К окружности проведены касательные найти меньшую дугу
Касательные CA и CB к окружности образуют угол ACB, равный Найдите величину меньшей дуги AB, стягиваемой точками касания. Ответ дайте в градусах.
Это задание ещё не решено, приводим решение прототипа.
Касательные CA и CB к окружности образуют угол ACB, равный 122°. Найдите величину меньшей дуги AB, стягиваемой точками касания. Ответ дайте в градусах.
Треугольник АВС равнобедренный, так как отрезки касательных, проведенных к окружности из одной точки, равны. Следовательно, угол ВAC равен 0,5(180° − 122°) = 29°. Угол между касательной и хордой, проведенной через точку касания, равен половине заключенной между ними дуги, поэтому искомая дуга равна 2 · 29° = 58°.
Приведем другое решение.
Пусть искомая длина меньшей дуги АВ равна х, тогда длина большей дуги АВ равна 360° − х. Угол между двумя касательными, проведенными из одной точки, равен половине высекаемых ими дуг, откуда имеем: 0,5(360° − 2x) = 122°. Тогда x = 58°.
Касательная к окружности
О чем эта статья:
Касательная к окружности, секущая и хорда — в чем разница
В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.
Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.
Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).
Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.
Свойства касательной к окружности
Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.
Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.
Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:
- окружность с центральной точкой А;
- прямая а — касательная к ней;
- радиус АВ, проведенный к касательной.
Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. а ⟂ АВ.
Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.
В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.
Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.
Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.
Задача
У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.
Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.
Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.
∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°
Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.
Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.
Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.
Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.
Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.
Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.
Задача 1
У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.
Решение
Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.
∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).
Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:
∠BDC = ∠BDA × 2 = 30° × 2 = 60°
Итак, угол между касательными составляет 60°.
Задача 2
К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.
Решение
Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.
Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.
∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°
Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.
Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.
Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.
Задача 1
Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.
Решение
Исходя из соотношения касательной и секущей МА 2 = МВ × МС.
Найдем длину внешней части секущей:
МС = МВ — ВС = 16 — 12 = 4 (см)
МА 2 = МВ × МС = 16 х 4 = 64
Задача 2
Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.
Решение
Допустим, что МО = у, а радиус окружности обозначим как R.
В таком случае МВ = у + R, а МС = у – R.
Поскольку МВ = 2 МА, значит:
МА = МВ : 2 = (у + R) : 2
Согласно теореме о касательной и секущей, МА 2 = МВ × МС.
(у + R) 2 : 4 = (у + R) × (у — R)
Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:
Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).
Ответ: MO = 10 см.
Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.
Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда AВ. Отметим на касательной прямой точку C, чтобы получился угол AВC.
Задача 1
Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.
Решение
Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.
АВ = ∠АВС × 2 = 32° × 2 = 64°
Задача 2
У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.
Решение
Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:
КМ = 2 ∠МКВ = 2 х 84° = 168°
Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.
∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2
Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:
∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°
Касательные CA и CB к окружности образуют угол ACB, равный 122. Найдите величину меньшей дуги AB, стягиваемой точками касания
Ваш ответ
решение вопроса
Похожие вопросы
- Все категории
- экономические 43,279
- гуманитарные 33,618
- юридические 17,900
- школьный раздел 606,962
- разное 16,829
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
http://skysmart.ru/articles/mathematic/kasatelnaya-k-okruzhnosti
http://www.soloby.ru/1338802/%D0%BA%D0%B0%D1%81%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5-%D0%BE%D0%BA%D1%80%D1%83%D0%B6%D0%BD%D0%BE%D1%81%D1%82%D0%B8-%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D1%83%D1%8E%D1%82-%D0%BD%D0%B0%D0%B9%D0%B4%D0%B8%D1%82%D0%B5-%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D1%83-%D1%81%D1%82%D1%8F%D0%B3%D0%B8%D0%B2%D0%B0%D0%B5%D0%BC%D0%BE%D0%B9
Это одно из сложных заданий первой части Профильного ЕГЭ по математике. Не рассчитывайте на везение — здесь много различных типов задач, в том числе непростых. Необходимо отличное знание формул планиметрии, определений и основных теорем.
Например, для вычисления площади произвольного треугольника мы применяем целых 5 различных формул. Cколько из них вы помните?
Зато, если вы выучили все необходимые формулы, определения и теоремы, у вас намного больше шансов решить на ЕГЭ задачу 16, также посвященную планиметрии. Многие задания под №1 являются схемами для решения более сложных геометрических задач.
Bесь необходимый теоретический материал собран в нашем ЕГЭ-Cправочнике. Поэтому сразу перейдем к практике и рассмотрим основные типы заданий №1 Профильного ЕГЭ по математике.
Тригонометрия в прямоугольном треугольнике
1. B треугольнике ABC угол C равен , BC = 15,
. Найдите AC.
Тангенс острого угла прямоугольного треугольника равен отношению противолежащего катета к прилежащему. Катет BC — противолежащий для угла A, катет AC— прилежащий. Получим:
Ответ: 20.
2. B треугольнике ABC угол C равен . Найдите AB.
По определению косинуса угла,
Найдем косинус угла A с помощью формулы:
Отсюда
Ответ: 20,5.
Треугольники. Формулы площади треугольника.
3. B треугольнике ABC стороны AC и BC равны. Bнешний угол при вершине B равен . Найдите угол C. Ответ дайте в градусах.
По условию, угол DBC — внешний угол при вершине B — равен . Тогда угол CBA равен
Угол CAB равен углу CBA и тоже равен
, поскольку треугольник ABC — равнобедренный. Тогда третий угол этого треугольника, угол ACB, равен
4. Угол при вершине, противолежащей основанию равнобедренного треугольника, равен Боковая сторона треугольника равна 10. Найдите площадь этого треугольника.
По формуле площади треугольника, . Получим:
см2.
Ответ: 25.
Элементы треугольника: высоты, медианы, биссектрисы
5. B треугольнике ABC угол ACB равен , угол B равен
, CD — медиана. Найдите угол ACD. Ответ дайте в градусах.
Медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы. Это значит, что треугольник CBD — равнобедренный, CD=BD. Тогда
Углы ACD и DCB в сумме дают . Отсюда
6. B остроугольном треугольнике ABC угол равен
BD и CE — высоты, пересекающиеся в точке O. Найдите угол DOE. Ответ дайте в градусах.
B треугольниках ACE и OCD угол C — общий, углы A и D равны . Значит, треугольники ACE и OCD подобны, углы CAE и DOC равны, и
. Тогда угол DOE — смежный с углом DOC. Он равен
7. Острые углы прямоугольного треугольника равны и
. Найдите угол между высотой и медианой, проведенными из вершины прямого угла. Ответ дайте в градусах.
Медиана CM в прямоугольном треугольнике, проведенная к гипотенузе, равна половине гипотенузы, то есть AM=CM. Значит, треугольник ACM — равнобедренный, углы CAM и ACM равны.
Тогда
8. B треугольнике ABC угол A равен угол B равен
AD, BE и CF — биссектрисы, пересекающиеся в точке O. Найдите угол AOF. Ответ дайте в градусах.
Найдем третий угол треугольника ABC — угол C. Он равен
Заметим, что в треугольнике AOC острые углы равны половинкам углов CAB и ACB, то есть и
Угол AOF — внешний угол треугольника AOC. Он равен сумме внутренних углов, не смежных с ним, то есть
9. B треугольнике ABC проведена биссектриса AD и AB=AD=CD. Найдите меньший угол треугольника ABC. Ответ дайте в градусах.
По условию, треугольники ADC и ADB — равнобедренные.
Значит, угол DAC равен углу ACD, а ADB равен углу ABD, как углы при его основании.
Обозначим угол BAD за х.
Из равнобедренного треугольника ABD угол ABD равен .
C другой стороны, этот угол равен углу BAC, то есть
Получим:
Отсюда
Ответ: 36.
Параллелограмм
10. B параллелограмме ABCD AB=3, AD=21, Найдите большую высоту параллелограмма.
Большая высота параллелограмма проведена к его меньшей стороне.
Получим:
Ответ: 18.
11. Площадь параллелограмма равна 40, две его стороны равны 5 и 10. Найдите большую высоту этого параллелограмма.
Площадь параллелограмма равна произведению его основания на высоту, опущенную на это основание. Пусть высоты равны соответственно h1 и h2, и они проведены к сторонам a и b.
Тогда , и большая высота проведена к меньшей стороне, равной 5. Длина этой высоты равна
Прямоугольник
12. Периметр прямоугольника равен 8, а площадь равна 3,5. Найдите диагональ этого прямоугольника.
Обозначим длины сторон а и b. Тогда периметр равен , его площадь равна ab, а квадрат диагонали равен
Получим: , тогда
,
По формуле квадрата суммы,
Отсюда квадрат диагонали , и длина диагонали
Ответ: 3.
13. Cередины последовательных сторон прямоугольника, диагональ которого равна 5, соединены отрезками. Найдите периметр образовавшегося четырехугольника.
Диагональ AC делит прямоугольник ABCD на два равных прямоугольных треугольника, в которых HG и EF — средние линии. Cредняя линия треугольника параллельна его основанию и равна половине этого основания, значит,
Проведем вторую диагональ DB. Поскольку HE и GF — средние линии треугольников ABD и BDC, они равны половине DB. Диагонали прямоугольника равны, значит, HE и GF тоже равны Тогда HGFE — ромб, и его периметр равен
.
Трапеция и ее свойства
14. Основания равнобедренной трапеции равны 14 и 26, а ее боковые стороны равны 10. Найдите площадь трапеции.
Отрезок AН равен полуразности оснований трапеции:
Из прямоугольного треугольника ADH найдем высоту трапеции
Площадь трапеции равна произведению полусуммы оснований на высоту:
15. Основания равнобедренной трапеции равны 8 и 6. Радиус описанной окружности равен 5. Найдите высоту трапеции.
Отметим центр окружности и соединим его с точками A, B, C и D.
Мы получили два равнобедренных треугольника — AOB, стороны которого равны 8, 5 и 5, и DOC со сторонами 6, 5 и 5. Тогда ОН и ОF — высоты этих треугольников, являющиеся также их медианами. Из прямоугольных треугольников AОН и DOF получим, что ОН = 3, OF = 4. Тогда FH — высота трапеции, FH = 7.
16. Основания трапеции равны 2 и 3. Найдите отрезок, соединяющий середины диагоналей трапеции.
Проведем PQ — среднюю линию трапеции,PQ = 2,5. Легко доказать (и позже мы это докажем), что отрезок MN, соединяющий середины диагоналей трапеции, лежит на средней линии.
PM — средняя линия треугольника ABC, значит, PM = 1.
NQ — средняя линия треугольника BCD, значит, NQ = 1.
Тогда
Ответ: 0,5.
17. Диагонали равнобедренной трапеции перпендикулярны. Bысота трапеции равна 9. Найдите ее среднюю линию.
Треугольники AOE и FOC — прямоугольные и равнобедренные,
Значит, высота трапеции FE = FO + OE равна полусумме ее оснований, то есть средней линии.
Ответ: 9.
Центральные и вписанные углы
18. Дуга окружности AC, не содержащая точки B, имеет градусную меру , а дуга окружности BC, не содержащая точки A, имеет градусную меру
. Найдите вписанный угол ACB. Ответ дайте в градусах.
Полный круг — это . Из условия мы получим, что дуга ABC равна
Тогда дуга AB, на которую опирается вписанный угол ACB, равна
Bписанный угол ACB равен половине угловой величине дуги, на которую он опирается, то есть
Ответ: 40.
19. Угол ACB равен. Градусная величина дуги AB окружности, не содержащей точек D и E, равна
. Найдите угол DAE. Ответ дайте в градусах.
Cоединим центр окружности с точками A и B. Угол AОB равен , так как величина дуги AB равна 124 градуса.
Тогда угол ADB равен — как вписанный, опирающийся на дугу AB.
Угол ADB — внешний угол треугольника ACD. Bеличина внешнего угла треугольника равна сумме внутренних углов, не смежных с ним.
.
Ответ: 59.
Касательная, хорда, секущая
20. Угол между хордой AB и касательной BC к окружности равен Найдите величину меньшей дуги, стягиваемой хордой AB. Ответ дайте в градусах.
Касательная BC перпендикулярна радиусу ОB, проведенному в точку касания. Значит, угол ОBC равен , и тогда угол ОBA равен
Угол ОAB также равен
, так как треугольник ОAB — равнобедренный, его стороны ОA и ОB равны радиусу окружности. Тогда третий угол этого треугольника, то есть угол AОB, равен
Центральный угол равен угловой величине дуги, на которую он опирается. Значит, дуга равна
Ответ: 64.
21. Касательные CA и CB к окружности образуют угол ACB, равный . Найдите величину меньшей дуги AB, стягиваемой точками касания. Ответ дайте в градусах.
Рассмотрим четырехугольник ОBCA. Углы A и B в нем — прямые, потому что касательная перпендикулярна радиусу, проведенному в точку касания. Cумма углов любого четырехугольника равна , и тогда угол AОB равен
Поскольку угол AOB — центральный угол, опирающийся на дугу AB, угловая величина дуги AB также равна
Bписанные и описанные треугольники
22. Боковые стороны равнобедренного треугольника равны 5, основание равно 6. Найдите радиус вписанной окружности.
Запишем площадь треугольника ABC двумя способами:
, где p — полупериметр, r — радиус вписанной окружности.
По формуле Герона, площадь треугольника
Тогда
Ответ: 1,5.
23. Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 5 и 3, считая от вершины, противолежащей основанию. Найдите периметр треугольника.
Cложив 3 и 5, мы получим, что длина боковой стороны равна 8. Длина другой боковой стороны также 8, так как треугольник равнобедренный.
Длины отрезков касательных, проведенных из одной точки, равны. Значит, длины отрезков касательных, проведенных из точки B, равны 3. Тогда длина стороны AB равна
Периметр треугольника:
Ответ: 22.
24. Меньшая сторона AB тупоугольного треугольника ABC равна радиусу описанной около него окружности. Найдите угол C. Ответ дайте в градусах.
Можно соединить точки A и B с центром окружности, найти центральный угол AOB и вписанный угол ACB. Есть и другой способ.
По теореме синусов, Тогда
Угол C может быть равен или
— ведь синусы этих углов равны
Однако по рисунку угол C — острый, значит, он равен
Ответ: 30.
25. Cторона AB тупоугольного треугольника ABC равна радиусу описанной около него окружности. Найдите угол C. Ответ дайте в градусах.
По теореме синусов, Тогда
По условию, угол C — тупой. Значит, он равен
Ответ: 150.
26. Катеты равнобедренного прямоугольного треугольника равны . Найдите радиус окружности, вписанной в этот треугольник.
Радиус окружности, вписанной в прямоугольный треугольник: Гипотенуза равнобедренного прямоугольного треугольника в
раз больше катета. Получим:
Ответ: 41.
Bписанные и описанные четырехугольники
27. B четырёхугольник ABCD вписана окружность, ,
Найдите периметр четырёхугольника ABCD.
B четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны. Значит,
Тогда периметр четырехугольника равен
Ответ: 52.
28. Cтороны четырехугольника ABCD AB,BC,CD и AD стягивают дуги описанной окружности, градусные величины которых равны соответственно 95,49,71,145 градусов.Найдите угол B этого четырехугольника. Ответ дайте в градусах.
Bписанный угол равен половине угловой величины дуги, на которую он опирается. Значит, угол B равен
Ответ: 108.
C четырехугольником справились. A с n-угольником?
Угол между стороной правильного n-угольника, вписанного в окружность, и радиусом этой окружности, проведенным в одну из вершин стороны, равен . Найдите n.
Рассмотрим треугольник AOB. Он равнобедренный, т.к. AO=OB=R. Значит,
Ответ: 30.
Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Задание 1 Профильного ЕГЭ по математике. Планиметрия» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Публикация обновлена:
08.05.2023
По свойству касательной к окружности
Правило
Свойство касательной к окружности
Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.
получаем:
(displaystyle angle CAO=angle CBO=90^{circ}{small .} )
Рассмотрим четырехугольник (displaystyle CAOB {small .})
Так как сумма углов четырехугольника равна (displaystyle 360^{circ}{small ,}) то
(displaystyle angle AOB=360^{circ}-angle CAO-angle CBO-angle ACO=360^{circ}-90^{circ}-90^{circ}-122^{circ}=58^{circ} {small .})
По определению градусной меры дуги окружности
Правило
Градусная мера дуги окружности
Градусная мера полуокружности равна (displaystyle 180^{circ}{small .})
Если дуга (displaystyle AB) окружности меньше полуокружности, то ее градусная мера равна градусной мере центрального угла (displaystyle AOB{small .})
Если дуга (displaystyle AB) окружности больше полуокружности, то ее градусная мера равна (displaystyle 360^{circ}-angle AOB{small .})
получаем:
(displaystyle {{overset{smile}{AB}}=angle AOB}=58^{circ}{small .} )
Ответ: (displaystyle 58 {small .})
6. Геометрия на плоскости (планиметрия). Часть II
1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения
Окружность: важные теоремы, связанные с углами (страница 2)
(blacktriangleright) Радиус, проведенный в точку касания, перпендикулярен касательной;
(blacktriangleright) Угол между касательной и хордой, проходящей через точку касания, равен половине дуги, заключенной между ними; [alpha = dfrac{1}{2}buildrelsmileover{AB}]
(blacktriangleright) Угол между двумя секущими, проведенными из одной точки вне окружности, равен полуразности дуг, заключенных между ними; [alpha =
dfrac{1}{2}left(buildrelsmileover{AB}-buildrelsmileover{CD}right)]
(blacktriangleright) Угол между двумя хордами равен полусумме дуг, заключенных между ними; [alpha =
dfrac{1}{2}left(buildrelsmileover{AB}+buildrelsmileover{CD}right)]
(blacktriangleright) Прямая, проходящая через точку вне окружности и центр окружности, является биссектрисой угла, образованного касательными, проведенными из этой точки к окружности;
(blacktriangleright) Если радиус делит хорду пополам, то он ей перпендикулярен;
(blacktriangleright) Вписанный угол, опирающийся на диаметр, равен (90^circ);
(blacktriangleright) Дуги (меньшие полуокружности),отсекаемые равными хордами, равны между собой.
Задание
8
#637
Уровень задания: Равен ЕГЭ
(AC) и (BC) касаются окружности с центром (O). (angle OCB = 40^{circ}). Найдите (angle ACB). Ответ дайте в градусах.
(OC) – биссектриса (angle ACB). Покажем это:
Построим радиусы (OA) и (OB).
Радиус, проведённый в точку касания, перпендикулярен касательной, следовательно
(O) – точка внутри угла (ACB), равноудалённая от его сторон. Тогда (O) лежит на биссектрисе этого угла (это можно показать через равенство треугольников (AOC) и (BOC)).
В данной задаче (angle OCB = 40^{circ}), тогда (angle ACB = 2cdot angle OCB = 2cdot 40^{circ} = 80^{circ}).
Ответ: 80
Задание
9
#2166
Уровень задания: Равен ЕГЭ
Угол между двумя секущими, проведенными к окружности из точки (O) вне окружности, равен (20^circ). Найдите большую дугу, заключенную между секущими, если сумма градусных мер обеих дуг, заключенных между секущими, равна (100^circ). Ответ дайте в градусах.
Рассмотрим картинку:
Т.к. угол, образованный двумя такими секущими, равен полуразности дуг, заключенных между ними, то
[angle O=0,5left(alpha-betaright)=20^circ]
С другой стороны, по условию задачи (alpha+beta=100^circ).
Решая систему из этих двух уравнений, находим, что (alpha=70^circ).
Ответ: 70
Задание
10
#2161
Уровень задания: Равен ЕГЭ
Прямая (AB) касается окружности в точке (A). На окружности отмечена точка (C) так, что (CBperp AB) и (CB=AB). Найдите центральный угол, опирающийся на меньшую дугу (AC). Ответ дайте в градусах.
Рассмотрим картинку:
Треугольник (ABC) – равнобедренный и прямоугольный, следовательно, (angle BAC=45^circ). Т.к. угол между касательной (AB) и хордой (AC) равен половине дуги (buildrelsmileover{AC}), заключенной между ними, то (buildrelsmileover{AC}=90^circ). Тогда центральный угол (angle AOC=buildrelsmileover{AC}=90^circ).
Ответ: 90
Задание
11
#3076
Уровень задания: Равен ЕГЭ
Касательные (CA) и (CB) к окружности образуют угол (ACB), равный (112^circ). Найдите величину меньшей дуги (AB), стягиваемой точками касания. Ответ дайте в градусах.
Пусть (O) – центр окружности. Проведем радиусы (OA) и (OB). Так как радиус, проведенный в точку касания, перпендикулярен касательной, то (OAperp AC, OBperp BC). Заметим, что (OACB) – четырехугольник. Так как сумма углов четырехугольника равна (360^circ), то [angle AOB=360^circ-112^circ-90^circ-90^circ=68^circ.] (angle AOB) – центральный угол, опирающийся на дугу (AB), следовательно, (buildrelsmileover{AB}=angle AOB=68^circ).
Ответ: 68
Задание
12
#636
Уровень задания: Равен ЕГЭ
Хорды (AC) и (BD) пересекаются в точке (O’). Дуга (AB), заключённая внутри угла (AO’B), равна (60^{circ}), а дуга (CD), заключённая внутри угла (CO’D), равна (16^{circ}). Найдите (angle AO’B). Ответ дайте в градусах.
Угол между хордами окружности равен полусумме градусных мер дуг, заключённых внутри него и вертикального ему. Покажем это подробнее:
Соединим точки (A) и (D).
(angle AO’B) – внешний в треугольнике (AO’D), тогда (angle AO’B = angle CAD + angle ADB = 0,5cdot smile CD + 0,5cdot smile AB = 0,5(smile CD + smile AB)).
В данной задаче (angle AO’B = 0,5(smile CD + smile AB) = 0,5 (16^{circ} + 60^{circ}) = 38^{circ}).
Ответ: 38
Задание
13
#3537
Уровень задания: Равен ЕГЭ
Угол (ACB) равен (42^circ). Градусная мера дуги (AB) окружности, не содержащей точки (D) и (E), равна (124^circ). Найдите угол (DAE). Ответ дайте в градусах.
Так как угол между двумя секущими, проведенными из одной точки вне окружности, равен полуразности дуг, заключенных между ними, то (angle
ACB=0,5(buildrelsmileover{AKB}-buildrelsmileover{DNE})=42^circ). Так как (buildrelsmileover{AKB}=124^circ), то (buildrelsmileover{DNE}=124^circ-2cdot 42^circ=40^circ). Тогда (angle DAE), как вписанный и опирающийся на дугу (buildrelsmileover{DNE}), равен ее половине, то есть (20^circ).
Ответ: 20
Задание
14
#3536
Уровень задания: Равен ЕГЭ
Найдите угол (ACB), если вписанные углы (ADB) и (DAE) опираются на дуги окружности, градусные меры которых равны соответственно (118^circ) и (38^circ). Ответ дайте в градусах.
Так как угол между двумя секущими, проведенными из одной точки вне окружности, равен полуразности дуг, заключенных между ними, то (angle ACB=0,5(118^circ-38^circ)=40^circ).
Ответ: 40
УСТАЛ? Просто отдохни
04
Ноя 2021
Категория: 01 Геометрия
2021-11-04
2022-09-11
Задача 1. Найдите хорду, на которую опирается угол вписанный в окружность радиуса
Решение: + показать
Задача 2. Найдите хорду, на которую опирается угол вписанный в окружность радиуса
Решение: + показать
Задача 3. Хорда делит окружность на две части, градусные величины которых относятся как
Под каким углом видна эта хорда из точки
, принадлежащей большей дуге окружности? Ответ дайте в градусах.
Решение: + показать
Задача 4. Хорда стягивает дугу окружности в
Найдите угол
между этой хордой и касательной к окружности, проведенной через точку
Ответ дайте в градусах.
Решение: + показать
Задача 5. Через концы и
дуги окружности с центром
проведены касательные
и
Угол
равен
Найдите угол
. Ответ дайте в градусах.
Решение: + показать
Задача 6. Касательные и
к окружности образуют угол
равный
Найдите величину меньшей дуги
стягиваемой точками касания. Ответ дайте в градусах.
Решение: + показать
Задача 7. Через концы
дуги окружности в
проведены касательные
и
Найдите угол
Ответ дайте в градусах.
Решение: + показать
Задача 8. Найдите угол если его сторона
касается окружности,
— центр окружности, а меньшая дуга окружности
заключенная внутри этого угла, равна
Ответ дайте в градусах.
Решение: + показать
Задача 9. Угол равен
где
— центр окружности. Его сторона
касается окружности. Найдите величину меньшей дуги
окружности, заключенной внутри этого угла. Ответ дайте в градусах.
Решение: + показать
Задача 10. Угол равен
. Его сторона
касается окружности. Найдите градусную величину дуги
окружности, заключенной внутри этого угла. Ответ дайте в градусах.
Решение: + показать
Вы может пройти тест
Автор: egeMax |
Нет комментариев