Решение. 1 эВ – 1,6∙10-19 Дж, 4,9 эВ = 7,84∙10-19 Дж, 4,5 эВ= 7,2∙10-19 Дж.
Запишем формулу Эйнштейна для фотоэффекта и определим скорость фотоэлектрона:
[ E=A+{{E}_{K}}(1),{{E}_{K}}=frac{mcdot {{upsilon }^{2}}}{2}(2),E=A+frac{mcdot {{upsilon }^{2}}}{2},frac{mcdot {{upsilon }^{2}}}{2}=E-A,upsilon =sqrt{frac{2cdot (E-A)}{m}}(3). ]
Где: m – масса электрона, m = 9,1∙10-31 кг.
Максимальный импульс pmax, передаваемый поверхности металла рассчитаем по формуле
[ begin{align}
& {{p}_{max }}=mcdot upsilon (4),={{p}_{max }}=mcdot sqrt{frac{2cdot (E-A)}{m}},{{p}_{max }}=sqrt{frac{{{m}^{2}}cdot 2cdot (E-A)}{m}}, \
& {{p}_{max }}=sqrt{2cdot mcdot (E-A)}(5). \
& {{p}_{max }}=sqrt{2cdot 9,1cdot {{10}^{-31}}cdot (7,84cdot {{10}^{-19}}-7,2cdot {{10}^{-19}})}=3,4cdot {{10}^{-25}}. \
end{align} ]
Ответ: 3,4∙10-25 кг∙м/с.
Спрятать решение
Решение.
Согласно постулатам Бора, свет излучается при переходе атома на более низкие уровни энергии, при этом фотоны несут энергию, равную разности энергий начального и конечного состояний. Таким образом, испущенный фотон имел нес энергию
Согласно уравнению фотоэффекта, максимальная кинетическая энергия вылетающих фотоэлектронов связана с энергией фотона и работой выхода соотношением
Работа выхода связана с частотой красной границы соотношением:
Таким образом, максимально возможный импульс фотоэлектрон равен
Ответ:
Спрятать критерии
Критерии проверки:
Критерии оценивания выполнения задания | Баллы |
---|---|
Приведено полное решение, включающее следующие элементы:
I) записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом (в данном случае — постулаты Бора, уравнение Эйнштейна для фотоэффекта); II) описаны все вновь вводимые в решении буквенные обозначения физических величин (за исключением обозначений констант, указанных в варианте КИМ, и обозначений величин, используемых в условии задачи); III) проведены необходимые математические преобразования, приводящие к правильному ответу; IV) представлен правильный ответ. |
3 |
Правильно записаны все необходимые положения теории, физические законы, закономерности и проведены необходимые преобразования. Но имеются следующие недостатки.
Записи, соответствующие пункту II, представлены не в полном объёме или отсутствуют. ИЛИ Лишние записи, не входящие в решение (возможно, неверные), не отделены от решения (не зачёркнуты, не заключены в скобки, рамку и т. п.). ИЛИ В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) преобразования/вычисления не доведены до конца. ИЛИ Отсутствует пункт IV, или в нём допущена ошибка. |
2 |
Представлены записи, соответствующие одному из следующих случаев.
Представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения задачи, без каких-либо преобразований с их использованием, направленных на решение задачи, и ответа. ИЛИ В решении отсутствует одна из исходных формул, необходимая для решения задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи. ИЛИ В одной из исходных формул, необходимых для решения задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи. |
1 |
Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла. | 0 |
Максимальный балл | 3 |
Раздел кодификатора ФИПИ/Решу ЕГЭ:
Ниже размещены условия задач и отсканированные решения. Если вам нужно решить задачу на эту тему, вы можете найти здесь похожее условие и решить свою по аналогии. Загрузка страницы может занять некоторое время в связи с большим количеством рисунков. Если Вам понадобится решение задач или онлайн помощь по физике- обращайтесь, будем рады помочь.
Явление фотоэффекта заключается в испускании веществом электронов под действием падающего света. Теория фотоэффекта разработана Эйнштейном и заключается в том, что поток света представляет собой поток отдельных квантов(фотонов) с энергией каждого фотона hn. При попадании фотонов на поверхность вещества часть из них передает свою энергию электронов. Если этой энергия больше работы выхода из вещества, электрон покидает металл. Уравнение эйнштейна для фотоэффекта: где
— максимальная кинетическая энергия фотоэлектрона.
Длина волны красной границы фотоэффекта для некоторого металла составляет 307 нм. Максимальная кинетическая энергия фотоэлектронов – 1 эВ. Найти отношение работы выхода электрона к энергии падающего фотона.
Частота света красной границы фотоэффекта для некоторого металла составляет 6*1014 Гц, задерживающая разность потенциалов для фотоэлектронов – 2В. Определить частоту падающего света и работу выхода электронов.
Работа выхода электрона из металла составляет 4,28эВ. Найти граничную длину волны фотоэффекта.
На медный шарик радает монохроматический свет с длиной волны 0,165 мкм. До какого потенциала зарядится шарик, если работа выхода электрона для меди 4,5 эВ?
Работа выхода электрона из калия составляет 2,2эВ, для серебра 4,7эВ. Найти граничные длину волны фотоэффекта.
Длина волны радающего света 0,165 мкм, задерживающая разность потенциалов для фотоэлектронов 3В. Какова работа выхода электронов?
Красная граница фотоэффекта для цинка 310 нм. Определить максимальную кинетическую энергию фотоэлектронов, если на цинк падает свет с длиной волны 200нм.
На металл с работой выхода 2,4эВ падает свет с длиной волны 200нм. Определить задерживающую разность потенциалов.
На металл падает свет с длиной волны 0,25 мкм, задерживающая разность потенциалов при этом 0,96В. Определить работу выхода электронов из металла.
При изменении длины волны падающего света максимальные скорости фотоэлектронов изменились в 3/4 раза. Первоначальная длина волны 600нм, красная граница фотоэффекта 700нм. Определить длину волны после изменения.
Работы выхода электронов для двух металлов отличаются в 2 раза, задерживающие разности потенциалов — на 3В. Определить работы выхода.
Максимальная скорость фотоэлектронов равно 2,8*108 м/с. Определить энергию фотона.
Энергии падающих на металл фотонов равны 1,27 МэВ. Найти максимальную скорость фотоэлектронов.
Максимальная скорость фотоэлектронов равно 0,98с, где с — скорость света в вакууме. Найти длину волны падающего света.
Энергия фотона в пучке света, падающего на поверхность металла, равно 1,53 МэВ. Определить максимальную скорость фотоэлектронов.
На шарик из металла падает свет с длиной волны 0,4 мкм, при этом шапик заряжается до потенциала 2В. До какого потенциала зарядится шарик, если длина волны станет равной 0,3 мкм?
После изменения длины волны падающего света в 1,5 раза задерживающая разность потенциалов изменилась с 1,6В до 3В. Какова работа выхода?
Красная граница фотоэффекта 560нм, частота падающего света 7,3*1014 Гц. Найти максимальную скорость фотоэлектронов.
Красная граница фотоэффекта 2800 ангстрем, длина волны падающего света 1600 ангстрем. Найти работу выхода и максимальную кинетическую энергию фотоэлектрона.
Задерживащая разность потенциалов 1,5В, работа выхода электронов 6,4*10-19 Дж. Найти длину волны падающего света и красную границу фотоэффекта.
Работа выхода электронов из металла равна 3,3 эВ. Во сколько раз изменилась кинетическая энергия фотоэлектронов. если длина волны падающего света изменилась с 2,5*10-7м до 1,25*10-7м?
Найти максимальную скорость фотоэлектронов для видимого света с энергией фотона 8 эВ и гамма излучения с энергией 0,51 МэВ. Работа выхода электронов из металла 4,7 эВ.
Фототок прекращается при задерживающей разности потенциалов 3,7 В. Работа выхода электронов равна 6,3 эВ. Какая работа выхода электронов у другого металла, если там фототок прекращается при разности потенциалов, большей на 2,3В.
Работа выхода электронов из металла 4,5 эВ, энергия падающих фотонов 4,9 эВ. Чему равен максимальный импульс фотоэлектронов?
Красная граница фотоэффекта 2900 ангстрем, максимальная скорость фотоэлектронов 108 м/с. Найти отношение работы выхода электронов к энергии палающих фотонов.
Длина волны падающего света 400нм, красная граница фотоэффекта равна 400нм. Чему равна максимальная скорость фотоэлектронов?
Длина волны падающего света 300нм, работа выхода электронов 3,74 эВ. Напряженность задерживающего электростатического поля 10 В/см.Какой максимальный путь фотоэлектронов при движении в направлении задерживающего поля?
Длина волны падающего света 100 нм, работа выхода электронов 5,30эВ. Найти максимальную скорость фотоэлектронов.
При длине волны радающего света 491нм задерживающая разность потенциалов 0,71В. Какова работа выхода электронов? Какой стала длина волны света, если задерживающая разность потенциалов стала равной 1,43В?
Кинетическая энергия фотоэлектронов 2,0 эВ, красная граница фотоэффекта 3,0*1014 Гц. Определить энергию фотонов.
Красная граница фотоэффекта 0,257 мкм, задерживающая разность потенциалов 1,5В. Найти длину волны падающего света.
Красная граница фотоэффекта 2850 ангстрем. Минимальное значение энергии фотона, при котором возможен фотоэффект?
Ниже вы можете посмотреть обучаюший видеоролик на тему фотоэффекта и его законов.
поделиться знаниями или
запомнить страничку
- Все категории
-
экономические
43,662 -
гуманитарные
33,654 -
юридические
17,917 -
школьный раздел
611,978 -
разное
16,905
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Фотоэффект: кинетическая энергия электронов
В этой статье мы вычислим как работу выхода, так и кинетическую энергию электронов, определим их скорость и импульс.
Задача 1.
Максимальная кинетическая энергия электронов, вылетающих из рубидия при его освещении ультрафиолетовыми лучами с длиной волны м‚
Дж. Определить работу выхода электронов из рубидия и красную границу фотоэффекта.
Определим работу выхода:
В электронвольтах это
Красная граница фотоэффекта:
Ответ: Дж, или 2,14 эВ,
нм.
Задача 2.
Серебряную пластинку освещают светом с частотой Гц. Гц. Найти максимальную кинетическую энергию фотоэлектронов.
Работа выхода электронов из серебра равна .
Тогда
Ответ: Дж, или 4 эВ.
Задача 3.
Вольфрамовую пластину освещают светом с длиной волны . Найти максимальный импульс вылетающих из пластины электронов.
Тогда скорость электронов равна
А импульс тогда равен (работа выхода для вольфрама )
Ответ: кг
м/с.
Задача 4.
Пластину освещают монохроматическим излучением с длиной волны . Известно, что наибольшее значение импульса, передаваемого пластине одним фотоэлектроном, равно
кг
м/с. Определить работу выхода электрона из вещества пластины.
Импульс равен , поэтому
Ответ: Дж, или 3,6 эВ.
Задача 5.
Какой скоростью обладают электроны, вырванные с поверхности натрия, при облучении его светом, частота которого Гц? Определить наибольшую длину волны излучения, вызывающего фотоэффект.
Наибольшая длина волны – это красная граница фотоэффекта. Работа выхода для натрия равна . Поэтому
Теперь определим скорость электронов:
Тогда скорость электронов равна
Ответ: нм,
м/с.
Задача 6.
Максимальная скорость фотоэлектронов, вырванных с поверхности меди при фотоэффекте м /с. Определить частоту света, вызывающего фотоэффект.
Работа выхода для меди равна .
Ответ: Гц.
Задача 7.
На металлическую пластину, красная граница фотоэффекта для которой мкм, падает фотон с длиной волны
мкм. Во сколько раз скорость фотона больше скорости фотоэлектрона?
Скорость фотоэлектрона равна
Скорость фотона – скорость света. Найдем отношение скоростей:
Ответ: в 642 раза.