:
Пусть заданы множества Очевидно, что В есть подмножество А, т. е.
Из определения следует, что множество А есть подмножество самого себя, т. е.
Говорят, что А — самое широкое подмножество А. Пустое множество является самым узким подмножеством любого множества. Множество А и пустое множество
называются несобственными подмножествами множества А. Все другие подмножества А называются собственными подмножествами А.
Пример:
Если то оно имеет, следующие подмножества:
Всего 8 подмножеств.
Если конечное множество А состоит из п элементов, то оно имеет ровно подмножеств. Из них ровно
являются собственными подмножествами. Элементами множества могут также выступать и другие множества. В этом случае говорят не о множестве множеств, а о системе множеств. Частным случаем системы множеств является система всех подмножеств данного множества А и обозначается Р(А). Так, система подмножеств множества А из предыдущего примера имеет вид
Замечание. Не следует путать символы и
. Символ
употребляется для обозначения отношения элемента к множеству. Символ
употребляется для обозначения отношения множества к множеству.
Зафиксированное каким-либо образом множество объектов, допустимых при данном рассмотрении, называют базовым или универсумом. Базовое множество обозначают буквой Примерами универсума являются: числа в арифметике, слова в языкознании, законы в юриспруденции и т.п.
Операции над множествами
Множества можно складывать и вычитать, то есть совершать операции.
Равенство множеств
Множества А и В считаются равными, если они состоят из одних и тех же элементов. Равенство множеств обозначают так: А=В. Если множества не равны, то пишут: А В. Отсюда следует, что запись равенства двух множеств «А=В» эквивалентна записи
Пример. Доказать, что множество равно множеству В корней уравнения
Для доказательства решим уравнение. Получим: Следовательно,
или
Затем непосредственной подстановкой убеждаемся, что любое из чисел 0,2, 3 удовлетворяет уравнению, следовательно
или
Теперь можно записать, что А=В.
Объединение (сумма) множеств
Объединением множеств А и В называется такое множество С, каждый элемент которого содержится хотя бы в одном из множеств А или В. Обозначается: Пример. Если
Можно рассматривать объединение множеств:
при этом в А входят все элементы, которые входят хотя бы в одно из множеств Например, множество всех дей-
ствительных чисел состоит из множества положительных чисел
множества отрицательных чисел
и множества
содержащего один элемент — ноль, то есть
Для наглядного представления соотношений между несколькими подмножествами какого-либо универсума часто используются круги Эйлера или диаграммы Венна. Универсум представляется множеством всех точек некоторого прямоугольника, а его подмножества — соответствующими кругами. Операция объединения и другие операции иллюстрируются кругами Эйлера представленными на рис. 1.1-1.5.
Пересечение (умножение) множеств
Пересечением множеств А и В называется множество D, составленное из общих для множеств А и В элементов. Обозначение: Например:
Можно рассматривать пересечение множеств:
при этом в А входят только те элементы, которые входят во все множества Пересечение двух множеств иллюстрируется на рис 1.2.
Пусть есть некоторое множество А. Говорят, что задано разбиение множества А на классы если
для всех причем
Классы — это такие подмножества разбиваемого множества, которые не имеют общих элементов, а их объединение образует исходное множество А. Следовательно, каждый элемент множества А входит в один и только в один класс.
Разность двух множеств
Разностью двух множеств А и В называется множество G, содержащее лишь те элементы из А, которые не входят в В. Обозначение: Отметим, что в А могут находиться не все элементы из вычитаемого множества В (см. рис. 1.3). Например,
Если В — подмножество то разность
называется дополнением к В до А. Например, если
и
то множество
дополнение к В до А. Операция дополнения иллюстрируется на рис. 1.4. Дополнение к А до универсума
имеет особое обозначение:
(см. рис. 1.5).
Пример. Пусть Такое множество называется множеством неотрицательных чисел.
Тогда это множество отрицательных чисел.
Операции над множествами подчиняются определенным законам. Перечислим их.
1.Коммутативный или переместительный закон
2.Ассоциативный или сочетательный закон
Так как порядок выполнения операций несущественен, то скобки в записи опускают.
3.Дистрибутивный или распределительный закон:
4.Закон идемпотентности:
5.Закон поглощения:
6.Закон двойственности де Моргана:
10.Если и одновременно
Из законов (1-12) следует принцип двойственности: всякое равенство, тождественно выполняемое в теории множеств, переходит также в тождественно выполняющееся равенство при замене знака объединения на знак пересечения
множество универсум
на пустое множество
и наоборот.
Прямое произведение множеств
Кортежем называют любую выделенную упорядоченную совокупность объектов (элементов кортежа). Синонимами понятия «кортеж» являются: упорядоченная система, упорядоченная совокупность, вектор, упорядоченный набор, «-ка» и др. Отличие кортежа от множества заключается в том, что компоненты кортежа упорядочены и могут полностью или частично совпадать. Два кортежа называются равными, если они имеют
одинаковую длину, и все их соответствующие компоненты совпадают.
Элементы, составляющие кортеж, называются компонентами, которые в силу упорядоченности имеют номер: первый компонент, второй компонент, … -ый компонент. Длиной кортежа называют число компонентов в кортеже. Когда вместо термина «кортеж» употребляется термин «вектор», то говорят соответственно о координатах и размерности вектора.
Примеры кортежей: Это кортеж N длины 5, первый компонент которого — 8, второй — 7, третий — 4 и т. д.;
в этом случае
второй, а
четвертый компонент кортежа М.
Прямым произведением двух множеств А и В (обозначается называется множество, состоящее из всех тех и только тех пар, первый компонент которых принадлежит А, второй -В. Если первый сомножитель имеет
элементов, а второй —
то их прямое произведение имеет
элементов, каждый из которых — упорядоченная пара. Например, если
и
В общем случае, если
Тем самым прямым произведением
множеств
называется множество всех кортежей длины
(
-ок), первый компонент которых принадлежит
второй
-тый —
т. е.
где -ый элемент множества
Если все множества равны между собой, то есть
то прямое произведение множеств обозначается как
Например: пусть R — множество действительных чисел, тогда множество упорядоченных пар вида
Геометрически R — множество точек числовой оси, тогда
множество точек плоскости, где
координаты этих точек. Прямое произведение часто называют декартовым произведением множеств. Множество Р называется графиком, если
каждый его элемент является упорядоченной парой, следовательно, любое подмножество множества можно назвать графиком.
Проекцией кортежа на і-ю ось
называется і-ый компонент кортежа, т. е.
Проекция точки плоскости на первую ось
называется абсциссой, на вторую ось — ординатой
Из определения прямого произведения следует, что оно не коммутативно, т. е.
Пример:
Пусть А — отрезок [1,3], В — отрезок [2,5]. Тогда множество точек прямоугольника, заштрихованного на рис. 1.6,
прямоугольник, заштрихованный на рис. 1.7.
Пример:
Пусть А — множество, элементами которого являются буквы, цифры и все знаки операций и препинания. Такое множество называют алфавитом. Тогда множество всех слов длины
.
Природа компонентов прямого произведения обычно отличается от природы элементов сомножителей. Например, пусть Q — множество участников шахматного турнира, тогда при всех
есть множество пар участников, причем
играет белыми фигурами,
черными.
Понятие соответствия
Пусть заданы два множества . Если для каждого элемента
указан элемент
с которым сопоставляется
то говорят, что между множествами
установлено соответствие. Иначе говоря, соответствием называется тройка множеств
Множество
называется областью отправления,
— областью прибытия,
— графиком соответствия. Если
то множество первых проекций
называется областью определения соответствия, множество вторых проекций
— областью значений этого соответствия,
— график соответствия.
Два соответствия равны тогда и только тогда, когда равны их области отправления, области прибытия и графики. Пример. Заданы четыре разных соответствия, имеющие одинаковые области отправления и прибытия:
На рис. 1.8а, 1.86, 1.8в, и 1.8г. различия этих соответствий видны достаточно наглядно.
В соответствии множество всех
которые сопоставляются элементу
называется образом
Множество же всех
которым сопоставляют элемент
называется прообразом
Соответствие называется всюду определенным, если множество т. е. его область определения, совпадает с областью отправления (в противном случае говорят о частичном соответствии). Если же
то соответствие называют сюръективным, или накрывающим. Это означает, что область значений соответствия совпадает с его областью прибытия. На рис. 1.8 а и 1.8 б представлено всюду определенное сюръективное соответствие. Соответствия, представленные на рис.18 в и 1.8 г, не сюръективны, а соответствие, изображенное на рис. 1.8, г не всюду определенное.
Соответствие называется функциональным (или однозначным), если образом любого элемента из
является единственный элемент из
График такого соответствия называется функциональным. Это означает, что в нем нет пар с одинаковыми первыми и различными вторыми компонентами. Например, соответствие, представленное на рис. 1.8 б, нефункционально. Соответствие называется инъективным, если любому элементу из
соответствует единственный элемент из
, на рис. 1.8 в изображено инъективное соответствие.
Соответствие между называется взаимно-однозначным (или биективным), если оно всюду определено, сюръективно, функционально и инъективно.
Пусть — множества вещественных чисел. В этом случае график соответствия
может быть представлен некоторой линией на плоскости. Например. На рис. 1.9 представлено функциональное соответствие, но оно не инъективно (некоторым
соответствует более одного
), не всюду определено (
определен не для всех
), не сюръективно (
проектируется не на все
) и не биективно. На рис. 1.10 представлено нефункциональное соответствие, которое не всюду определено, сюръективно и не биективно. На рис. 1.11 представлено взаимно-однозначное соответствие.
Мощность множества
Мощность множества характеризует количество элементов этого множества. Множества равномощны, если между их элементами можно установить взаимно-однозначное соответствие. Число элементов в конечном множестве А называется кардинальным числом и обозначается |А|. Подсчет элементов конечного множества заключается в установлении взаимно-однозначного соответствия между этими элементами и конечной последовательностью натуральных чисел.
Множество называется бесконечным, если оно равномощно хотя бы одному из его собственных подмножеств. Бесконечное множество А называется счетным, если оно равномощно множеству всех натуральных чисел N. Примеры счетных множеств: множество целых чисел, четных чисел, рациональных чисел. Счетное множество образуется при объединении счетного множества конечных множеств (например, множество слов в любом конечном алфавите) и т. д. Счетным будет и объединение счетного множества счетных множеств (множество всех векторов с натуральными компонентами). Множество А называется не более чем счетным, дискретным, если оно конечно (в частности, пусто) или счетно. Счетное множество среди бесконечных множеств имеет наименьшую мощность.
Рассмотрим все вещественные числа на отрезке Эти числа не могут быть пронумерованы, следовательно, их множество не образует счетное множество, оно несчетно. По определению, множество, равномощное множеству всех вещественных чисел
единичного отрезка числовой оси, имеет мощность континуума (непрерывное множество). Мощность множества континуума превышает мощность счетного множества. Любой конечный отрезок числовой оси равномощен единичному отрезку. Более того, любой конечный отрезок равномощен и всей числовой оси. Например, между отрезком и множеством
можно установить такое соответствие:
Множества наибольшей мощности не существует. Это следует из того, что мощность любого множества А всегда строго меньше мощности множества всех его подмножеств
Множества — основные понятия
Под множеством понимается совокупность каких-либо объектов, называемых элементами этого множества. Например, можно говорить о множестве студентов данного вуза, множестве учебников по математике, множестве треугольников, множестве действительных чисел и т. д. Множества, содержащие конечное число элементов, называются конечными (множество студентов, множество учебников). Множества с бесконечным числом элементов называются бесконечными (множество треугольников, множество действительных чисел).
Множество обычно обозначается заглавными латинскими буквами A, B, С, …, а их элементы — малыми а, b, с, ….
Утверждение ’’элемент х принадлежит множеству А” записывается так : «х ∈ А ”, а противоположное утверждение ” элемент х не принадлежит множеству А” записывается так : ”х ∉ А ”.
Определение:
Если все элементы множества А принадлежат также множеству В, то говорят, что ” А содержится в В” или: ” А является подмножеством В”, и записывают так: A ⊂ В.
Определение:
Два множества называются равными (совпадающими), если они состоят из одних и тех же элементов: A = B.
Пример:
Сформулируйте словами утверждение:
A=B⇔ A ⊂ B и B ⊂ A и докажите его.
Конечное множество можно задать перечислением его элементов. Так, запись A = {1;2;3} означает, что множество А состоит из трех чисел 1,2,3. При этом порядок перечисления элементов не играет роли: {1;2;3} = {3;2;1}.
Бесконечное множество можно задать, написав условие, которое выполняется для всех элементов данного множества и не выполняется для других. Запись
В = {x | 1 < х < 2}
означает множество всех чисел, больших одного, но меньших двух, т.е. интервал (1;2).
Множество удобно схематически изображать в виде ’’диаграмм Эйлера” — геометрических фигур на плоскости, взаимное расположение которых отражает отношение между множествами. Так, например, если A ⊂ B и B ⊂ C, то A изображается частью В₁ а В частью C (рис. 1). C помощью диаграммы Эйлера на рис. 1 наглядно видно свойство транзитивности операции включения множеств: A ⊂ B ⊂ C ⟹ A ⊂ C.
Определение:
Множество называется пустым, если оно не содержит ни одного элемента. Пустое множество обозначается символом ⊘.
Так, например, множество отрицательных натуральных чисел пусто.
Операции над множествами
Определение:
Пересечением множеств A и B называется множество С, состоящее из всех элементов, одновременно входящих и в А, и в В. Это записывается следующим образом: A ∩ В = С.
Иллюстрация пересечения двух множеств с помощью диаграмм Эйлера приведена на рис. 2, где множество C заштриховано.
Пример:
Если множество А есть интервал (1 ;5) а множество В есть интервал (2;7), то пересечение множеств A и B есть интервал (2;5).
Свойства операции пересечения множеств приведем без доказательств:
- A ∩ В = В ∩ А(коммутативность).
- A ∩ (В ∩ С) = (A ∩ В) ∩ C = A ∩ В ∩ С(ассоциативность).
- A ⊂ В ⟹ А ∩ В = А.
- A∩A= А.
- A ∩ ⊘ = ⊘
Определение:
Объединением множеств A и B называется множество С, состоящее из всех элементов, каждый из которых принадлежит хотя бы одному из данных множеств или А, или В, или A u B одновременно. Это обозначается следующим образом : A ∪ В = С.
Иллюстрация объединения с использованием диаграмм Эйлера приведена на рис. 3, где множество C заштриховано.
Пример:
Если множество А есть отрезок [1;3], множество В есть отрезок [2;5], то A ∪ B есть отрезок B=[1;5].
Свойства операции объединения множеств приведем без доказательств:
1) A ∪ B=B ∪ A (коммутативность).
2) A ∪ (B∪C)=(A ∪ B) ∪ C=A ∪ B ∪ C (ассоциативность).
3) A∩(B∪C)=(A∩B) ∪ (A∩C) (дистрибутивность).
4) A ⊂ B ⇒A ∪ B=B.
5) A ∪ A=A.
6) A ∪ ⊘=A.
Определение:
Разностью множеств А и В называется множество С, состоящее из всех элементов, принадлежащих множеству А, но не принадлежащих В. Разность A u B обозначается АВ и изображена штриховкой на рис. 4.
Операция вычитания множеств не коммутативна : A∖B≠B∖A.
Пример:
Если А = (1; 10), В = (3; 20), то АВ=(1;3], ВА =[10,20).
Кванторы общности и существования
При изложении материала мы будем использовать знак , называемый квантором общности, и знак Ǝ, называемый квантором существования. Символ
означает: ’’для любого х«, ’’для всех х”, ’’для каждого х«, ’’какое бы ни было х«. Запись
> 0 означает: ’’для всех положительных x” Запись
∈ M читается: ’’для всех x, принадлежащих множеству М”.
Обозначение Ǝх означает: ’’существует такое х, что …”, ”по крайней мере для одного х…”, запись Ǝх > 0 читается: ’’существует такое положительное число х, что…”, запись Ǝх₁ ,x₂ Є M означает: ’’существуют такие х₁ ,x₂ — элементы множества М, что …”.
Нам также неоднократно придется использовать символы ⇒ и ⇔.
Запись логического следования А ⇒ В означает, что если верно утверждение А, то верно и утверждение В, то-есть из А следует В.
Запись логической равносильности ⇔ означает, что из А следует В и наоборот, из В следует А.
Так, например, запись: > ƎN
> N ⇒ | f (x) — b| < ε читается следующим образом: ’’для любого ε больше 0 существует N такое, что для любых х, больших N, будет выполняться неравенство | f (x) — b∣< ε.”
Необходимое и достаточное условие
Любая теорема может быть сформулирована в виде: если выполняется условие А, то верно утверждение В. Будем называть это прямой теоремой и схематически запишем в виде:
Теорема:
А ⇒ В.
В качестве примера приведем теорему, называемую достаточным условием экстремума непрерывной функции, изучаемую в курсе математики средней школы.
Теорема:
Если функция f непрерывна в точке а и производная f меняет знак при переходе через эту точку, то а является точкой экстремума функции f.
Условие А стоит после слова «если», утверждение В написано после
слова «то».
Определение:
А называется достаточным условием для
выполнения В. В свою очередь, В является необходимым условием для выполнения А.
Применительно к теореме 1.2 это выглядит следующим образом.
Достаточным условием для существования экстремума непрерывной функции f в точке а является изменение знака ее производной при переходе через эту точку.
Для лучшего усвоения введенных понятий рассмотрим очевидно справедливое утверждение не из области математики.
Теорема:
Если человек здоров, то у него есть голова.
Здесь здоровье является достаточным условием наличия у человека головы. Наоборот, наличие головы является необходимым условием здоровья. Подумайте, будет ли это условие достаточным для того, чтобы человек был здоров? Реально ли вообще сформулировать достаточное условие того, что человек здоров?
Обозначим А утверждение, заключающееся в отрицании утверждения А(читается «не А»). Если справедлива прямая теорема 1.1, то методом «от противного» легко можно доказать справедливость следующего утверждения, которое называется
«противоположная к обратной теорема»:
Теорема:
В ⇒ А.
Доказательство:
Имеем А ⇒ В, нужно доказать, что В⇒ А Предположим противное: В ⇒ А, но в соответствии с теоремой 1.1 А ⇒ В. Полученное противоречие (В ⇒ В) доказывает теорему.
Аналогично можно доказать, что если справедлива теорема 1.4, то верна теорема 1.1, т. е. эти утверждения равносильны.
Для теоремы 1.2 противоположной к обратной будет теорема: ’’Если точка а не является точкой экстремума функции f ̕ непрерывной в этой точке, то производная f ̕ не меняет знак при переходе через эту точку”.
Для теоремы 1.3 противоположным к обратному будет утверждение: ’’Если у человека нет головы, то он не здоров”.
Проведите доказательство этого утверждения самостоятельно методом ”от противного».
Наряду с прямой теоремой 1.1 можно рассмотреть утверждение, называемое «обратной теоремой” :
Теорема:
В ⇒ А.
Однако обратная теорема не всегда справедлива, если верна прямая. Так, например, для теоремы 1.3 обратное утверждение: «Если у человека есть голова, то он здоров”, очевидно, не верно.
Если все же теорема 1.5 справедлива, то методом «от противного” исходя из нее доказывается справедливость утверждения, называемого «противоположная теорема”:
Теорема:
А ⇒ В
Наоборот, из теоремы 1.6 вытекает справедливость теоремы 1.5, т.е. эти утверждения равносильны. Заметим, что из прямой теоремы 1.1 не обязательно следует справедливость противоположной теоремы 1.6.
Приведенные связи удобно запоминать, представляя себе следующий ’’логический квадрат» (рис. 5):
Если наряду с прямой теоремой выполняется также обратная теорема, то А является ’’необходимым и достаточным” условием для В. То же самое можно сказать про В по отношению к А.
Так, например, то, что треугольник прямоугольный, является необходимым и достаточным условием того, что квадрат одной из сторон равен сумме квадратов двух других.
Множество N натуральных чисел
Определение:
Числа 1,2,3,… называются натуральными.
Сумма и произведение натуральных чисел будет числом натуральным, а разность и частное — не всегда. При вычитании натуральных чисел может получится отрицательное число, а при делении — не целое. Например, при делении получится целая часть 2 и 1 в остатке, что записывается следующим равенством:
.
Приводя к общему знаменателю, получим равенство: 7 = 2 ∙ 3 + 1. В этих равенствах 7 называется делимым, 3 — делителем, 2 — целой частью и 1 — остатком (остаток всегда меньше делителя). Если остаток равен нулю, то говорят, что делимое делится на делитель, как, например, 6 делится на 3. Если натуральное число, большее единицы, делится только на 1 и на себя (что всегда справедливо), то оно называется простым. Простыми числами являются числа 2,3,5,7,11,13,17,19,23 и т. д. Любое натуральное число может быть представлено в виде произведения простых сомножителей. Например : 12 = 1 ∙ 2 2 3, 18 = 1 2 ∙ 3 3, 7 = 1 ∙ 7 и т. д.
Определение:
Наименьшим общим кратным двух данных натуральных чисел называется наименьшее из чисел, которые делятся на каждое из них.
Для любых двух натуральных чисел всегда найдется наименьшее общее кратное, поскольку их произведение всегда делится на каждое из двух данных.
Наименьшее общее кратное 12 и 18 равно 36. Для того чтобы найти наименьшее общее кратное двух чисел, нужно первое число помножить на простые множители, входящие в разложение второго числа и не входящие в разложение первого: 12 ∙ 3 = 36.
Определение:
Наибольшим общим делителем двух данных натуральных чисел называется наибольшее из чисел, на которые делится каждое из них.
Для любых двух натуральных чисел всегда найдется наибольший общий делитель, поскольку любые два числа всегда делятся на единицу. Если у двух натуральных чисел нет других общих делителей кроме единицы, они называются взаимно простыми. Наибольший общий делитель 12 и 18 равен 6. Для того, чтобы найти наибольший общий делитель двух чисел, нужно перемножить общие простые множители, входящие в разложение и одного, и другого числа: 1 ∙ 2 ∙ 3 = 6.
Множество Z целых чисел
Определение:
Натуральные, отрицательные натуральные числа и ноль образуют множество целых чисел (множество Z).
Сумма, произведение и разность целых чисел является целым числом, а частное — не всегда. Иногда множество отрицательных целых чисел обозначается Z_.
Множество натуральных чисел является подмножеством множества целых чисел: N ⊂ Z.
Множество Q рациональных чисел
Определение:
Рациональными числами называются числа вида , где m — целое (m Є Z), n — натуральное (n Є N), тип взаимно простые. Множество рациональных чисел обозначается Q.
Множество целых чисел является подмножеством множества рациональных чисел, т. к. любое целое число m можно рассматривать как рациональное, представив в виде . Сумма, произведение, разность, частное рациональных чисел ( при ненулевом знаменателе) является числом рациональным, однако корень из рационального числа — не всегда, как, например,
,
и т.д.
Всякое рациональное число можно представить в виде десятичной дроби, конечной или периодической. И наоборот, любая конечная или периодическая десятичная дробь может быть записана в виде простой дроби.
Пример:
=0,5;
=0,8 ;
=0,666…=0,(6) ;
=7,31(06).
Две последние десятичные дроби бесконечные периодические. Повторяющиеся цифры называются периодом дроби и пишутся в скобках, количество этих цифр называется длиной периода. Для обратного преобразования конечной десятичной дроби ее нужно представить в виде простой и сократить: 0,8==
. На самом деле разница между конечной дробью и периодической непринципиальная. Так, 0,5=0,4(9).
Перевод периодической десятичной дроби в простую объясним на примере.
Пример:
Записать в виде простой дроби 0,(6).
Решение:
Периодическую дробь 0,(6) обозначим за x: 0,(6)=x, тогда, т. к. 10‧х — 10-0,666… = 6,666…, легко заметить, что 10∙х = 6 х. Решая это уравнение, получаем: 9‧x=6⇔x = =
.
Определение:
Целой частью числа называется наибольшее целое число, не превосходящее данное. Целая часть числа х обозначается [x].
Примеры:
[3,56]=3; [0,12]=0; [-0,12]=-1; [-]=-4;
[5]=5; [0]=0.
Определение:
Дробной частью числа называется разность между самим числом и его целой частью. Дробная часть числа обозначается {x}. Она строго меньше единицы и находится в пределах : 0 ≤ {x} < 1.
Примеры:
{3,56}=0,56; {0,12}=0,12; {-0,12}=0,88;
{}=
; {5}=0; {0}=0.
Множество J иррациональных чисел
Определение:
Иррациональным числом называется бесконечная непериодическая десятичная дробь.
Примерами иррациональных чисел являются √2, √3, ∛11, π, е, и т. д. Заметим, что J ∩Q = ⊘ Иррациональное число нельзя представить в виде простой дроби, его также невозможно ’’выписать до конца” (представить в виде конечной десятичной дроби), поэтому запись √2 = 1,41 ошибочна, следует писать √2 ≈ 1,41.
Заданное бесконечной непериодической дробью иррациональное число определяет две последовательности конечных (рациональных) десятичных дробей, называемых десятичными приближениями по недостатку и по избытку. Например, для √2 можно написать:
1 √2<2,
1,4< √2<1,5,
1,41< √2<1,42.
…
В инженерных расчетах при замене иррациональных чисел их рациональными приближениями достаточно во всех вычислениях брать на один знак больше, чем требуется в результате, и затем округлить результат.
Для иррациональных чисел можно также определить целую и дробную части, причем для х ∈ J ⇒ {τ} ∈ J.
Множество R действительных чисел
Определение:
Все рациональные и иррациональные числа образуют множество действительных (вещественных) чисел: R = QuJ.
В множестве действительных чисел всегда выполнимы сложение, вычитание, умножение, деление (не на ноль), возведение в любую действительную степень положительного числа, извлечение корня нечетной степени из отрицательного числа.
В множестве действительных чисел невозможно извлечение корня четной степени из отрицательного числа.
Числовая ось
Множеству действительных чисел можно дать простую геометрическую интерпретацию. Выберем на прямой положительное направление (указывается стрелкой), начало отсчета и единицу масштаба. Такая прямая называется числовой осью. Каждой ее точке можно поставить в соответствие единственное действительное число следующим образом: положительное число х изображается точкой, расположенной на оси на расстоянии х в направлении стрелки (на рис. 6 справа от О), отрицательное с другой стороны (на рис. 6 слева от О) на расстоянии х от О.
Число х называется координатой соответствующей точки на числовой оси. Из двух чисел больше будет то, которое расположено на числовой оси дальше в направлении стрелки (на рис. 6 — правее).
Например, -1 > -2.
Числовые промежутки
Если известны два действительных числа а и b, a < b, то можно определить следующие множества действительных чисел, находящихся между двумя данными — числовые промежутки.
Отрезок (сегмент) [α; b]= {x | a ≤ х ≤ b},
Интервал (a; b)= {x | a < х < b}.
В частности, можно рассматривать бесконечные интервалы:
(- ∞; +∞)={x∈R}, (a;+∞)={x|x>a}, (- ∞ ;b)={x|x<b}.
Полуинтервал, [a;b)={x∣a≤x<b}, (a;b]={x∣a<x≤b}.
В частности, можно рассматривать бесконечные полуинтервалы: [a;+∞)={x∣x≥a}, (-∞;b]={x∣x≤b}.
Числовые промежутки изображают на числовой оси, причем если граничная точка принадлежит промежутку — она закрашена, если нет — изображается светлым кружком (’’выкалывается”). На рис 7 изображен полуинтервал (2;5].
Числовые промежутки будем выделять штриховкой или утолщенной линией.
Примеры с решением на тему: «Множества«
При решении примеров данного практического занятия используется материал средней школы и материал лекции 1. Применение метода интервалов для решения неравенств иллюстрируется примерами 1.2-1.5
Пример:
Пусть A = [-3;5],B = (-5;7),C = [1;2). Найдите множество: A₀ = (4 ∩ В) U (В ∩ С).
Решение:
Для нахождения результата операций над числовыми промежутками их удобно изображать на числовых осях, расположенных одна под другой с согласованным началом и одинаковым масштабом. Если исходные промежутки А и В заштриховать, то их пересечением будет множество точек, заштрихованных на каждой из осей (рис. 8), а их объединением — множество точек, заштрихованных хотя бы на одной из осей (рис. 9).
Пользуясь этим правилом, последовательно получим A ∩ В, В ∩C и, наконец, (Л ∩ В) ∪ (В ∩ С) (рис. 8, 10, 11).
Ответ: A₀ ≈ [-3; 5].
Пример:
Найдите элементы множества:
A₀ = {x | (2 — 3x)(x + 4)(x — 2) > 0}.
Решение:
Неравенство (2 — 3x)(х + 4)(x — 2) > 0 решим методом интервалов, для чего нанесем на числовую ось значения х, при которых левая часть неравенства обращается в ноль: x₁ =,x₂ = -4,х₃ = 2. (рис. 12)
Сами эти значения не удовлетворяют неравенству, поэтому соответствующие точки “выколоты».
Знаки выражения в левой части неравенства определим, подставляя в него по одному значению из каждого интервала, на которые все множество R разбилось точками x₁,x₂,х₃. Отметим штриховкой те интервалы, на которых выражение в левой части неравенства положительно. Это множество является искомым.
Ответ: A₀=(-∞; -4) ∪ (; 2).
Пример:
Задайте характеристическим свойством множество: A₀ — множество всех натуральных чисел, меньших 5 или больших 10.
Решение:
В условии требуется,чтобы натуральные числа были меньше 5 или больше 10, т.е. искомое множество есть объединение двух подмножеств: множества натуральных чисел, меньших 5 и больших 10.
Ответ: A₀ = {x|x < 5, х ∈ N} ∪ {x|x > 10, х ∈ N}.
Пример:
Решите систему неравенств:
Решение:
Решение системы неравенств есть пересечение множеств решений каждого из входящих в систему неравенств. Аналогично тому, как это делалось при решении примера 1.2, решим каждое из неравенств системы методом интервалов и найдем их пересечение (рис 13).
Ответ: х ∈ (-1; 2,5).
Пример:
Решите совокупность систем неравенств:
Решение:
Решение совокупности систем неравенств есть объединение решений каждой системы, входящей в совокупность. Для решения разложим каждый многочлен в произведение с помощью корней:
Решение совокупности систем методом интервалов представлено на рис. 14
Ответ: х ∈ (-2; 1)
Множества
Понятие множества является одним из основных понятий математики. Оно не сводится к другим понятиям и не определяется. Вместо определения приводят лишь примеры, поясняющие его смысл. Так, можно говорить о множестве всех учеников данной школы, о множестве всех собак на земном шаре, о множестве всех клеток данного человеческого тела, о множестве всех картофелин в данном мешке, о множестве всех натуральных чисел, о множестве всех треугольников на данной плоскости, о множестве всех точек данного круга и т. д.
Когда в математике говорят о множестве, то объединяют некоторые предметы в одно целое — множество, состоящее из этих предметов. Основатель теории множеств Георг Кантор (1845—1918) выразил это следующими словами: «Множество есть многое, мыслимое как единое».
Предметы (объекты), составляющие некоторое множество, называются его элементами. То обстоятельство, что объект а является элементом множества А, записывается так: (словами: а есть элемент множества А; а принадлежит А; а содержится в А; А содержит а). Если объект а не является элементом множества А, то это записывается так:
(словами: а не есть элемент множества А; а не принадлежит А; а не содержится в А; А не содержит а).
Например, если А есть множество всех четных натуральных чисел, то
Множество иногда можно задать перечислением всех его элементов. В этом случае употребляют фигурные скобки, в которые помещают названия всех элементов множества, разделенные запятыми. Так, {1, 2, 3) обозначает множество, состоящее из чисел «один», «два», «три» и только из них.
Вообще некоторое множество считается заданным, если указано некоторое свойство, которым обладают все его элементы и не обладают никакие другие объекты. Такое свойство называется характеристическим свойством множества.
Характеристическим свойством множества {1, 2, 3) может быть свойство совпадать с одним из членов списка, приведенного в фигурных скобках. Другим характеристическим свойством этого же множества является свойство быть корнем уравнения
Числовые множества
Множества могут состоять из объектов самой различной природы. Их элементами могут быть буквы, атомы, числа, уравнения, точки, углы и т. д. Именно этим объясняется чрезвычайная широта теории множеств и ее приложимость к самым разным областям знания (математике, механике, физике, лингвистике, экономике и т. д.). Для математики особо важную роль играют множества, составленные из «математических» объектов— корней уравнений, геометрических фигур и т. д. Чаще всего нам будут встречаться числовые множества, то есть множества, элементами которых являются числа. Примерами числовых множеств являются: а) множество всех действительных чисел; б) множество всех рациональных чисел; в) множество всех положительных чисел; г) множество всех чисел, удовлетворяющих неравенству д) множество всех чисел вида
Некоторые числовые множества имеют особые названия. Если даны два числа а и b, а < b, то множество всех чисел, удовлетворяющих неравенству называют числовым отрезком или,
если это не вызывает недоразумений, просто отрезком и обозначают [а, b]. На числовой оси ему соответствует отрезок с концами а и b (рис. 1).
Множество чисел, удовлетворяющих неравенству а < х< b , называют числовым промежутком или, короче, промежутком и обозначают (а, b). На числовой оси ему соответствует отрезок, у которого отброшены концевые точки (рис. 2).
Множество чисел, удовлетворяющих неравенствам вида х > а (или х<а), называют (числовым) лучом. Его обозначают (а, )
(или (—, а)) (рис. 3). Иногда нам будут встречаться множества чисел, удовлетворяющих неравенствам
или
(рис. 4). Их называют (числовыми) полуотрезками и обозначают [а, b) и (а, b]. Заметим, что квадратная скобка означает, что соответствующий
конец включается в множество, а круглая — что он исключается.
Пустое множество
Введение понятия множества в математику оказалось очень полезным. Из-за того что элементами множеств могут быть вещи самой различной природы, одни и те же утверждения, касающиеся множеств, можно истолковать и как утверждения о натуральных числах, и как утверждения о точках геометрических фигур, и как утверждения о множестве слов и т. д. Таким образом, понятия и теоремы теории множеств обладают большой общностью. Этим и объясняется то, что язык теории множеств применяется в самых различных областях математики.
В математике приходится иногда рассматривать множества, содержащие только один элемент, и даже множества, не имеющие ни одного элемента. Множество, не содержащее ни одного элемента, называют пустым. Его обозначают знаком . На первый взгляд может показаться, что понятие пустого множества излишне. Но когда множество задано своим характеристическим свойством, заранее неизвестно, пусто оно или нет. Например, пусть некоторое множество состоит из всех прямоугольников с неравными диагоналями. То, что свойство «быть прямоугольником с неравными диагоналями» задает пустое множество, составляет утверждение геометрической теоремы: «Во всяком прямоугольнике диагонали равны». Точно так же из теоремы Пифагора следует, что множество прямоугольных треугольников, для которых квадрат гипотенузы не равен сумме квадратов катетов, пусто. Вот еще несколько примеров задания пустого множества характеристическим свойством: а) множество рациональных чисел r таких, что
б) множество всех точек пересечения двух параллельных прямых; в) множество треугольников, сумма углов которых отлична от 180°; г) множество квадратных уравнений, имеющих более двух раз личных корней; д) множество решений системы уравнений
О некотором множестве может быть неизвестно, является ли оно пустым множеством или нет. Так, до сих пор неизвестно, пусто ли множество натуральных чисел n таких, что n > 2, а уравнение
имеет положительные целочисленные решения (в этом состоит известная проблема Ферма).
Пустое множество единственно: нет двух разных пустых множеств.
Подмножество
Пусть даны два множества A и B, причем каждый элемент первого множества является элементом второго множества. Тогда множество А называют подмножеством (или частью) множества В. В этом случае пишут:
Примеры подмножеств: а) числовой отрезок [1,3] есть подмножество числового отрезка [0, 4];
б) множество всех квадратов есть подмножество множества всех прямоугольников; в) множество всех целых чисел есть подмножество множества всех рациональных чисел.
Отметим, что пустое множество является подмножеством любого множества А. Каждое множество А является одним из своих подмножеств. Эти два подмножества ( 0 и все множество) называют несобственными. Все остальные подмножества называют собственными.
Множества часто изображают наглядно как множество точек геометрической фигуры. Тогда подмножество — это множество то чек части фигуры (рис. 5).
Пересечение множеств
Пусть даны множества А, В, С, … . Их пересечением называют множество X, содержащее те и только те элементы, которые входят в каждое из заданных множеств. Пере сечение двух множеств А и В обозначают АВ или
Если множества А и В состоят из точек некоторых геометрических фигур, то — множество общих точек этих фигур, то есть множество точек пересечения этих фигур в обычном смысле (рис. 6).
Пересечение множеств называют также их произведением, а операцию пересечения — умножением множеств. Можно показать,
что многие свойства пересечения множеств напоминают свойства умножения чисел.
Примеры пересечения множеств: а) пересечением числового отрезка [0, 4 ] с числовым отрезком [2, 5] является числовой отрезок [2, 4] (рис. 7);
б) пересечение числового отрезка [0, 2] с числовым отрезком [3, 5] пусто; в) пересечение множества всех ромбов с множеством всех прямоугольников есть множество всех квадратов; г) пересечением множества четных натуральных чисел с множеством натуральных чисел, делящихся на 3, является множество натуральных чисел, делящихся на 6.
Сложение множеств
Суммой (или объединением) множеств А, В, С, . . . называют множество X, состоящее из тех и только тех элементов, которые входят хотя бы в одно из этих («слагаемых») множеств. Сумму двух множеств А и В обозначают А + В или . Мы увидим позже, что некоторые свойства суммы множеств напоминают свойства суммы чисел.
Если какой-нибудь элемент входит в несколько слагаемых множеств, то в сумме он берется лишь один раз. Например, суммой числового отрезка [0, 4] и числового отрезка [2, 5] является числовой отрезок [0, 5]. При этом точки отрезка [2, 4] входят в оба слагаемые, но в сумме они берутся лишь один раз. Впрочем, выражения «некоторый элемент берется в данном множестве пять раз» и т. п., как это следует из принятого нами понимания терминов «множество» и «элемент», просто не имеют смысла.
Примеры а) Обозначим через А множество точек некоторой плоской области и через В — множество точек другой области (рис. 8). Тогда их суммой будет множество точек заштрихованной фигуры, ограниченной на рис. 8 жирной линией. б) Обозначим через А множество успевающих учеников в классе, через В — множество девочек в этом классе и через С — множество неуспевающих мальчиков. Тогда является множеством всех учеников этого класса. (Имеют ли множества А и В общие элементы?) в) Обозначим через
множество всех положительных дробей со знаменателем n. Тогда
является множеством всех положительных дробей, то есть дробей вида
, где m и n — натуральные числа. г) Обозначим через
множество правильных n-угольников. Тогда
является множеством всех правильных многоугольников. д) Обозначим через A множество целых чисел вида 4n — 1, а через В — множество целых чисел вида 4n + 1. Тогда
— множество всех нечетных целых чисел.
Разбиение множеств
Пусть множество X является суммой множеств A, В, С. . . , причем никакие два из них не имеют общих элементов. Тогда говорят, что множество X разбито на (непересекающиеся) подмножества А, В, С, . . . .
Примеры разбиения множеств: а) Множество натуральных чисел разбивается на подмножества четных чисел и нечетных чисел. б) Множество всех учеников в классе разбивается на множества учеников, фамилия которых начинается на букву «А», учеников, фамилия которых начинается на букву «Б», и т. д. вплоть до буквы «Я». Какое из этих множеств пусто, если взять ваш класс? Какие из этих множеств пусты для любого класса? в) Множество всех векторов на плоскости можно разбить на непересекающиеся подмножества, относя к одному подмножеству все векторы, равные друг другу по длине, параллельные и одинаково направленные. г) Это же множество можно разбить иначе, относя к одному под множеству векторы, выходящие из одной точки плоскости.
Вычитание множеств
Если даны два множества A и В, то их разностью называют такое множество X = A В или (А — В), в которое входят все элементы из Л, не принадлежащие множеству В. При этом не предполагается, что множество В является частью множества A. Таким образом, при вычитании множества В из множества A из A удаляют общую часть (пересечение) A и В:
Например, если A — множество всех учащихся IX класса данной школы, а В — множество всех девочек, которые учатся в этой школе, то A В — множество всех мальчиков, обучающихся в IX классе этой школы.
В случае, когда В — часть множества А, А В называют дополнением к В в множестве А и обозначают (разумеется, одно и то же множество В имеет разные дополнения в разных содержащих его множествах А). Например, дополнением множества четных чисел в множестве всех целых чисел является множество нечетных чисел. Дополнением множества всех квадратов в множестве прямоугольников является множество всех прямоугольников с неравными сторонами, а дополнением того же множества квадратов в множестве всех ромбов — множество ромбов с неравными диагоналями.
Отображение множеств
Пусть даны два множества X и У и пусть имеется правило ставящее в соответствие каждому элементу
некоторый определенный
. Тогда говорят, что задано отображение
множества X в множество У. Элемент, соответствующий х в силу правила
обозначают
и пишут:
. Элемент у называют образом элемента х при отображении
а элемент х называют прообразом элемента у при отображении
Отображение
называют также функцией, заданной на множестве X и принимающей значения во множестве У. Множество X называют областью определения функции
Если всякий является образом некоторого
при отображении
, то отображение
называют отображением множества X на множество У. В этом случае множество У называется областью значений функции
.
Приведем примеры отображений множеств: а) Пусть X — множество всех действительных чисел, У — множество всех неотрицательных чисел. Равенство связывающее с элементом множества X элемент у множества У, задает отображение X на У. При этом числу 2 соответствует число 4, числу 6 — число 36 и т. д. б) Пусть X — множество всех действительных чисел, отличных от числа 3, У — множество всех действительных чисел. Равенство
, связывающее с элементом х множества X элемент множества У, задает отображение X в У. Является ли это отображение отображением на У? в) Пусть X — множество всех кругов, а У — множество всех действительных чисел. Поставим каждому кругу в соответствие длину его радиуса. Мы получим отображение множества X в множество У. Другое отображение X в У получится, если поставить каждому кругу в соответствие его площадь. г) Пусть X — множество всех треугольников, а У — множество всех окружностей. Поставим каждому треугольнику в соответствие вписанную в него окружность. Получим отображение множества X в У. Другое отображение X в У получится, если поставить в соответствие каждому треугольнику описанную вокруг него окружность. д) Пусть У — множество всех деревьев на земном шаре, а X — множество всех плодов, растущих на этих деревьях. Поставим каждому плоду в соответствие дерево, на котором он растет. Получим отображение множества X в множество У.
Пусть — отображение множества X в множество У и пусть
Множество всех элементов вида у
называется образом множества
при отображении
и обозначается
Рассмотрим некоторый элемент у из множества У и возьмем все элементы х из X, отображающиеся в у при отображении . Множество всех этих элементов называют полным прообразом элемента у при отображении
и обозначают
. В первом примере в) полным прообразом положительного числа r является множество всех кругов радиуса r. В первом примере г) полным прообразом любой данной окружности является множество всех треугольников, описанных вокруг этой окружности.
Если полный прообраз каждого элемента у из У при отображении или пуст, или состоит только из одного элемента, то отображение
называется вложением в У. Например, функция
с отрезком [1, 4] в качестве области определения определяет вложение этого отрезка в действительную ось.
Если есть отображение множества X на множества У и полный прообраз каждого элемента у из У состоит лишь из одного элемента, то отображение
называется взаимно-однозначным отображением множества X на множество У. Иными словами, отображение взаимно-однозначно, если каждый элемент из его области значений является образом одного и только одного элемента его области определения.
Краткие исторические сведения
Теоретико-множественные представления в неявной форме давно использовались математиками. Геометры древней Греции в III веке до н. э. рассматривали «геометрические места точек», то есть множества точек, обладающих тем или иным свойством. Однако трудности, связанные с понятием бесконечности, привели к тому, что в течение длительного времени математики избегали рассматривать геометрические фигуры как множества точек.
Исследования по бесконечным множествам начали чешский ученый Б. Больцано (1781— 1841) и немецкий математик Г. Кантор (родился в 1845 г. в Петербурге, умер в 1918 г. в Галле). Труд Больцано был опубликован лишь через много лет после его смерти. Основные заслуги в развитии теории множеств принадлежат Кантору. Он пришел к проблемам этой теории, исходя из сравнительно узкой математической задачи (вопроса о сходимости и расходимости тригонометрических рядов). Однако вскоре ему и его последователям стало ясно, что теория множеств имеет важнейшее значение для различных областей математики. Сейчас теория множеств дает общепринятый язык для многих разделов математики. В целом ряде случаев применение теоретико-множественных понятий позволило привести в систему многие ветви математики. Большой вклад в теорию множеств сделан трудами советских математиков П. С. Александрова, А. Н. Колмогорова, Н. Н. Лузина, П. С. Новикова, М. Я. Суслина и других. Советская школа теории множеств оказала сильное влияние на развитие этой части математики во всем мире.
Вскоре после создания теории множеств выяснилось, что «наивная» трактовка понятия бесконечного множества может привести к противоречиям. Исследования в этом направлении потребовали развития математической логики. Первоначально эта область математики была очень далека от практических приложений, но впоследствии ее принципы составили идейную основу конструирования электронных вычислительных машин и программирования вычислений на этих машинах.
Правила действий над высказываниями, во многом известные еще Аристотелю (создателю формальной логики), были более подробно сформулированы Г. В. Лейбницем, которого часто считают создателем математической логики. Алгебраическую форму этим правилам придали английские математика Дж. Буль (1815— 1864) и А. де Морган (1806—1871). По сути дела, эти правила совпадают с указанными выше правилами действий над множествами. Большой вклад в развитие математической логики внесли Г. Фреге, Б. Рассел, Д. Гильберт, К. Гёдель, А. Тарский, советские математики П. С. Новиков, А. Н. Колмогоров, А. А. Марков и другие.
Дополнение к различным типам множеств
Смотрите также:
Предмет математический анализ
Решение заданий и задач по предметам:
- Математика
- Высшая математика
- Математический анализ
- Линейная алгебра
Дополнительные лекции по высшей математике:
- Тождественные преобразования алгебраических выражений
- Функции и графики
- Преобразования графиков функций
- Квадратная функция и её графики
- Алгебраические неравенства
- Неравенства
- Неравенства с переменными
- Прогрессии в математике
- Арифметическая прогрессия
- Геометрическая прогрессия
- Показатели в математике
- Логарифмы в математике
- Исследование уравнений
- Уравнения высших степеней
- Уравнения высших степеней с одним неизвестным
- Комплексные числа
- Непрерывная дробь (цепная дробь)
- Алгебраические уравнения
- Неопределенные уравнения
- Соединения
- Бином Ньютона
- Число е
- Непрерывные дроби
- Функция
- Исследование функций
- Предел
- Интеграл
- Двойной интеграл
- Тройной интеграл
- Интегрирование
- Неопределённый интеграл
- Определенный интеграл
- Криволинейные интегралы
- Поверхностные интегралы
- Несобственные интегралы
- Кратные интегралы
- Интегралы, зависящие от параметра
- Квадратный трехчлен
- Производная
- Применение производной к исследованию функций
- Приложения производной
- Дифференциал функции
- Дифференцирование в математике
- Формулы и правила дифференцирования
- Дифференциальное исчисление
- Дифференциальные уравнения
- Дифференциальные уравнения первого порядка
- Дифференциальные уравнения высших порядков
- Дифференциальные уравнения в частных производных
- Тригонометрические функции
- Тригонометрические уравнения и неравенства
- Показательная функция
- Показательные уравнения
- Обобщенная степень
- Взаимно обратные функции
- Логарифмическая функция
- Уравнения и неравенства
- Положительные и отрицательные числа
- Алгебраические выражения
- Иррациональные алгебраические выражения
- Преобразование алгебраических выражений
- Преобразование дробных алгебраических выражений
- Разложение многочленов на множители
- Многочлены от одного переменного
- Алгебраические дроби
- Пропорции
- Уравнения
- Системы уравнений
- Системы уравнений высших степеней
- Системы алгебраических уравнений
- Системы линейных уравнений
- Системы дифференциальных уравнений
- Арифметический квадратный корень
- Квадратные и кубические корни
- Извлечение квадратного корня
- Рациональные числа
- Иррациональные числа
- Арифметический корень
- Квадратные уравнения
- Иррациональные уравнения
- Последовательность
- Ряды сходящиеся и расходящиеся
- Тригонометрические функции произвольного угла
- Тригонометрические формулы
- Обратные тригонометрические функции
- Теорема Безу
- Математическая индукция
- Показатель степени
- Показательные функции и логарифмы
- Множество действительных чисел
- Числовые множества
- Преобразование рациональных выражений
- Преобразование иррациональных выражений
- Геометрия
- Действительные числа
- Степени и корни
- Степень с рациональным показателем
- Тригонометрические функции угла
- Тригонометрические функции числового аргумента
- Тригонометрические выражения и их преобразования
- Преобразование тригонометрических выражений
- Комбинаторика
- Вычислительная математика
- Прямая линия на плоскости и ее уравнения
- Прямая и плоскость
- Линии и уравнения
- Прямая линия
- Уравнения прямой и плоскости в пространстве
- Кривые второго порядка
- Кривые и поверхности второго порядка
- Числовые ряды
- Степенные ряды
- Ряды Фурье
- Преобразование Фурье
- Функциональные ряды
- Функции многих переменных
- Метод координат
- Гармонический анализ
- Вещественные числа
- Предел последовательности
- Аналитическая геометрия
- Аналитическая геометрия на плоскости
- Аналитическая геометрия в пространстве
- Функции одной переменной
- Высшая алгебра
- Векторная алгебра
- Векторный анализ
- Векторы
- Скалярное произведение векторов
- Векторное произведение векторов
- Смешанное произведение векторов
- Операции над векторами
- Непрерывность функций
- Предел и непрерывность функций нескольких переменных
- Предел и непрерывность функции одной переменной
- Производные и дифференциалы функции одной переменной
- Частные производные и дифференцируемость функций нескольких переменных
- Дифференциальное исчисление функции одной переменной
- Матрицы
- Линейные и евклидовы пространства
- Линейные отображения
- Дифференциальные теоремы о среднем
- Теория устойчивости дифференциальных уравнений
- Функции комплексного переменного
- Преобразование Лапласа
- Теории поля
- Операционное исчисление
- Системы координат
- Рациональная функция
- Интегральное исчисление
- Интегральное исчисление функций одной переменной
- Дифференциальное исчисление функций нескольких переменных
- Отношение в математике
- Математическая логика
- Графы в математике
- Линейные пространства
- Первообразная и неопределенный интеграл
- Линейная функция
- Выпуклые множества точек
- Система координат
Множества точек, задаваемые алгебраическими уравнениями и неравенствами
Числовые множества
Множества могут состоять из объектов самой различной природы. Их элементами могут быть буквы, атомы, книги, люди и т.д. Для математики особо важную роль играют множества, составленные из “математических” объектов – чисел, точек, геометрических фигур и т.п. Примерами числовых множеств являются:
а) множество всех действительных чисел R;
б) множество всех рациональных чисел Q;
в) множество всех натуральных чисел N;
г) множество всех чисел вида , где n принимает все натуральные значения.
В предлагаемой лекции мы рассмотрим примеры числовых множеств специального вида.
Множества точек на прямой
Числовые промежутки
Пример, имеющий важные применения, – соответствие между множеством действительных чисел R и множеством точек числовой прямой, т.е. прямой, на которой выбраны начало отсчета (ему сопоставлено число 0) и масштаб, однозначно определяющий равномерную шкалу. Каждой точке прямой соответствует ровно одно действительное число – координата этой точки, и обратно, каждому действительному числу x сопоставляется точка прямой с координатой x. Точка, соответствующая большему числу, находится правее, меньшему числу – левее. Данное соответствие позволяет множество чисел интерпретировать на геометрическом языке как множество точек прямой.
Интервалы
Открытым интерваломназывается множество всех чисел х, которые удовлетворяют неравенствам a x и x²
Заштрихованная часть числовой прямой содержит все точки, принадлежащие соответствующему интервалу. Незакрашенные кружочки означают, что эти точки не принадлежат интервалу, а закрашенные, наоборот, означают, что эти точки принадлежат интервалу.
Бесконечные интервалы.Интервал (–¥, a) (или (–¥, a]) – это множество всех чисел х, удовлетворяющих неравенству x a (или x ³ a). Интервал (–¥, +¥) – это множество R всех действительных чисел. Эти интервалы геометрически изображаются так:
Фигурирующие в этих обозначениях символы +¥ и –¥ ни в коем случае нельзя понимать как действительные числа. Наличие символа +¥ в обозначении интервала означает, что интервал содержит любые сколь угодно большие числа (например, интервал (а, +¥) содержит все числа, большие а). По аналогии с обычным интервалом можно записать, что интервал (а, +¥) состоит из всех чисел х – таких, что a a.
Точно так же наличие символа –¥ в обозначении интервала означает, что в этот интервал входят все отрицательные числа, абсолютные величины которых могут быть сколь угодно большими. Неравенство x > –¥, равно как и неравенство –¥
Пример.Пусть A, B, C – множества действительных чисел: A = (–4, 7); B = [0, 10], C = [–1, 4). Числовые промежутки A, B, C изображены на рисунке 3. Светлыми кружками обозначены концы промежутка, не принадлежащие ему (так, у интервала оба конца – светлые); закрашенными – принадлежащие промежутку.
A ∩ B = [0, 7); A È B = (–4, 10]; A B = (–4, 0); B A = [7, 10]; C A = Æ; A C = (–4, –1) È [4, 7).
Упражнение. Покажите на числовой прямой множества B ∩ C, B È C, B C, C B, A ∩ C,
A È C , , , и представьте эти промежутки с помощью введенных выше обозначений.
Замечание. Следует отметить, что одинаковым образом определяются и обозначаются числовые промежутки как в области действительных чисел (и тогда промежуток содержит бесконечное множество чисел), так и в области целых чисел (тогда, например, целочисленный отрезок [–3, 2] содержит 6 чисел: <–3, –2, –1, 0, 1, 2>, а интервал (–3, 2) содержит 4 числа:
<–2, –1, 0, 1>. Разница определяется тем, какое множество выбрано в качестве универсального
Множества точек, задаваемые алгебраическими уравнениями и неравенствами
С каждым уравнением связаны два числовых множества. Первое из них – область определения уравнения. Это множество состоит из всех значений х, для которых имеют смысл обе части уравнения. Второе множество – это множество его корней, то есть чисел, при подстановке которых в уравнение оно обращается в тождество.
Пример 1. Уравнение имеет своей областью определения множество [–4, +¥). Найдем его корни. Возведем обе части уравнения в квадрат:
Решим полученное квадратное уравнение:
Оба числа x1 = 0 и x2 = 5 принадлежат множеству [–4, +¥), однако число x2 = 5 является посторонним корнем уравнения (это показывает простая проверка: ). Таким образом, множество корней данного уравнения <0>Ì [–4, +¥). На прямой эти множества изображаются так:
Пример 2. Уравнение |x| = 3 имеет своей областью определения множество (–¥, +¥). Найдем его корни. По определению абсолютной величины числа х имеем
.
Поэтому данное уравнение можно представить в виде совокупности двух уравнений: х = 3 и
–х = 3. Откуда получим два корня: x1 = 3, x2 = –3. Геометрически эти решения можно истолковать так: расстояние от x1 до начала отсчета О и расстояние x2 до начала отсчета О равны 3 (рисунок 4).
Пример 3. Неравенство |x| 3 имеет своими решениями объединение двух множеств:
(–¥, –3) È (3, +¥). Геометрически условие |x| > 3 означает, что расстояние от точки х до начала отсчета больше 3. Множество решений этого неравенства изображено на рисунке 7.
В случае неравенства |x – x0| 0, множество решений имеет вид (x0 – a, x0 + a) и является открытым интервалом длины 2а с центром в точке (рисунок 8).
Множество решений неравенства |x – x0| > a, где a > 0, представляет собой объединение двух множеств (–¥, x0 – a) È (x0 + a, +¥). Эти множества изображены на рисунке 9.
Операции над множествами
Пересечение множеств
Рассмотрим два множества: множество друзей Джона и множество друзей Майкла.
Друзья Джона = < | Том, Фред, Макс, Джорж > |
Друзья Майкла = < | Лео, Том, Фред, Эван > |
Видим, что Том и Фред одновременно являются друзьями Джона и Майкла.
Говоря на языке множеств, элементы Том и Фред принадлежат как множеству друзей Джона, так и множеству друзей Майкла.
Зададим новое множество с названием «Общие друзья Джона и Майкла» и в качестве элементов добавим в него Тома и Фреда :
Общие друзья Джона и Майкла | = |
В данном случае множество «Общие друзья Джона и Майкла» является пересечением множеств друзей Джона и Майкла.
Пересечением двух (или нескольких) исходных множеств называется множество, которое состоит из элементов, принадлежащих каждому из исходных множеств.
В нашем случае элементы Том и Фред принадлежат каждому из исходных множеств, а именно: множеству друзей Джона и множеству друзей Майкла.
Обозначим множество друзей Джона через букву A , множество друзей Майкла — через букву B , а множество общих друзей Джона и Майкла обозначим через букву C :
Тогда пересечением множеств A и B будет множество C и записываться следующим образом:
Символ ∩ означает пересечение.
Говоря о множестве, обычно подразумевают элементы, принадлежащие этому множеству. Символ пересечения ∩ читается, как союз И. Тогда выражение A ∩ B = C можно прочитать следующим образом:
«Элементы, принадлежащие множеству A И множеству B, есть элементы, принадлежащие множеству C».
«Друзья, одновременно принадлежащие Джону И Майклу, есть общие друзья Джона и Майкла».
Теперь представим, что у Джона и Майкла нет общих друзей. Для удобства, как и прежде обозначим множество друзей Джона через букву A , а множество друзей Майкла через букву B
В этом случае говорят, что исходные множества не имеют общих элементов и пересечением таких множеств является пустое множество. Пустое множество обозначается символом ∅
Пример 2. Рассмотрим два множества: множество A , состоящее из чисел 1, 2, 3, 5, 7 и множество B, состоящее из чисел 1, 2, 3, 4, 6, 12, 18
Зададим новое множество C и добавим в него элементы, которые одновременно принадлежат множеству A и множеству B
Множество С является пересечением множеств A и B , поскольку элементы множества C одновременно принадлежат множеству A и множеству B
Пример 3. Рассмотрим два множества: множество A, состоящее из чисел 1, 5, 7, 9 и множество B , состоящее из чисел 1, 4, 5, 7
Зададим новое множество C и добавим в него элементы, которые одновременно принадлежат множеству A и множеству B
Множество С является пересечением множеств A и B , поскольку элементы множества C одновременно принадлежат множеству A и множеству B.
Пример 4. Найти пересечение следующих множеств:
Пересечением множеств A , B и C будет множество, состоящее из элементов, принадлежащих каждому из множеств A , B и C . Этими элементами являются числа 3 и 9.
Зададим новое множество D и добавим в него элементы 3 и 9. Затем с помощью символа пересечения ∩ запишем, что пересечением множеств A, B и C является множество D
Чтобы найти пересечение, вовсе необязательно задавать множества с помощью букв. Если элементов мало, то множество можно задать прямым перечислением элементов.
К примеру, пусть первое множество состоит из элементов 1, 3, 5, а второе из элементов 2, 3, 5 . Пересечением в данном случае является множество, состоящее из элементов 3 и 5 . Чтобы записать пересечение, можно воспользоваться прямым перечислением:
Числовые промежутки, которые мы рассмотрели в предыдущих уроках, тоже являются множествами. Элементами таких множеств являются числа, входящие в числовой промежуток.
Например, отрезок [2; 6] можно понимать, как множество всех чисел от 2 до 6. Для наглядности можно перечислить все целые числа, принадлежащие данному отрезку:
Следует иметь ввиду, что мы перечислили только целые числа. Отрезку [2; 6] также принадлежат и другие числа, не являющиеся целыми, например, десятичные дроби. Десятичные дроби располагаются между целыми числами, но их количество настолько велико, что перечислить их не представляется возможным.
Еще пример. Интервал (2; 6) можно понимать, как множество всех чисел от 2 до 6, кроме чисел 2 и 6. Ранее мы говорили, что интервал это такой числовой промежуток, границы которого не принадлежат ему. Для наглядности можно перечислить все целые числа, принадлежащие интервалу (2; 6) :
Поскольку числовые промежутки являются множествами, то мы можем находить пересечения между различными числовыми промежутками. Рассмотрим несколько примеров.
Пример 5. Даны два числовых промежутка: [2; 6] и [4; 8] . Найти их пересечение.
Оба промежутка обрамлены квадратными скобками, значит их границы принадлежат им.
Для наглядности перечислим все целые числа, принадлежащие промежуткам [2; 6] и [4; 8] :
Видно, что числа 4, 5, 6 принадлежат как первому промежутку [2; 6] , так и второму [4; 8] .
Тогда пересечением числовых промежутков [2; 6] и [4; 8] будет числовой промежуток [4; 6]
Изобразим промежутки [2; 6] и [4; 8] на координатной прямой. На верхней области отметим числовой промежуток [2; 6] , на нижней — промежуток [4; 8]
Видно, что числа, принадлежащие промежутку [4; 6] , принадлежат как промежутку [2; 6] , так и промежутку [4; 8] . Можно также заметить, что штрихи, входящие в промежутки [2; 6] и [4; 8] пересекаются в промежутке [4; 6] . В такой ситуации, когда перед глазами есть координатная прямая, понятие пересечения множеств можно понимать в прямом смысле, что очень удобно.
Пример 6. Найти пересечение числовых промежутков [−2; 3] и [4; 7]
Оба промежутка обрамлены квадратными скобками, значит их границы принадлежат им.
Для наглядности перечислим все целые числа, принадлежащие промежуткам [−2; 3] и [4; 7] :
−2, −1, 0, 1, 2, 3 ∈ [−2; 3]
Видно, что числовые промежутки [−2; 3] и [4; 7] не имеют общих чисел. Поэтому их пересечением будет пустое множество:
Если изобразить числовые промежутки [−2; 3] и [4; 7] на координатной прямой, то можно увидеть, что они нигде не пересекаются:
Пример 7. Дано множество из одного элемента < 2 >. Найти его пересечение с промежутком (−3; 4)
Множество, состоящее из одного элемента < 2 >, на координатной прямой изображается в виде закрашенного кружка, а числовой промежуток (−3; 4) это интервал, границы которого не принадлежат ему. Значит границы −3 и 4 будут изображаться в виде пустых кружков:
Пересечением множества < 2 >и числового промежутка (−3; 4) будет множество, состоящее из одного элемента < 2 >, поскольку элемент 2 принадлежит как множеству < 2 >, так и числовому промежутку (−3; 4)
На самом деле мы уже занимались пересечением числовых промежутков, когда решали системы линейных неравенств. Вспомните, как мы решали их. Сначала находили множество решений первого неравенства, затем множество решений второго. Затем находили множество решений, которые удовлетворяют обоим неравенствам.
По сути, множество решений, удовлетворяющих обоим неравенствам, является пересечением множеств решений первого и второго неравенства. Роль этих множеств берут на себя числовые промежутки.
Например, чтобы решить систему неравенств , мы должны сначала найти множества решений каждого неравенства, затем найти пересечение этих множеств.
В данном примере решением первого неравенства x ≥ 3 является множество всех чисел, которые больше 3 (включая само число 3). Иначе говоря, решением неравенства является числовой промежуток [3; +∞)
Решением второго неравенства x ≤ 6 является множество всех чисел, которые меньше 6 (включая само число 6). Иначе говоря, решением неравенства является числовой промежуток (−∞; 6]
А общим решением системы будет пересечение множеств решений первого и второго неравенства, то есть пересечение числовых промежутков [3; +∞) и (−∞; 6]
Если мы изобразим множество решений системы на координатной прямой, то увидим, что эти решения принадлежат промежутку [3; 6] , который в свою очередь является пересечением промежутков [3; +∞) и (−∞; 6]
Поэтому в качестве ответа мы указывали, что значения переменной x принадлежат числовому промежутку [3; 6], то есть пересечению множеств решений первого и второго неравенства
Пример 2. Решить неравенство
Все неравенства, входящие в систему уже решены. Нужно только указать те решения, которые являются общими для всех неравенств.
Решением первого неравенства является числовой промежуток (−∞; −1) .
Решением второго неравенства является числовой промежуток (−∞; −5) .
Решением третьего неравенства является числовой промежуток (−∞; 4) .
Решением системы будет пересечение числовых промежутков (−∞; −1), (−∞; −5) и (−∞; 4) . В данном случае этим пересечением является промежуток (−∞; −5) .
На рисунке представлены числовые промежутки и неравенства, которыми эти числовые промежутки заданы. Видно, что числа, принадлежащие промежутку (−∞; −5) , одновременно принадлежат всем исходным промежуткам.
Запишем ответ к системе с помощью числового промежутка:
Пример 3. Решить неравенство
Решением первого неравенства y > 7 является числовой промежуток (7; +∞) .
Решением второго неравенства y является числовой промежуток (−∞; 4) .
Решением системы будет пересечение числовых промежутков (7; +∞) и (−∞; 4) .
В данном случае пересечением числовых промежутков (7; +∞) и (−∞; 4) является пустое множество, поскольку эти числовые промежутки не имеют общих элементов:
Если изобразить числовые промежутки (7; +∞) и (−∞; 4) на координатной прямой, то можно увидеть, что они нигде не пересекаются:
Объединение множеств
Объединением двух (или нескольких) исходных множеств называют множество, которое состоит из элементов, принадлежащих хотя бы одному из исходных множеств.
На практике объединение множеств состоит из всех элементов, принадлежащих исходным множествам. Поэтому и говорят, что элементы такого множества принадлежат хотя бы одному из исходных множеств.
Рассмотрим множество A с элементами 1, 2, 3 и множество B с элементами 4, 5, 6.
Зададим новое множество C и добавим в него все элементы множества A и все элементы множества B
В данном случае объединением множеств A и B является множество C и обозначается следующим образом:
Символ ∪ означает объединение и заменяет собой союз ИЛИ. Тогда выражение A ∪ B = C можно прочитать так:
Элементы, принадлежащие множеству A ИЛИ множеству B, есть элементы, принадлежащие множеству C.
В определении объединения сказано, что элементы такого множества принадлежат хотя бы одному из исходных множеств. Данную фразу можно понимать в прямом смысле.
Вернёмся к созданному нами множеству C , куда входят все элементы множеств A и B . Возьмём для примера из этого множества элемент 5. Что можно про него сказать?
Если 5 является элементом множества C , а множество С является объединением множеств A и B , то можно с уверенностью заявить, что элемент 5 принадлежит хотя бы одному из множеств A и B . Так оно и есть:
Возьмем ещё один элемент из множества С , например, элемент 2. Что можно про него сказать?
Если 2 является элементом множества C , а множество С является объединением множеств A и B , то можно с уверенностью заявить, что элемент 2 принадлежит хотя бы одному из множеств A и B . Так оно и есть:
Если мы захотим объединить два или более множества и вдруг обнаружим, что один или несколько элементов принадлежат каждому из этих множеств, то в объединение повторяющиеся элементы будут входить только один раз.
Например, рассмотрим множество A с элементами 1, 2, 3, 4 и множество B с элементами 2, 4, 5, 6.
Видим, что элементы 2 и 4 одновременно принадлежат и множеству A , и множеству B . Если мы захотим объединить множества A и B , то новое множество C будет содержать элементы 2 и 4 только один раз. Выглядеть это будет так:
Чтобы при объединении не допустить ошибок, обычно поступают так: сначала в новое множество добавляют все элементы первого множества, затем добавляют элементы второго множества, которые не принадлежат первому множеству. Попробуем сделать такое объединение с множествами A и B .
Итак, у нас имеются следующие исходные множества:
Зададим новое множество С и добавим в него все элементы множества A
Теперь добавим элементы из множества B , которые не принадлежат множеству A . Множеству A не принадлежат элементы 5 и 6 . Их и добавим во множество C
Пример 2. Друзьями Джона являются Том, Фред, Макс и Джордж. А друзьями Майкла являются Лео, Том, Фред и Эван. Найти объединение множеств друзей Джона и Майкла.
Для начала зададим два множества: множество друзей Джона и множество друзей Майкла.
Друзья Джона = < | Том, Фред, Макс, Джорж > |
Друзья Майкла = < | Лео, Том, Фред, Эван > |
Зададим новое множество с названием «Все друзья Джона и Майкла» и добавим в него всех друзей Джона и Майкла.
Заметим, что Том и Фред одновременно являются друзьями Джона и Майкла, поэтому мы добавим их в новое множество только один раз, поскольку сразу двух Томов и двух Фредов не бывает.
Все друзья Джона и Майкла | = |
В данном случае множество всех друзей Джона и Майкла является объединением множеств друзей Джона и Майкла.
Друзья Джона ∪ Друзья Майкла = Все друзья Джона и Майкла
Пример 3. Даны два числовых промежутка: [−7; 0] и [−3; 5] . Найти их объединение.
Оба промежутка обрамлены квадратными скобками, значит их границы принадлежат им.
Для наглядности перечислим все целые числа, принадлежащие этим промежуткам:
−7, −6, −5, −4, −3,−2, −1 , 0 ∈ [−7; 0]
−3,−2, −1 , 0, 1, 2, 3, 4, 5 ∈ [−3; 5]
Объединением числовых промежутков [−7; 0] и [−3; 5] будет числовой промежуток [−7; 5] , который содержит все числа промежутка [−7; 0] и [−3; 5] без повторов некоторых из чисел
−7, −6, −5, −4, −3,−2, −1, 0, 1, 2, 3, 4, 5 ∈ [−7; 5]
Обратите внимание, что числа −3,−2, −1 принадлежали и первому промежутку и второму. Но поскольку в объединение допускается включать такие элементы только один раз, мы включили их единоразово.
Значит объединением числовых промежутков [−7; 0] и [−3; 5] будет числовой промежуток [−7; 5]
Изобразим на координатной прямой промежутки [−7; 0] и [−3; 5] . На верхней области отметим числовой промежуток [−7; 0] , на нижней — промежуток [−3; 5]
Ранее мы выяснили, что промежуток [−7; 5] является объединением промежутков [−7; 0] и [−3; 5] . Здесь полезно вспомнить про определение объединения множеств, которое было приведено в самом начале. Объединение трактуется, как множество, состоящее из всех элементов, принадлежащих хотя бы одному из исходных множеств.
Действительно, если взять любое число из промежутка [−7; 5] , то окажется, что оно принадлежит хотя бы одному из промежутков: либо промежутку [−7; 0] либо промежутку [−3; 5] .
Возьмём из промежутка [−7; 5] любое число, например число 2 . Поскольку промежуток [−7; 5] является объединением промежутков [−7; 0] и [−3; 5] , то число 2 будет принадлежать хотя бы одному из этих промежутков. В данном случае число 2 принадлежит промежутку [−3; 5]
Возьмём ещё какое-нибудь число. Например, число −4 . Это число будет принадлежать хотя бы одному из промежутков: [−7; 0] или [−3; 5] . В данном случае оно принадлежит промежутку [−7; 0]
Возьмём ещё какое-нибудь число. Например, число −2 . Оно принадлежит как промежутку [−7; 0] , так и промежутку [−3; 5] . Но на координатной прямой оно указывается только один раз, поскольку в одной точке сразу два числа −2 не бывает.
Не каждое объединение числовых промежутков является числовым промежутком. Например, попробуем найти объединение числовых промежутков [−2 ; −1] и [4 ; 7].
Идея остаётся та же самая — объединением числовых промежутков [−2 ;−1] и [4 ; 7] будет множество, состоящее из элементов, принадлежащих хотя бы одному из промежутков: [−2; −1] или [4; 7] . Но это множество не будет являться числовым промежутком. Для наглядности перечислим все целые числа, принадлежащие этому объединению:
Получили множество < −2, −1, 4, 5, 6, 7 >. Это множество не является числовым промежутком по причине того, что числа, располагающиеся между −1 и 4 , не вошли в полученное множество
Числовой промежуток должен содержать все числа от левой границы до правой. Если одно из чисел отсутствует, то числовой промежуток теряет смысл. Допустим, имеется линейка длиной 15 см
Эта линейка является числовым промежутком [0; 15], поскольку содержит все числа в промежутке от 0 до 15 включительно. Теперь представим, что на линейке после числа 9 сразу следует число 12.
Эта линейка не является линейкой в 15 см, и её нежелательно использовать для измерения. Также, её нельзя назвать числовым промежутком [0; 15] , поскольку она не содержит все числа, которые должна была содержать.
Решение неравенств, содержащих знак ≠
Некоторые неравенства содержат знак ≠ (не равно). Например, 2x ≠ 8 . Чтобы решить такое неравенство, нужно найти множество значений переменной x , при которых левая часть не равна правой части.
Решим неравенство 2x ≠ 8 . Разделим обе части данного неравенства на 2, тогда получим:
Получили равносильное неравенство x ≠ 4 . Решением этого неравенства является множество всех чисел, не равных 4. То есть если мы подставим в неравенство x ≠ 4 любое число, которое не равно 4, то получим верное неравенство.
Подставим, например, число 5
5 ≠ 4 — верное неравенство, поскольку 5 не равно 4
7 ≠ 4 — верное неравенство, поскольку 7 не равно 4
И поскольку неравенство x ≠ 4 равносильно исходному неравенству 2x ≠ 8 , то решения неравенства x ≠ 4 будут подходить и к неравенству 2x ≠ 8 . Подставим те же тестовые значения 5 и 7 в неравенство 2x ≠ 8 .
Изобразим множество решений неравенства x ≠ 4 на координатной прямой. Для этого выколем точку 4 на координатной прямой, а всю оставшуюся область с обеих сторон выделим штрихами:
Теперь запишем ответ в виде числового промежутка. Для этого воспользуемся объединением множеств. Любое число, являющееся решением неравенства 2x ≠ 8 будет принадлежать либо промежутку (−∞; 4) либо промежутку (4; +∞). Так и записываем, что значения переменной x принадлежат (−∞; 4) или (4; +∞) . Напомним, что для слова «или» используется символ ∪
В этом выражении говорится, что значения, принимаемые переменной x , принадлежат промежутку (−∞; 4) или промежутку (4; +∞).
Неравенства, содержащие знак ≠ , также можно решать, как обычные уравнения. Для этого знак ≠ заменяют на знак = . Тогда получится обычное уравнение. В конце решения найденное значение переменной x нужно исключить из множества решений.
Решим предыдущее неравенство 2x ≠ 8 , как обычное уравнение. Заменим знак ≠ на знак равенства = , получим уравнение 2x = 8 . Разделим обе части данного уравнения на 2 , получим x = 4 .
Видим, что при x , равном 4, уравнение обращается в верное числовое равенство. При других значениях равенства соблюдаться не будет. Эти другие значения нас и интересуют. А для этого достаточно исключить найденную четвёрку из множества решений.
Пример 2. Решить неравенство 3x − 5 ≠ 1 − 2x
Перенесем −2x из правой части в левую часть, изменив знак, а −5 из левой части перенесём в правую часть, опять же изменив знак:
Приведем подобные слагаемые в обеих частях:
Разделим обе части получившегося неравенства на 5
Решением неравенства x ≠ 1,2 является множество всех чисел, не равных 1,2 .
Изобразим множество решений неравенства x ≠ 1,2 на координатной прямой и запишем ответ в виде числового промежутка:
В этом выражении говорится, что значения, принимаемые переменной x принадлежат промежутку (−∞; 1,2) или промежутку (1,2; +∞)
Решение совокупностей неравенств
Рассмотрим ещё один вид неравенств, который называется совокупностью неравенств. Такой тип неравенств, возможно, вы будете решать редко, но для общего развития полезно изучить и их.
Совокупность неравенств очень похожа на систему неравенств. Различие в том, что в системе неравенств нужно найти множество решений, удовлетворяющих каждому неравенству, образующему эту систему.
А в случае с совокупностью неравенств, нужно найти множество решений, удовлетворяющих хотя бы одному неравенству, образующему эту совокупность.
Совокупность неравенств обозначается квадратной скобкой. Например, следующая запись из двух неравенств является совокупностью:
Решим данную совокупность. Сначала нужно решить каждое неравенство по отдельности.
Решением первого неравенства x ≥ 3 является числовой промежуток [3; +∞) . Решением второго неравенства x ≤ 6 является числовой промежуток (−∞; 6] .
Множество значений x , при которых верно хотя бы одно из неравенств, будет принадлежать промежутку [3; +∞) или промежутку (−∞; 6] . Так и записываем:
В этом выражении говорится, что переменная x , входящая в
совокупность принимает все значения, принадлежащие промежутку [3; +∞) или промежутку (−∞; 6] . А это то, что нам нужно. Ведь решить совокупность означает найти множество решений, удовлетворяющих хотя бы одному неравенству, образующему эту совокупность. А любое число из промежутка [3; +∞) или промежутка (−∞; 6] будет удовлетворять хотя бы одному неравенству.
Например, число 9 из промежутка [3; +∞) удовлетворяет первому неравенству x ≥ 3. А число −7 из промежутка (−∞; 6] удовлетворяет второму неравенству x ≤ 6.
Посмотрите внимательно на выражение x ∈ [3; +∞) ∪ (−∞; 6], а именно на его правую часть. Ведь выражение [3; +∞) ∪ (−∞; 6] представляет собой объединение числовых промежутков [3; +∞) и (−∞; 6] . Точнее, объединение множеств решений первого и второго неравенства.
Стало быть, решением совокупности неравенств является объединение множеств решений первого и второго неравенства.
Иначе говоря, решением совокупности будет объединение числовых промежутков [3; +∞) и (−∞; 6]
Объединением числовых промежутков [3; +∞) и (−∞; 6] является промежуток (−∞; +∞) . Точнее, объединением числовых промежутков [3; +∞) и (−∞; 6] является вся координатная прямая. А вся координатная прямая это все числа, которые только могут быть
Ответ можно оставить таким, каким мы его записали ранее:
либо заменить на более короткий:
Возьмём любое число из полученного объединения, и проверим удовлетворяет ли оно хотя бы одному неравенству.
Возьмем для примера число 8. Оно удовлетворяет первому неравенству x ≥ 3.
Возьмем еще какое-нибудь число, например, число 1. Оно удовлетворяет второму неравенству x ≤ 6
Возьмем еще какое-нибудь число, например, число 5 . Оно удовлетворяет и первому неравенству x ≥ 3 и второму x ≤ 6
Пример 2. Решить совокупность неравенств
Чтобы решить эту совокупность, нужно найти множество решений, которые удовлетворяют хотя бы одному неравенству, образующему эту совокупность.
Для начала найдём множество решений первого неравенства x . Этим множеством является числовой промежуток (−∞; −0,25) .
Множеством решений второго неравенства x ≥ −7 является числовой промежуток [−7; +∞).
Решением совокупности неравенств будет объединение множеств решений первого и второго неравенства.
Иначе говоря, решением совокупности будет объединение числовых промежутков (−∞; −0,25) и [−7; +∞)
Объединением числовых промежутков (−∞; −0,25) и [−7; +∞) является является вся координатная прямая. А вся координатная прямая это все числа, которые только могут быть
Ответ можно оставить таким, каким мы его записали ранее:
либо заменить на более короткий:
Пример 3. Решить совокупность неравенств
Решим каждое неравенство по отдельности:
Множеством решений первого неравенства x является числовой промежуток (−∞; −3) .
Множеством решений второго неравенства x ≤ 0 является числовой промежуток (−∞; 0] .
Решением совокупности неравенств будет объединение множеств решений первого и второго неравенства.
Иначе говоря, решением совокупности будет объединение числовых промежутков (−∞; −3) и (−∞; 0]
Объединением числовых промежутков (−∞; −3) и (−∞; 0] является числовой промежуток (−∞; 0]
Ответ можно оставить таким, каким мы его записали ранее:
Урок на тему «Метод областей». 11-й класс
Класс: 11
Презентация к уроку
«Считай несчастным тот день и тот час,
вк оторый ты не усвоил ничего нового и ничего
не прибавил к своему образованию».
Я.А Коменский
Тип урока: урок-обобщения и систематизации знаний учащихся.
Цели урока:
- создать условия для систематизации, обобщения знаний и умений обучающихся по применению различных методов решения неравенств;
- воспитание нравственных качеств личности, таких как ответственность, аккуратность, дисциплинированность;
- воспитание культуры общения.
- развитие у учащихся умений выделять главное, существенное в изучаемом материале, обобщать изучаемые факты, логически излагать свои мысли;
- развитие психических процессов, таких как память, внимание, мышление, а также наблюдательности, активности, самостоятельности.
Задачи:
- формировать умение классифицировать неравенства по методам решения;
- закрепить навыки решения неравенств различными методами;
- отрабатывать навыки самоконтроля с целью подготовки к итоговой аттестации;
- воспитывать чувство коллективизма, ответственности.
Оборудование:
- Компьютер
- Мультимедийный проектор, звуковые колонки
- Программа «MicrosoftPowerPoint 2003»
Методы обучения:
- частично-поисковый метод,
- репродуктивный,
- обобщающий.
План урока.
План урока рассчитан на 2 учебных часа (90 мин)
- Организационный момент.
- Вступительное слово учителя.
- Повторение теории.
- Решение неравенств различными методами (варианты ЕГЭ)
- Самостоятельная работа с самопроверкой.
- Итог урока.
- Рефлексия.
Ход урока
I. Организационный момент
«То, что мы знаем, — ограничено, а то чего
мы не знаем, — бесконечно».
Приветствие учащихся.Ученики под руководством учителя проверяют наличие дневника, рабочей тетради, инструментов, отмечаются отсутствующие, проверяется готовность класса к уроку, учитель психологически настраивает детей на работу на уроке.Формулируется тема и цели урока. Знакомство с этапами урока.
II. Вступительное слово учителя
Для успешного исследования многих задач повышенной сложности полезно уметь строить не только графики функций, но и множества точек плоскости, координаты которых удовлетворяют заданным уравнениям, неравенствам или их системам. Эффективно строить на координатной плоскости такие множества позволяет метод областей. Это весьма полезный прием можно назвать обобщающим методом интервалов.
Метод областей особенно полезен при решении уравнений или неравенств с параметром. Применение метода интервалов в таких случаях затруднено, так как взаимное расположение точек, отмечаемых на числовой оси, может изменяться в зависимости от значений параметра. Это означает необходимость сравнивать их между собой и рассматривать различные случаи. В этой ситуации нам может помочь метод областей.
III. Повторение теории
Метод интервалов на координатной прямой и метод областей на координатной плоскости.
Точка х=а разбивает числовую прямую на два множества, задаваемые неравенствами x a
Всякая действительная кривая на координатной плоскости, заданная уравнением F(x;y)=0 разбивает координатную плоскость на конечное число областей, в каждой из которых для всех точек области выполняется только одно из неравенств: F(x;y)>0 или F(x;y) kx+p или y c
Решением системы неравенств с двумя переменными являются координаты точек пересечения множеств, удовлетворяющих одному из неравенств системы
Уравнение y= k(x-x0) + y0 задает множество прямых, проходящих через точку с координатами (x0,y0).
При изменении значений параметра прямые y= k(x-x0) + y0 «поворачиваются» вокруг данной точки. При увеличении параметра прямая поворачивается «против часовой стрелки», при уменьшении – «по часовой стрелке».
Уравнение y=kx+p при фиксированном значении параметра k = k0 задает семейство прямых, параллельных прямой y=kx+p проходящей через начало координат
Если точка с координатами лежит «выше» прямой заданной уравнением y=kx+p, то ее координаты удовлетворяют неравенству , если же точка лежит «ниже», то неравенству
Задача
Пусть M – множество точек плоскости с координатами (x; y) таких, что числа x, y, 6-2x являются сторонами некоторого треугольника. Найдите его площадь.
Если три числа являются сторонами некоторого треугольника, то это числа положительные и каждое из них меньше суммы двух других чисел. Поэтому, координаты точек, удовлетворяющих условию задачи, будут задаваться системой линейных неравенств с двумя переменными:
Геометрическое место точек на плоскости
Множество точек плоскости, равноудаленных от данной точки на расстояние, равное положительной величине R, называется окружностью.
Уравнением окружности называется уравнение вида
Множество точек, удаленных от данной точки на положительное расстояние, меньшее R, называется кругом. Круг задается неравенством
Множество точек, лежащих вне круга, задается неравенством
Геометрическое место точек на плоскости
Квадратным трехчленом относительно переменной, называется выражение
Графиком квадратного трехчлена является кривая, называемая параболой.
Расположение параболы зависит от знака старшего коэффициента и знака дискриминанта квадратного трехчлена
Парабола разбивает плоскость на часть, лежащую «над» параболой и лежащую «под» параболой. Первая задается неравенством
, а вторая –
Метод областей при решении задач с параметрами
1. Свойства функций
2. Графический прием
Параметр – «равноправная» переменная Þ отведем ему координатную ось, т.е. задачу с параметром будем рассматривать как функцию f(x ;a) >0
Общие признаки задач подходящих под рассматриваемый метод:
- В задаче дан один параметр а и одна переменная х
- Они образуют некоторые аналитические выражения F(x;a), G(x;a)
- Графики уравнений F(x;a)=0,G(x;a)=0 строятся несложно
- Строим графический образ
- Пересекаем полученный график прямыми, перпендикулярными параметрической оси
- «Считываем» нужную информацию
Обобщенный метод областей («переход» метода интервалов с прямой на плоскость)
Неравенства с одной переменной
Неравенства с двумя переменной
- ОДЗ
- Граничные линии
- Координатная плоскость
- Знаки в областях
- Ответ по рисунку
IV. Решение неравенств
Пример №1
Найти все значения параметра p, при каждом из которых множество решений неравенства не содержит ни одного решения неравенства
Применим обобщенный метод областей.
1. Построим граничные линии
2. Определяем знаки в полученных областях и получаем решение 1 неравенства
3. Из полученного множества исключим решение
Пример № 2
При каких значениях параметра а система неравенств не имеет решений.
1. Рассмотрим 1 неравенство и получаем
2. Рассмотрим 2 неравенство и получаем
3. Заметим, что исходная система неравенств равносильна системе:
4. Изобразим систему неравенств в виде плоской фигуры на координатной плоскости. Для этого введём параметрическую плоскость Oax
5. Мы получили плоскую фигуру, множество точек которой является решением системы.
Таким образом, отвечая на вопрос задачи, решений системы нет при
Пример №3
При каких положительных значениях параметраа система уравнений имеет ровно 4 решения.
1. Запишем систему в следующем виде:
2. Построим график 1 уравнения.
3. Построим график 2 уравнения – семейство окружностей с центром в точке (2; 0) и радиусом а.
Ответ: при
V. Самостоятельная работа с самопроверкой
На координатной плоскости изобразите множество точек, удовлетворяющих неравенству
1. ОДЗ:
2. Строим граничные линии:
3. Они разбивают плоскость на восемь областей, определяя знаки подстановкой в отдельных точках, получаем решение.
Ответ: заштрихованная область на рисунке
На координатной плоскости изобразите множество точек, координаты которых удовлетворяют неравенству
- На координатной плоскости нарисуем линии определённые равенствами x-y=0 и xy-1=0, которые разбивают плоскость на несколько областей.
- Определяем знаки в областях.
Ответ: заштрихованная область на рисунке
VI. Итог урока
(подвожу итог, комментирую работу учащихся, сообщаю оценки за урок.)
VII. Рефлексия.
Ребята. На этом урок окончен. Спасибо за урок!
Литература.
- П. И. Горнштейн, В.Б.Полонский, М.С.Якир. Задачи с параметрами. 3-е издание, дополненное и переработанное. — М.: Илскса, Харьков: Гимназия, 2005,- 328 с.
- Черкасов О. Ю., Якушев А. Г. Математика: интенсивный курс подготовки к экзамену.
- Экзаменационные материалы для подготовки к ЕГЭ-2007. Математика. М.: ООО «РУСТЕСТ», 2006. — 108с. Сост. — Клово А.Г.
- Задачи с параметром и другие сложные задачи. Козко А.И., Чирский В.Г. М.: МЦНМО, 2007. — 296с.
- ЕГЭ 2011. Математика. Задача С5. Козко А.И., Панферов В.С., Сергеев И.Н., Чирский В.Г.
http://urok.1sept.ru/articles/664756
Решение некоторых математических задач предусматривает операции над множествами такие как пересечение, объединение, разность. Под множеством подразумевают объединение некоторых предметов в одно целое. Для совершения подобных действий требуется знание некоторых правил, которые позволят найти пересечение, объединение и разность множеств. О таких правилах пойдёт речь далее.
Обозначение множеств. Как записать объединение и пересечение множеств
Определения
Объединение множеств – это ряд таких элементов, при которым каждый из них представляет собой элемент одного из первоначальных множеств.
Пересечение множеств — заключает в себе все элементы, общие для первоначальных множеств.
При записи обозначения пересечения множеств и объединения множества чисел, используют специальный порядок символов. Самый лёгкий способ обозначить множество — это применение фигурных скобок, в середине которых элементы записаны через запятую.
А = {7, 3, 15, 31}
С помощью такой записи можно задать множество, если оно включает небольшое конечное число элементов. В связи с этим чаще применяется многофункциональный способ определения множеств – посредством характеристического свойства, которое свойственно всем элементам множества, которым не владеют объекты вне множества.
A = {x | P(x)} или A = {x : P(x)}
P(x) – характеристическое свойство множества A.
В таком виде объединение записывается следующим образом:
AUB={x|xєAvxєB}
а пересечение множеств записывается как:
AՈB={x|xєAᴧxєB}
Где символы v / ᴧ, обозначают «или» / «и», символ | обозначает «таких что».
Чтобы обозначить множества, как числовые интервалы, при записи применяют скобки круглой и квадратной формы. К примеру, запись [4,24), выражает цифровой диапазон от 4 до 24, при этом число 4 входит в состав множества, а 24 нет. Числа менее 24 принадлежат этому множеству.
Найти пересечение и объединение множеств. Операции над множествами
Важно
U – обозначает объединение множеств A и B;
Ո – обозначает пересечение множеств A и B.
Чтобы легче запомнить данные знаки пересечения и объединения множеств, можно мысленно представить, что символ объединения U напоминает сосуд с открытым верхом, туда есть возможность что-то положить.
Символ пересечения Ո наоборот, выглядит как перевёрнутая ёмкость, в который невозможно поместить какой-либо предмет. Так же символ обозначающий пересечение Ո можно прочитать как «И».
Тогда выражение AՈB=C, читается так: “Все элементы, входящие в состав множества A и множества B, составляют элементы, которые принадлежат множеству C».
Правила нахождения объединения и пересечения и разности множеств
При формировании объединения числовых множеств, следует последовательно записать полностью части одного множества и их дополнить недостающими элементами из остальных. Операцию объединения в отдельных случаях называют сложением множеств и обозначают знаком «+».
Рассмотрим пример объединения числовых множеств A={0,1,2,3,4,5,6,7,8,9} и B={2,4,6,8,10}. К имеющимся числовым составляющим множества A 1,2,3,4,5,6,7,8,9 прибавим недостающую часть из множества B 10. Получившееся в результате объединения множество чисел будет выглядеть так {0,1,2,3,4,5,6,7,8,9,10}. Соответственно запись этого объединения:
AUB={0,1,2,3,4,5,6,7,8,9,10}
Чтобы составить пересечение числовых множеств, следует последовательно выбирать части одного множества и удостовериться, входят ли они в другие исследуемые множества, входящие в их число и составляют пересечение.
Для того, чтобы найти пересечение этих же множеств, друг за другом, последовательно проанализируем числа множества A на их наличие в множестве чисел B. Начнём проверку с самого первого числа в множестве A это число 0. В множестве B данное число отсутствует и не войдёт в совокупность пересечения. Смотрим далее, число 1 из множества A так же имеется в составе множества B. Затем следует число 2, которое принадлежит множеству B и, следовательно, пересечению. Идущее за ним 3 не принадлежит A и B не входит в перечисление. Число 4 входит в A и B, значит войдёт и в объединение. Далее продолжаем проверять числа по аналогии. Итак, пересечение множеств A={0,1,2,3,4,5,6,7,8,9} и B={2,4,6,8,10} состоит из чисел 2,4,6,8. При записи выглядит так:
AՈB={2,4,6,8}
Выполнение записи пересечения и объединения нескольких множеств
Если требуется выполнить операции с более чем двумя множествами, например: A, B, C, принцип действия подобный предыдущим примерам. В первую очередь находим пересечения A и B. Только затем пересечение полученного множества с C.
Следовательно, процесс нахождения пересечения более двух множеств осуществляется в несколько этапов.
Например, дано три множества A = {1,2,3,7,9}, B = {1,3,5,7,9} и C = {3,4,5,8,9}. Сначала находим пересечение AՈB = {3,9}, затем сравниваем полученное множество с C, это будут те же 3 и 9. Получаем, что пересечение A, B, C выглядит следующим образом:
AՈBՈC={3,9}
При определении объединений двух и более множеств, к числам первого множества последовательно добавляют отсутствующие элементы из второго, третьего и последующих множеств. К примеру, даны следующее множества A = {1,4}, B = {4,3,} и C = {1,3,6,7}. К числовым элементам 1 и 4 из множества A, прибавляем число 4 из множества B. Теперь, к получившемуся множеству 1,3,4 прибавляем цифры 6 и 7 из множества C. В конечном результате получаем объединение:
AUBUC = {1,3,4,6,7}
Для нахождения пересечения совсем не нужно писать много букв. Когда элементов не много, то множество возможно задать элементарным перечислением. Например, первое множество включает в себя числа 1,3,5, второе состоит из элементов 2,3,5. В данном случае, пересечение будет состоять из элементов 3 и 5. Для записи можно использовать прямое перечисление: {1,3,5} Ո {2,3,5} = {3,5}
Основные свойства объединения и перечисления множеств
- Коммутативность или перестановка. Распространяется на все компоненты при любом их количестве.
- AUB = BUA
- AՈB = BՈA
- Ассоциативность или расстановка скобок. Позволяет опускать скобки и делать решение проще.
- (AՈB)ՈC = AՈ(BՈC)
- (AUB)UC = AU(BUC)
- Раскрытие скобок или дистрибутивность.
- (AUB)ՈC=(AՈC)U(BՈC)
- (AՈB)UC=(AUC)Ո(BUC)
Разностью A и B называется множество, которое включает в себя все элементы, каждое из которых принадлежит множеству A и не принадлежит множеству B. Обозначается AB. Приведём пример, найдём разность множеств A = {1,2,3,4,5} и множества B = {2,4,6,8}. Первый вариант находим разность множества A. Запись будет выглядеть так: AB={1,3,5}, в которую не входят элементы, принадлежащие только B числа 6 и 8. Разность множества B при этом выглядит так: BA={6,8}, сюда соответственно не входят числа, принадлежащие только A.
Для закрепления материала пройденных уроков, рассмотрим ещё несколько примеров. Дана задача: A = {0,5,8,10}, B = {3,6,8,9} и X = {0,1,3} Y = {2,4,6}. Найдите пересечение, объединение для A, B и разность множеств X, Y. Решение:
Сначала найдём объединение исходных множеств A U B = {0,3,5,6,8,9,10}.
Затем пересечение A Ո B = {8}
Разность XY = {0,1,3} YX = {2,4,6}
Для того, чтобы выполнить операции над множествами пересечения, объединения, разность в количестве больше двух, следует рассматривать элементы, входящие в первое их них. Затем определить, относится ли этот элемент к каждому из проверяемых множеств. Если данное обстоятельство не соблюдено, то элемент не относится к пересечению. При проверке, лучше выбирать множество с наименьшим количеством элементов в составе.
Кроме перечисленных действий пересечения и объедения существует дополнение множеств и многие другие операции.
Нет времени решать самому?
Наши эксперты помогут!
Отображение множеств с помощью координатной прямой
Для того, чтобы исследовать и обозначать множества, удобно применять выделение числовых промежутков на координатной прямой. Каждая выбранная точка разделяет находящиеся на ней числа на два открытых луча. Приведём пример, точка с координатами 42,7 сформирует промежутки, которые можно записать как (-∞,42,7) и (42,7, +∞). Наше выражение заключено в круглые скобки, это значит, что сама точка 42,7 ни одному из этих промежутков не принадлежит. Числовая прямая, которая записывается как R = (-∞,+∞), при таком варианте из нашего примера, представляет объединение:
(-∞,42,7) U {42,7} U (42,7+∞).
При добавлении нашей рассматриваемой точки 42,7 к одному из представленных (-∞,42,7) или (42,7, +∞) числовых лучей, в таком случае промежуток перестанет быть открытым. При записи выражения нужно будет использовать квадратные скобки, которые обозначают, что точка входит в промежуток. Запись будет выглядеть так: (-∞,42,7] и [42,7+∞). Тем самым множество действительных чисел на координатной прямой будет выглядеть так:
(-∞,42,7] U (42,7+∞) или (-∞,42,7) U [42,7+∞).
На числовой прямой можно выполнять большое количество действий. Такую прямую можно разделить на отрезки не точкой, как в предыдущем примере, а лучом или отрезком. Все выявленные закономерности так же будут соблюдены. Кроме того, они выполняются при разделении самих числовых промежутков. Рассмотрим пример, точка с координатой 18 на промежутке (8,34] разделит его на следующие промежутки (8,18) U {18} U (18,34]. Дополнив точкой, один из промежутков, получатся следующее записи: (8,18] U (18,34], (8,18) U [18,34]. Примем за разделяющую точку цифру 34, которая включается в состав рассматриваемого промежутка и ограничивает его справа. В результате получим объединение множеств {34} и интервала (8,34) либо (8,34] = (8,34) U {34}
Аналогичные закономерности объективны и в ситуации, когда координатная прямая разделяется на промежутки несколькими точками. К примеру, точки -5, 0 и 6 разделят её на промежутки (-∞,-5), (-5,0), (0,6), (6,+∞), при этом множество действительных чисел (-∞,-5) U {-5} U (-5,0) U {0} U (0,6) U {6} U (6,+∞).
Благодаря координатной прямой достаточно просто и легко рассматривать пересечения и объединения множеств. Они указываются друг под другом на координатных прямых с идентичными направлениями отсчёта и точками. При записи отображения множеств координатные прямые обозначают слева квадратной скобкой, фигурные скобки используются, чтобы показать пересечение.
С помощью дополнительной координатной прямой, которую располагают ниже исходной, показываются искомые пересечения или объединение. На ней поперечными чертами отмечают граничные точки первичных множеств, а после выяснения характера точек, их заменяют полями или сплошными. На рисунке вхождение промежутка в объединение показывается штриховкой, отсутствие вхождения – полой точкой, а вхождение – сплошной.
Графически пересечение A и B показывается промежутками, над которыми имеется штриховка, дополненная отдельными точками, которые принадлежат обоим множествам. На рисунке объединение проявляется там, где показана штриховка хотя бы у одного из множеств и сплошные точки.
В приведённых примерах объединения и пересечения множеств указаны только целые числа. Отрезкам на координатной прямой так же принадлежат и другие числа, которые целыми не являются, такие как десятичные дроби. При определении пересечения и определения множеств, класс чисел намного шире, чем представлен в упражнениях, они находятся между целыми числами и количество их очень велико, перечислять которые не представляется возможным.
В математике важную
роль играют множества, составленные из
«математических» объектов – чисел,
точек, геометрических фигур и т.д.
Примерами числовых множеств являются:
-
множество
всех действительных чисел R; -
множество
всех рациональных чисел Q; -
множество
всех натуральных чисел N; -
множество
всех целых чисел Z; -
множество
всех иррациональных чисел L.
Рассмотрим
основные понятия, характеризующие
множество точек на прямой.
1. Интервалы.Еслиaиbдва действительных числа иa<b, то множество всех
чиселx, удовлетворяющих
неравенствуa<x<b, называетсяоткрытым интервалом(числовым
промежутком) и обозначается (a,b). Сюда же относятся
интервалы (– ∞; + ∞), (– ∞;a),
(b; + ∞).
Открытый
интервал не имеет ни наименьшего, ни
наибольшего числа: какое бы число x
(a;
b)
мы не взяли, обязательно на этом
интервале найдутся такие x΄
и x˝,
что x΄
> x,
x˝
< x.
Множество всех точек любого интервала
является бесконечным. На числовой
прямой открытые интервалы изображаются
следующим образом:
Замкнутый
интервал
(числовой отрезок) [a;
b]
состоит из всех чисел x,
для которых a
≤ x
≤ b,
или [a;
b]
= (a;
b)
{a}
{b}.
На числовой прямой замкнутые интервалы
изображаются следующим образом:
Интервалы
смешанного типа
состоят из всех чисел x,
для которых:
a
≤ x
< b,
или
[a,
b)
= (a,
b)
{a};
a
< x
≤ b,
или
(a,
b]
= (a,
b)
{b};
∞ <
x
≤ a,
или
(– ∞, a]
= (– ∞, a)
{a};
b
≤ x
< + ∞, или
[b,
+ ∞) = (b,
+ ∞)
{b}.
На числовой прямой
смешанные интервалы изображаются
следующим образом:
2.
Окрестность
точки.
Окрестностью
точки х0
называется любой открытый интервал,
содержащий эту точку. Возьмем какое-либо
положительное число ε.
ε-окрестностью
точки х0
называется открытый интервал с центром
в точке х0
и длиной 2ε,
то есть интервал (х0
– ε;
х0
+ ε).
3. Множества
точек, задаваемых алгебраическими
уравнениями и неравенствами. С каждым
уравнением связаны два числовых
множества. Первое из них –область
определения уравнения. Это множество
состоит из всех значенийx,
для которых имеют смысл обе части
уравнения. Второе множество – этомножество корней уравнения, то есть
чисел, при подстановке которых в
уравнение, оно обращается в тождество.
►Пример
6.1. Областью
определения уравнения
=
2 – x
является
множество [- 4; + ∞), так как x
+ 4 ≥ 0, x
≥ 4.
Найдем корни
уравнения. Возведем обе части в квадрат
x
+ 4 = (2 – x)2; x2
– 5x
= 0; х·(х
– 5) = 0;
х1
= 0; х2
= 5.
Оба
числа х1
= 0 и х2
= 5 принадлежат множеству [- 4; + ∞), однако
число х2
= 5 является посторонним корнем уравнения
(это показывает простая проверка:
≠
2 – 5). Таким образом, множество корней
данного уравнения {0}
[- 4; + ∞). На числовой прямой эти множества
изображаются так:
Те же рассуждения
относятся и к алгебраическим неравенствам.
Пример
6.2. Решить
систему неравенств
Первое
неравенство х
– 2 ≤ 0 имеет множество решений х
≤ 2, или х
(– ∞; 2]:
Во втором неравенстве
находим корни:
х2
– 5х
– 6 = 0; х1
= – 1, х2
= 6.
Решением его
будет интервал х(– 1; 6):
Чтобы
получить решение системы неравенств,
нужно найти пересечение множеств (– ∞;
2]
(– 1; 6). Покажем эти множества на числовой
прямой:
Как видно из
рисунка, пересечением является интервал
смешанного типа х(– 1; 2], на котором штриховки накладываются
друг на друга. ◄