Как найти максимальную силу колебаний

Оглавление:

  • Основные теоретические сведения
    • Гармонические колебания
    • Математический маятник
    • Пружинный маятник
    • Механические волны
    • Электрический контур
    • Переменный ток. Трансформатор
    • Электромагнитные волны

Основные теоретические сведения

Гармонические колебания

К оглавлению…

В технике и окружающем нас мире часто приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными. Колебаниями называют изменения физической величины, происходящие по определенному закону во времени. Колебательные явления различной физической природы подчиняются общим закономерностям. Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями. Общность колебательных закономерностей позволяет рассматривать колебательные процессы различной природы с единой точки зрения.

Механическими колебаниями называют движения тел, повторяющиеся точно через одинаковые промежутки времени. Примерами простых колебательных систем могут служить груз на пружине или математический маятник. Для существования в системе гармонических колебаний необходимо, чтобы у нее было положение устойчивого равновесия, то есть такое положение, при выведении из которого на систему начала бы действовать возвращающая сила.

Механические колебания, как и колебательные процессы любой другой физической природы, могут быть свободными и вынужденными. Свободные колебания совершаются под действием внутренних сил системы, после того, как система была выведена из состояния равновесия. Колебания груза на пружине или колебания маятника являются свободными колебаниями. Колебания, происходящие под действием внешних периодически изменяющихся сил, называются вынужденными.

Простейшим видом колебательного процесса являются колебания, происходящие по закону синуса или косинуса, называемые гармоническими колебаниями. Уравнение описывающее физические системы способные совершать гармонические колебания с циклической частотой ω0 задаётся следующим образом:

Формула Уравнение колебательного процесса

Решение предыдущего уравнения является уравнением движения для гармонических колебаний, которое имеет вид:

Формула Закон движения для гармонических колебаний

где: x – смещение тела от положение равновесия, A – амплитуда колебаний, то есть максимальное смещение от положения равновесия, ω – циклическая или круговая частота колебаний (ω = 2Π/T), t – время. Величина, стоящая под знаком косинуса: φ = ωt + φ0, называется фазой гармонического процесса. Смысл фазы колебаний: стадия, в которой колебание находится в данный момент времени. При t = 0 получаем, что φ = φ0, поэтому φ0 называют начальной фазой (то есть той стадией, из которой начиналось колебание).

Минимальный интервал времени, через который происходит повторение движения тела, называется периодом колебаний T. Если же количество колебаний N, а их время t, то период находится как:

Формула Период колебаний

Физическая величина, обратная периоду колебаний, называется частотой колебаний:

Формула Частота колебаний

Частота колебаний ν показывает, сколько колебаний совершается за 1 с. Единица частоты – Герц (Гц). Частота колебаний связана с циклической частотой ω и периодом колебаний T соотношениями:

Формула Циклическая частота колебаний

Зависимость скорости от времени при гармонических механических колебаниях выражается следующей формулой:

Формула Зависимость скорости от времени при гармонических механических колебаниях

Максимальное значение скорости при гармонических механических колебаниях:

Формула Максимальное значение скорости при гармонических механических колебаниях

Максимальные по модулю значения скорости υm = ωA достигаются в те моменты времени, когда тело проходит через положения равновесия (x = 0). Аналогичным образом определяется ускорение a = ax тела при гармонических колебаниях. Зависимость ускорения от времени при гармонических механических колебаниях:

Формула Зависимость ускорения от времени при гармонических механических колебаниях

Максимальное значение ускорения при механических гармонических колебаниях:

Формула Максимальное значение ускорения при механических гармонических колебаниях

Знак минус в предыдущем выражении означает, что ускорение a(t) всегда имеет знак, противоположный знаку смещения x(t), и, следовательно, возвращает тело в начальное положение (x = 0), т.е. заставляет тело совершать гармонические колебания.

Следует обратить внимание на то, что:

  • физические свойства колебательной системы определяют только собственную частоту колебаний ω0 или период T.
  • Такие параметры процесса колебаний, как амплитуда A = xm и начальная фаза φ0, определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени, т.е. начальными условиями.
  • При колебательном движении тело за время, равное периоду, проходит путь, равный 4 амплитудам. При этом тело возвращается в исходную точку, то есть перемещение тела будет равно нулю. Следовательно, путь равный амплитуде тело пройдет за время равное четверти периода.

Чтобы определить, когда в уравнение колебаний подставлять синус, а когда косинус, нужно обратить внимание на следующие факторы:

  • Проще всего, если в условии задачи колебания названы синусоидальными или косинусоидальными.
  • Если сказано, что тело толкнули из положения равновесия – берем синус с начальной фазой, равной нулю.
  • Если сказано, что тело отклонили и отпустили – косинус с начальной фазой, равной нулю.
  • Если тело толкнули из отклоненного от положения равновесия состояния, то начальная фаза не равна нолю, а брать можно и синус и косинус.

Математический маятник

К оглавлению…

Математическим маятником называют тело небольших размеров, подвешенное на тонкой, длинной и нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела. Только в случае малых колебаний математический маятник является гармоническим осциллятором, то есть системой, способной совершать гармонические (по закону sin или cos) колебания. Практически такое приближение справедливо для углов порядка 5–10°. Колебания маятника при больших амплитудах не являются гармоническими.

Циклическая частота колебаний математического маятника рассчитывается по формуле:

Формула Циклическая частота колебаний математического маятника

Период колебаний математического маятника:

Формула Период колебаний математического маятника

Полученная формула называется формулой Гюйгенса и выполняется, когда точка подвеса маятника неподвижна. Важно запомнить, что период малых колебаний математического маятника не зависит от амплитуды колебаний. Такое свойство маятника называется изохронностью. Как и для любой другой системы, совершающей механические гармонические колебания, для математического маятника выполняются следующие соотношения:

  1. Путь от положения равновесия до крайней точки (или обратно) проходится за четверть периода.
  2. Путь от крайней точки до половины амплитуды (или обратно) проходится за одну шестую периода.
  3. Путь от положения равновесия до половины амплитуды (или обратно) проходится за одну двенадцатую долю периода.

Пружинный маятник

К оглавлению…

Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению. Таким свойством обладает сила упругости.

Таким образом, груз некоторой массы m, прикрепленный к пружине жесткости k, второй конец которой закреплен неподвижно, составляют систему, способную совершать в отсутствие трения свободные гармонические колебания. Груз на пружине называют пружинным маятником.

Циклическая частота колебаний пружинного маятника рассчитывается по формуле:

Формула Циклическая частота колебаний пружинного маятника

Период колебаний пружинного маятника:

Формула Период колебаний пружинного маятника

При малых амплитудах период колебаний пружинного маятника не зависит от амплитуды (как и у математического маятника). При горизонтальном расположении системы пружина–груз сила тяжести, приложенная к грузу, компенсируется силой реакции опоры. Если же груз подвешен на пружине, то сила тяжести направлена по линии движения груза. В положении равновесия пружина растянута на величину x0, равную:

Положение равновесия вертикального пружинного маятника

А колебания совершаются около этого нового положения равновесия. Приведенные выше выражения для собственной частоты ω0 и периода колебаний T справедливы и в этом случае. Таким образом, полученная формула для периода колебаний груза на пружине остается справедливой во всех случаях, независимо от направления колебаний, движения опоры, действия внешних постоянных сил.

При свободных механических колебаниях кинетическая и потенциальная энергии периодически изменяются. При максимальном отклонении тела от положения равновесия его скорость, а, следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на пружине потенциальная энергия – это энергия упругой деформации пружины. Для математического маятника – это энергия в поле тяготения Земли.

Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. Тело проскакивает положение равновесия по инерции. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией (как правило, потенциальную энергию в положении равновесия полагают равной нулю). Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и так далее.

Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот. Если в колебательной системе отсутствует трение, то полная механическая энергия при свободных колебаниях остается неизменной. При этом, максимальное значение кинетической энергии при механических гармонических колебаниях задаётся формулой:

Формула Максимальное значение кинетической энергии при механических гармонических колебаниях

Максимальное значение потенциальной энергии при механических гармонических колебаниях пружинного маятника:

Формула Максимальное значение потенциальной энергии при механических гармонических колебаниях

Взаимосвязь энергетических характеристик механического колебательного процесса (полная механическая энергия равна максимальным значениям кинетической и потенциальной энергий, а также сумме кинетической и потенциальной энергий в произвольный момент времени):

Формула Взаимосвязь энергетических характеристик колебательного процесса

Механические волны

К оглавлению…

Если в каком-нибудь месте твердой, жидкой или газообразной среды возбуждены колебания частиц, то вследствие взаимодействия атомов и молекул среды колебания начинают передаваться от одной точки к другой с конечной скоростью. Процесс распространения колебаний в среде называется волной.

Механические волны бывают разных видов. Если при распространении волны частицы среды испытывают смещение в направлении, перпендикулярном направлению распространения, такая волна называется поперечной. Если смещение частиц среды происходит в направлении распространения волны, такая волна называется продольной.

Как в поперечных, так и в продольных волнах не происходит переноса вещества в направлении распространения волны. В процессе распространения частицы среды лишь совершают колебания около положений равновесия. Однако волны переносят энергию колебаний от одной точки среды к другой.

Характерной особенностью механических волн является то, что они распространяются в материальных средах (твердых, жидких или газообразных). Существуют немеханические волны, которые способны распространяться и в пустоте (например, световые, т.е. электромагнитные волны могут распространяться в вакууме).

  • Продольные механические волны могут распространяться в любых средах – твердых, жидких и газообразных.
  • Поперечные волны не могут существовать в жидкой или газообразной средах.

Значительный интерес для практики представляют простые гармонические или синусоидальные волны. Они характеризуются амплитудой A колебания частиц, частотой ν и длиной волны λ. Синусоидальные волны распространяются в однородных средах с некоторой постоянной скоростью υ.

Длиной волны λ называют расстояние между двумя соседними точками, колеблющимися в одинаковых фазах. Расстояние, равное длине волны λ, волна пробегает за время равное периоду T, следовательно, длина волны может быть рассчитана по формуле:

Формула Длина волны

где: υ – скорость распространения волны. При переходе волны из одной среды в другую длина волны и скорость ее распространения меняются. Неизменными остаются только частота и период волны.

Разность фаз колебаний двух точек волны, расстояние между которыми l рассчитывается по формуле:

Формула Разность фаз колебаний двух точек волны

Электрический контур

К оглавлению…

В электрических цепях, так же, как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания. Простейшей электрической системой, способной совершать свободные колебания, является последовательный LC-контур. В отсутствие затухания свободные колебания в электрическом контуре являются гармоническими. Энергетические характеристики и их взаимосвязь при колебаниях в электрическом контуре:

Формула Энергетические характеристики и их взаимосвязь при колебаниях в электрическом контуре

Период гармонических колебаний в электрическом колебательном контуре определяется по формуле:

Формула Период гармонических колебаний в электрическом колебательном контуре

Циклическая частота колебаний в электрическом колебательном контуре:

Формула Циклическая частота колебаний в электрическом колебательном контуре

Зависимость заряда на конденсаторе от времени при колебаниях в электрическом контуре описывается законом:

Формула Зависимость заряда на конденсаторе от времени при колебаниях в электрическом контуре

Зависимость электрического тока протекающего через катушку индуктивности от времени при колебаниях в электрическом контуре:

Формула Зависимость электрического тока протекающего через катушку индуктивности от времени

Зависимость напряжения на конденсаторе от времени при колебаниях в электрическом контуре:

Формула Зависимость напряжения на конденсаторе от времени при колебаниях в электрическом контуре

Максимальное значение силы тока при гармонических колебаниях в электрическом контуре может быть рассчитано по формуле:

Формула Максимальное значение силы тока при гармонических колебаниях в электрическом контуре

Максимальное значение напряжения на конденсаторе при гармонических колебаниях в электрическом контуре:

Формула Максимальное значение напряжения на конденсаторе при гармонических колебаниях в электрическом контуре

Все реальные контура содержат электрическое сопротивление R. Процесс свободных колебаний в таком контуре уже не подчиняется гармоническому закону. За каждый период колебаний часть электромагнитной энергии, запасенной в контуре, превращается в теплоту, выделяющуюся на резисторе, и колебания становятся затухающими.

Переменный ток. Трансформатор

К оглавлению…

Основная часть электроэнергии в мире в настоящее время вырабатывается генераторами переменного тока, создающими синусоидальное напряжение. Они позволяют наиболее просто и экономно осуществлять передачу, распределение и использование электрической энергии.

Устройство, предназначенное для превращения механической энергии в энергию переменного тока, называется генератором переменного тока. Он характеризуется переменным напряжением U(t) (индуцированной ЭДС) на его клеммах. В основу работы генератора переменного тока положено явление электромагнитной индукции.

Переменным током называется электрический ток, который изменяется с течением времени по гармоническому закону. Величины U0, I0 = U0/R называются амплитудными значениями напряжения и силы тока. Значения напряжения U(t) и силы тока I(t), зависящие от времени, называют мгновенными.

Переменный ток характеризуется действующими значениями силы тока и напряжения. Действующим (эффективным) значением переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделил бы в единицу времени такое же количество теплоты, что и данный переменный ток. Для переменного тока действующее значение силы тока может быть рассчитано по формуле:

Формула Действующее значение силы тока

Аналогично можно ввести действующее (эффективное) значение и для напряжения, рассчитываемое по формуле:

Формула Действующее значение напряжения

Таким образом, выражения для мощности постоянного тока остаются справедливыми и для переменного тока, если использовать в них действующие значения силы тока и напряжения:

Формула Мощность в цепи переменного тока

Обратите внимание, что если идет речь о напряжении или силе переменного тока, то (если не сказано иного) имеется в виду именно действующее значение. Так, 220В – это действующее напряжение в домашней электросети.

Конденсатор в цепи переменного тока

Строго говоря, конденсатор ток не проводит (в том смысле, что носители заряда через него не протекают). Поэтому, если конденсатор подключен в цепь постоянного тока, то сила тока в любой момент времени в любой точке цепи равна нулю. При подключении в цепь переменного тока из-за постоянного изменения ЭДС конденсатор перезаряжается. Ток через него по-прежнему не течет, но ток в цепи существует. Поэтому условно говорят, что конденсатор проводит переменный ток. В этом случае вводится понятие сопротивления конденсатора в цепи переменного тока (или емкостного сопротивления). Это сопротивление определяется выражением:

Формула емкостного сопротивления

Обратите внимание, что емкостное сопротивление зависит от частоты переменного тока. Оно в корне отличается от привычного нам сопротивления R. Так, на сопротивлении R выделяется теплота (поэтому его часто называют активным), а на емкостном сопротивлении теплота не выделяется. Активное сопротивление связано со взаимодействием носителей заряда при протекании тока, а емкостное – с процессами перезарядки конденсатора.

Катушка индуктивности в цепи переменного тока

При протекании переменного тока в катушке возникает явление самоиндукции, и, следовательно, ЭДС. Из-за этого напряжение и сила тока в катушке не совпадают по фазе (когда сила тока равна нулю, напряжение имеет максимальное значение и наоборот). Из-за такого несовпадения средняя тепловая мощность, выделяющаяся в катушке, равна нулю. В этом случае вводится понятие сопротивления катушки в цепи переменного тока (или индуктивного сопротивления). Это сопротивление определяется выражением:

Формула индуктивного сопротивления

Обратите внимание, что индуктивное сопротивление зависит от частоты переменного тока. Как и емкостное сопротивление, оно отличается от сопротивления R. Как и на емкостном сопротивлении, на индуктивном сопротивлении теплота не выделяется. Индуктивное сопротивление связано с явлением самоиндукции в катушке.

Трансформаторы

Среди приборов переменного тока, нашедших широкое применение в технике, значительное место занимают трансформаторы. Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении электромагнитной индукции. Простейший трансформатор состоит из сердечника замкнутой формы, на который намотаны две обмотки: первичная и вторичная. Первичная обмотка подсоединяется к источнику переменного тока с некоторым напряжением U1, а вторичная обмотка подключается к нагрузке, на которой появляется напряжение U2. При этом, если число витков в первичной обмотке равно n1, а во вторичной n2, то выполняется следующее соотношение:

Формула Соотношение для трансформатора

Коэффициент трансформации вычисляется по формуле:

Формула Коэффициент трансформации

Если трансформатор идеальный, то выполняется следующее соотношение (мощности на входе и выходе равны):

Формула Соотношение для идеального трансформатора

В неидеальном трансформаторе вводится понятие КПД:

Формула КПД трансформатора

Электромагнитные волны

К оглавлению…

Электромагнитные волны – это распространяющееся в пространстве и во времени электромагнитное поле. Электромагнитные волны поперечны – векторы электрической напряженности и магнитной индукции перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны. Электромагнитные волны распространяются в веществе с конечной скоростью, которая может быть рассчитана по формуле:

Формула Скорость электромагнитной волны в некоторой среде

где: ε и μ – диэлектрическая и магнитная проницаемости вещества, ε0 и μ0 – электрическая и магнитная постоянные: ε0 = 8,85419·10–12 Ф/м, μ0 = 1,25664·10–6 Гн/м. Скорость электромагнитных волн в вакууме (где ε = μ = 1) постоянна и равна с = 3∙108 м/с, она также может быть вычислена по формуле:

Формула Скорость электромагнитной волны в вакууме

Скорость распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных. Если электромагнитная волна распространяется в какой-либо среде, то скорость ее распространения также выражается следующим соотношением:

Формула Связь скорости света в вакууме и веществе

где: n – показатель преломления вещества – физическая величина, показывающая во сколько раз скорость света в среде меньше чем в вакууме. Показатель преломления, как видно из предыдущих формул, может быть рассчитан следующим образом:

Формула Показатель преломления

  • Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии.
  • Электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами. Цепи постоянного тока, в которых носители заряда движутся с неизменной скоростью, не являются источником электромагнитных волн. А вот цепи, в которых протекает переменный ток, т.е. такие цепи в которых носители заряда постоянно меняют направление своего движения, т.е. двигаются с ускорением – являются источником электромагнитных волн. В современной радиотехнике излучение электромагнитных волн производится с помощью антенн различных конструкций, в которых возбуждаются быстропеременные токи.

Решение: :  Рассмотрим уравнение координаты:

x = Xm∙соs(ω∙t + φ0),

где: х – координата тела, Хm – амплитуда, ω – угловая скорость, φ0 – начальная координата.
Для нахождения скорости возьмем первую производную по времени от х:

υ = — ω∙Хm∙sin(ω∙t+ φ0), υ = — 0,4∙π∙sin(4πt+π/4).

Для нахождения ускорения возьмем вторую производную по времени от х:

а = — ω2Хm∙соs(ω∙t+ φ0), а = -0,16∙π∙соs(4πt+π/4).

аmax = 0,5 м/с2, Fmax = m∙a, Fmax = 0,5 м/с2∙10∙10-3 кг, = 5∙10-3 Н.

[ {{E}_{Kmax }}=frac{mcdot upsilon _{max }^{2}}{2},  ]

υmax = 1,256 м/с, ЕКmax = 7,9∙10-3 Дж.    Ответ: 5∙10-3 Н, 7,9∙10-3 Дж. 
 

Задачи на колебания и волны с решениями

Механические гармонические колебания

9.1.1 Уравнение гармонических колебаний имеет вид x=4*sin(2*pi*t) (м). Определить
9.1.2 Материальная точка совершает гармонические колебания. Период колебаний 0,5 с
9.1.3 За какое время от начала движения точка, колеблющаяся по закону x=7*sin(0,5*pi*t) (м)
9.1.4 Две точки совершают гармонические колебания. Максимальная скорость первой точки
9.1.5 За какой промежуток времени маятник, совершающий гармонические колебания
9.1.6 Тело совершает гармонические колебания. Период колебаний 0,15 с, максимальная
9.1.7 Определите смещение от положения равновесия материальной точки, совершающей
9.1.8 За равные промежутки времени первое тело совершило 100, а второе – 400 колебаний
9.1.9 Материальная точка совершает гармонические колебания с периодом 0,8 с
9.1.10 При гармонических колебаниях вдоль оси ox координата тела изменяется по закону
9.1.11 Уравнение движения колеблющейся точки имеет вид x=0,05*cos(2*pi*t/3) (м)
9.1.12 Уравнение движения точки x=0,05*cos(3*pi*t) (м). Чему равна амплитуда
9.1.13 Найти максимальное значение скорости точки, уравнение движения которой
9.1.14 Во сколько раз изменится амплитуда колебаний ускорения гармонически колеблющейся
9.1.15 Материальная точка совершает гармонические колебания по закону
9.1.16 Найти период гармонического колебания, фаза которого увеличивается
9.1.17 При фазе pi/3 смещение частицы, колеблющейся по закону косинуса, было равно 1 см
9.1.18 Материальная точка совершает гармонические колебания с периодом 0,5 с. Амплитуда
9.1.19 Уравнение колебаний материальной точки имеет вид x=0,02*sin(pi*t/2+pi/4)
9.1.20 Маятник массой 5 кг и длиной 0,8 м совершает колебательное движение с амплитудой
9.1.21 Тело совершает гармонические синусоидальные колебания с нулевой начальной фазой
9.1.22 Материальная точка совершает синусоидальные колебания с амплитудой 8 см
9.1.23 Найти период гармонического колебания, изображенного на рисунке
9.1.24 T=0,2 с – период гармонического колебания с амплитудой 10 см. Найти смещение тела
9.1.25 Материальная точка совершает гармонические колебания. Если при неизменной
9.1.26 Материальная точка совершает гармонические колебания. Если при неизменной амплитуде

Математический маятник

9.2.1 Во сколько раз изменится частота колебаний математического маятника
9.2.2 Амплитуда колебаний математического маятника 10 см. Наибольшая скорость 0,5 м/с
9.2.3 Частота гармонических колебаний математического маятника возрастает в 2 раза
9.2.4 Период колебаний маятника на Земле равен 1 с. Каким он будет на Луне, если ускорение
9.2.5 Какова длина математического маятника, совершающего колебания по закону
9.2.6 Два математических маятника с периодами колебаний 6 и 5 с соответственно одновременно
9.2.7 Два маятника начинают одновременно совершать колебания. За время первых
9.2.8 При опытном определении ускорения свободного падения учащийся за 5 мин насчитал
9.2.9 Маятник установлен в кабине автомобиля, движущегося прямолинейно со скоростью
9.2.10 Один математический маятник имеет период 3 с, а другой – 4 с. Каков период
9.2.11 Математический маятник длиной 0,01 м имеет ту же частоту колебаний, что и шарик
9.2.12 Математический маятник длиной 2,45 м совершает 100 колебаний за 314 с. Определите
9.2.13 Какова длина математического маятника, совершающего колебания по закону
9.2.14 Маятник состоит из металлического шарика массой 1 г и нити. На шарик поместили
9.2.15 Определите длину математического маятника, который за 10 с совершает на 4 полных
9.2.16 Математический маятник длиной 1 м совершает гармонические колебания
9.2.17 Во сколько раз время прохождения колеблющейся точки первой половины амплитуды
9.2.18 К потолку подвешены два маятника. За одинаковое время первый маятник совершил
9.2.19 Первый шарик, подвешенный на нити длиной 1 м, отклонили от положения равновесия
9.2.20 Математический маятник совершает колебания. В положении наибольшего отклонения
9.2.21 Кубик совершает малые колебания в вертикальной плоскости, двигаясь без трения
9.2.22 Небольшой металлический шарик массой 10 г, подвешенный на нити длиной 0,1 м
9.2.23 Математический маятник с длиной нити L совершает свободные колебания вблизи стены
9.2.24 В неподвижном лифте период собственных колебаний математического маятника

Пружинный маятник

9.3.1 Шарик массой 5 г колеблется по закону x=0,04*sin(2*pi*(t/T+0,5))
9.3.2 Шарик на пружине сместили на 1 см от положения равновесия и отпустили
9.3.3 Определить амплитуду колебаний, если для фазы 45 градусов смещение частицы
9.3.4 Частота колебаний шарика, прикрепленного к вертикальной пружине, равна 2,8 Гц
9.3.5 Найти массу груза, который на пружине жесткостью 25 Н/см делает 20 колебаний
9.3.6 Если увеличить массу груза, подвешенного к спиральной пружине, на 600 г, то период
9.3.7 Груз, подвешенный к пружине, совершает 10 колебаний в минуту. Определите жесткость
9.3.8 Пружина под действием груза массой 10 кг совершает 50 колебаний в минуту
9.3.9 Уравнение колебаний пружинного маятника массой 200 г имеет вид
9.3.10 Груз, подвешенный к пружине, вызвал её удлинение на 4 см. Найти период собственных
9.3.11 Автомобильные рессоры имеют жесткость 20 кН/м. Каким будет период колебаний
9.3.12 Длина пружинного маятника увеличилась в 4 раза. Во сколько раз изменится период
9.3.13 Висящий на пружине груз массой 0,1 кг совершает вертикальные колебания
9.3.14 Тело совершает гармонические колебания в горизонтальной плоскости на пружине
9.3.15 Найти массу груза, который на пружине с жесткостью 250 Н/м совершает 100 полных
9.3.16 Невесомая пружина жесткостью 100 Н/м подвешена за один из концов так
9.3.17 На пружине подвешена чаша весов с гирями. При этом период вертикальных колебаний
9.3.18 Грузы массы 200 г, подвешенный к пружине, колеблется с такой же частотой
9.3.19 Как изменится период вертикальных колебаний груза, подвешенного на двух

Энергия механических колебаний

9.4.1 Груз, подвешенный на пружине, жесткость которой 1 кН/м, совершает косинусоидальные
9.4.2 Во сколько раз изменится полная механическая энергия колеблющегося маятника
9.4.3 Найти потенциальную энергию математического маятника массой 200 г в положении
9.4.4 Груз массой 0,2 кг колеблется на пружине жесткостью 500 Н/м. Чему равна полная
9.4.5 Смещение груза, подвешенного на пружине, в зависимости от времени задается законом
9.4.6 Найти кинетическую энергию груза, совершающего косинусоидальные колебания
9.4.7 Груз массой 0,2 кг, подвешенный на пружине, совершает 30 колебаний за 1 минуту
9.4.8 Пружинный маятник вывели из положения равновесия и отпустили. Через какое время
9.4.9 Пружинный маятник совершает косинусоидальные колебания, после того как его вывели
9.4.10 Материальная точка совершает гармонические колебания. Как изменится кинетическая
9.4.11 Максимальная кинетическая энергия материальной точки массы 10 г, совершающей
9.4.12 Тело массы 5 кг совершает гармонические колебания с амплитудой 10 см
9.4.13 Тело массы 5 кг совершает гармонические колебания с частотой 2,5 Гц

Механический резонанс

9.5.1 При какой скорости поезда маятник длиной 10 см, подвешенный в вагоне, особенно
9.5.2 Ведра с водой на коромысле имеют частоту собственных колебаний 0,625 Гц. При какой
9.5.3 Автомобиль движется по неровной дороге, на которой расстояние между буграми
9.5.4 Трактор оставил на грунтовой дороге следы в виде углублений на расстоянии 0,3 м

Механические волны

9.6.1 Точки, находящиеся на одном луче и удаленные от источника колебаний на 12 и 14,7 м
9.6.2 Какую разность фаз будут иметь колебания двух точек, находящихся на расстоянии
9.6.3 Эхо от оружейного выстрела дошло до стрелка через 6 с после выстрела. На каком
9.6.4 Скорость распространения волн, качающих лодку, 1,5 м/с. Расстояние между
9.6.5 Во сколько раз изменится длина звуковой волны при переходе из воздуха в воду
9.6.6 Плоская волна, возбуждаемая источником, колеблющимся по закону x=0,2sin(62,8t) (м)
9.6.7 В струне, закрепленной с двух концов, возбуждены колебания. На рисунке показаны
9.6.8 Волна с частотой 5 Гц распространяется в пространстве со скоростью 3 м/с
9.6.9 Волны распространяются в упругой среде со скоростью 100 м/с. Наименьшее расстояние
9.6.10 На озере в безветренную погоду с лодки бросили тяжелый якорь. От места бросания
9.6.11 Рассчитать длину звуковой волны в воде, если частота колебаний 440 Гц
9.6.12 Определить расстояние между двумя ближайшими точками бегущей волны
9.6.13 Найти разность фаз колебаний между двумя точками звуковой волны, отстоящими
9.6.14 Длина волны 60 см. На каком расстоянии друг от друга находятся точки волны
9.6.15 Вдоль резинового шнура распространяется волны со скоростью 3 м/с при частоте 2 Гц
9.6.16 Скорость звука в воздухе 330 м/с. Какова частота звуковых колебаний, если длина
9.6.17 Рыболов заметил, что за 10 с поплавок совершил на волнах 20 колебаний
9.6.18 На рисунке приведена “мгновенная фотография” участка струны, по которой
9.6.19 У звуковой волны частоты 2 кГц при переходе из стали в воздух длина волны
9.6.20 Звуковая волна с частотой колебаний 500 Гц распространяется в стальном стержне
9.6.21 Стальную деталь проверяют ультразвуковым дефектоскопом с частотой 1 МГц
9.6.22 Сигнал ультразвукового эхолота возвратился на корабль через 0,4 с после излучения
9.6.23 Какова длина волны ультразвукового сигнала, посланного корабельным гидролокатором
9.6.24 Толщина стального листа контролируется генератором, излучающим ультразвуковые

Колебательный контур

9.7.1 Собственные колебания тока в контуре протекают по закону I=0,01*cos(1000*pi*t) (А)
9.7.2 Изменение заряда конденсатора в колебательном контуре происходит по закону
9.7.3 Индуктивность колебательного контура 500 мкГн. Какую емкость следует выбрать
9.7.4 Необходимо изготовить колебательный контур, собственная частота которого 15 кГц
9.7.5 Мгновенное значение силы синусоидального тока через 1/3 периода равно 2,6 А
9.7.6 Колебательный контур состоит из катушки индуктивности и плоского воздушного
9.7.7 В колебательном контуре к конденсатору подсоединили параллельно другой конденсатор
9.7.8 Колебательный контур состоит из катушки индуктивности и двух одинаковых конденсаторов
9.7.9 Напряжение на конденсаторе в идеальном колебательном контуре изменяется
9.7.10 К конденсатору с зарядом 0,25 нКл подключена катушка индуктивности. Каков
9.7.11 Частота собственных колебаний в колебательном контуре увеличилась в 3 раза
9.7.12 Чему равен период собственных колебаний в колебательном контуре, индуктивность
9.7.13 Во сколько раз изменится период свободных электрических колебаний
9.7.14 Заряд на обкладках конденсатора колебательного контура изменяется по закону
9.7.15 Во сколько раз изменится амплитуда колебаний силы тока, протекающего
9.7.16 Во сколько раз изменится частота колебаний в колебательном контуре, при увеличении
9.7.17 Сила тока изменяется со временем по закону I=2*cos(10*t) (А). Чему равен
9.7.18 В колебательном контуре конденсатор емкостью 50 нФ заряжен до максимального
9.7.19 Батарею из двух одинаковых конденсаторов емкостью 10 нФ каждый, заряженную
9.7.20 Колебательный контур составлен из индуктивности 0,1 Гн и конденсатора емкостью 10 мкФ
9.7.21 Колебательный контур составлен из дросселя с индуктивностью 0,2 Гн и конденсатора
9.7.22 В колебательном контуре совершаются незатухающие электромагнитные колебания
9.7.23 Электрический колебательный контур содержит катушку индуктивности 10 мГн
9.7.24 Ток в идеальном колебательном контуре изменяется по закону I=0,01cos(1000t) (А)
9.7.25 Как изменится частота колебаний в идеальном колебательном контуре

Затухающие колебания

9.8.1 Сила тока в сети изменяется по закону I=4,2sin(omega*t) (А). Какое количество теплоты
9.8.2 В колебательном контуре происходят затухающие электромагнитные колебания
9.8.3 Конденсатор емкостью 10 мкФ зарядили до напряжения 400 В и подключили к катушке

Энергия электромагнитных колебаний

9.9.1 Определить силу тока в колебательном контуре в момент полной разрядки конденсатора
9.9.2 Полная энергия колебаний в контуре равна 5 Дж. Найти максимальную силу тока
9.9.3 Уравнение колебаний электрического заряда в колебательном контуре (L=2 Гн)
9.9.4 Через поперечное сечение катушки индуктивностью 12 мГн проходит заряд 60 мКл
9.9.5 В колебательном контуре сила тока изменяется по закону I=-0,02*sin(400*pi*t) (А)
9.9.6 В колебательном контуре индуктивность катушки равна 0,2 Гн. Амплитуда силы тока
9.9.7 Заряженный конденсатор замкнули на катушку индуктивности. Через какое время
9.9.8 В электрическом колебательном контуре индуктивность катушки 4 мГн, а максимальный

Переменный ток

9.10.1 Сила тока изменяется по формуле I=8,5*sin(314t+0,651) (А). Определить
9.10.2 Катушка индуктивностью 20 мГн включена в сеть промышленного переменного тока
9.10.3 Мгновенное значение ЭДС синусоидального тока 120 В для фазы 45 градусов
9.10.4 Напряжение на концах участка цепи, по которой течет переменный ток, изменяется
9.10.5 В цепь переменного тока включены последовательно конденсатор емкостью 1 мкФ
9.10.6 Вольтметр, включенный в цепь переменного тока, показывает 220 В. На какое
9.10.7 Максимальное напряжение в колебательном контуре, состоящем из катушки
9.10.8 При включении конденсатора на синусоидальное напряжение 220 В с частотой 50 Гц
9.10.9 Определить емкость конденсатора фильтра выпрямителя, если частота тока 50 Гц
9.10.10 Конденсатор емкостью 10 мкФ включен в цепь, в которой мгновенное значение
9.10.11 Емкостное сопротивление конденсатора на частоте 50 Гц равно 100 Ом. Каким оно
9.10.12 К зажимам генератора присоединен конденсатор с емкостью 0,1 мкФ. Найти
9.10.13 В сеть переменного тока напряжением 220 В и частотой 50 Гц включен конденсатор
9.10.14 ЭДС в цепи переменного тока выражается формулой E=120*sin(628*t) (В). Определить
9.10.15 Длина воздушной линии передачи равна 300 км, частота тока 50 Гц. Найдите сдвиг
9.10.16 В цепь переменного тока включены последовательно сопротивление 100 Ом

Трансформаторы

9.11.1 Трансформатор включен в сеть с напряжением 120 В. Первичная обмотка его
9.11.2 Сила тока в первичной обмотке трансформатора 0,5 А, напряжение на её концах 220 В
9.11.3 ЭДС первичной и вторичной обмоток трансформатора соответственно равны 220 и 20 В
9.11.4 Понижающий трансформатор с коэффициентом трансформации 10 включен в сеть
9.11.5 Сила тока в первичной обмотке трансформатора 0,6 А, напряжение на её концах 120 В
9.11.6 Трансформатор повышает напряжение с 220 до 660 В и содержит в первичной
9.11.7 Обмотка трансформатора со стальным сердечником имеет индуктивность 0,6 Гн
9.11.8 Первичная обмотка трансформатора, включенного в сеть 380 В, имеет 2400 витков
9.11.9 На первичную обмотку понижающего трансформатора с коэффициентом трансформации
9.11.10 В сердечнике трансформатора, включенного в сеть переменного тока частотой 50 Гц
9.11.11 Трансформатор, содержащий в первичной обмотке 300 витков, включен в сеть

Резонанс в колебательном контуре

9.12.1 В катушке индуктивности сила тока линейно увеличивается со скоростью 10 А/с
9.12.2 В цепь включены конденсатор 2 мкФ и индуктивность 0,05 Гн. Какой частоты ток надо
9.12.3 Параметры контуров таковы: C1=120 пФ, L1=3,5 мГн, C2=150 пФ, L2=5 мГн. На сколько
9.12.4 Резонанс в колебательном контуре с конденсатором 1 мкФ наступает при частоте
9.12.5 При изменении емкости конденсатора на 100 пФ резонансная частота

Электромагнитные волны

9.13.1 Колебательный контур имеет емкость 2,6 пФ и индуктивность 0,012 мГн. Какой длины
9.13.2 Найти емкость конденсатора колебательного контура, если при индуктивности
9.13.3 При изменении тока в катушке индуктивности на 1 А за 0,6 с в ней индуцируется ЭДС
9.13.4 Определите максимальный ток в контуре, если длина электромагнитной волны
9.13.5 В каком диапазоне длин волн можно улавливать радиопередачи приемником
9.13.6 Радиопередатчик искусственного спутника Земли работает на частоте 20 МГц
9.13.7 Максимальная величина заряда на конденсаторе колебательного контура 1 мкКл
9.13.8 Колебательный контур создает в воздухе электромагнитные волны длиной 150 м
9.13.9 Если конденсатор с расстоянием между пластинами 1 см определенным образом
9.13.10 Как нужно изменить емкость конденсатора в колебательном контуре радиоприемника
9.13.11 Индуктивность катушки пропорциональна квадрату числа ее витков. Как следует
9.13.12 Электрический колебательный контур радиоприемника содержит катушку индуктивности
9.13.13 Колебательный контур радиоприемника содержит конденсатор емкости 1 нФ

( 32 оценки, среднее 4.78 из 5 )

§
6. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ
Основные
формулы

• Уравнение
гармонических колебаний

где х
смещение
колеблющейся точки от положения
равновесия;
t
— время; А,
ω,
φ—
соответственно амплитуда, угловая
частота,
начальная фаза колебаний;

фаза колебаний в момент t.

• Угловая частота
колебаний


, или
,

где ν
и
Т — частота и период колебаний.

• Скорость точки,
совершающей гармонические колебания,

• Ускорение при
гармоническом колебании

• Амплитуда
А
результирующего
колебания, полученного при сложении
двух колебаний с одинаковыми частотами,
происходящих по одной прямой, определяется
по формуле

где
a1
и
А2
амплитуды
составляющих колебаний; φ1
и
φ2
их
начальные фазы.


Начальная фаза φ
результирующего колебания может быть
найдена
из формулы


Частота биений,
возникающих при сложении двух колебаний,
происходящих
по одной прямой с различными, но близкими
по зна­чению
частотами ν1
и
ν2,


Уравнение траектории
точки, участвующей в двух взаимно
перпендикулярных
колебаниях с амплитудами A1
и A2
и начальны­ми
фазами φ1
и φ2,

Если
начальные фазы φ1
и
φ2
составляющих колебаний одинако­вы,
то уравнение траектории принимает вид

т. е. точка движется
по прямой.

В том
случае, если разность фаз
,
уравнение
принимает вид

т. е. точка движется
по эллипсу.

• Дифференциальное
уравнение гармонических колебаний
ма­териальной точки


, или
,
где
m

масса точки; k

коэффициент
квазиупругой силы (k=тω2).


Полная энергия
материальной точки, совершающей
гармони­ческие
колебания,

• Период
колебаний тела, подвешенного на пружине
(пружин­ный
маятник),

где
m

масса тела; k

жесткость
пружины.
Формула справедлива для упругих
колебаний в пределах, в ко­торых
выполняется закон Гука (при малой массе
пружины в срав­нении
с массой тела).

Период колебаний
математического маятника

где
l
— длина маятника; g

ускорение
свободного падения. Период
колебаний физического маятника

где J
— момент инерции колеблющегося тела
относительно оси

колебаний;
а
— расстояние центра масс маятника от
оси колебаний;


— приведенная
длина физического маятника.

Приведенные
формулы являются точными для случая
бесконеч­но малых амплитуд. При
конечных амплитудах эти формулы дают
лишь приближенные результаты. При
амплитудах не более
ошибка в значении периода не превышает
1 %.

Период
крутильных колебаний тела, подвешенного
на упругой нити,

где J

момент
инерции тела относительно оси, совпадающей
с упругой нитью; k

жесткость
упругой нити, равная отношению упругого
момента, возникающего при закручивании
нити, к углу, на который нить закручивается.

• Дифференциальное
уравнение затухающих колебаний

, или
,

где r
— коэффициент сопротивления; δ
коэффициент
затухания:

; ω0
собственная угловая частота колебаний
*

• Уравнение
затухающих колебаний

где A
(t)

амплитуда
затухающих колебаний в момент t;
ω
— их угловая частота.

• Угловая частота
затухающих колебаний

О Зависимость
амплитуды затухающих колебаний от
времени


I

где
А0
амплитуда
колебаний в момент t=0.

• Логарифмический
декремент колебаний

где
A
(t)
и
A
(t+T)

амплитуды
двух последовательных колеба­ний,
отстоящих по времени друг от друга на
период.

• Дифференциальное
уравнение вынужденных колебаний


, или


,

где


внешняя периодическая сила, действующая
на
колеблющуюся
материальную точку и вызывающая
вынужденные
колебания;
F0

ее
амплитудное значение;


Амплитуда вынужденных
колебаний


Резонансная частота
и резонансная амплитуда

и

Примеры решения
задач

Пример
1.
Точка
совершает колебания по закону
x(t)= ,
где
А=2
см.
Определить начальную фазу φ,
если

x(0)= см
и х,(0)<0.
Построить векторную диаграмму для
мо-­
мента t=0.

Решение.
Воспользуемся уравнением движения и
выразим смещение в момент t=0
через начальную фазу:

Отсюда
найдем начальную фазу:

*
В приведенных ранее формулах
гармонических колебаний та же
величина
обозначалась просто ω
(без индекса 0).

Подставим
в это выражение заданные значения x(0)
и А:
φ=
= .
Значению аргумента

удовлетворяют
два
значения угла:

Для
того чтобы решить, какое из этих значений
угла φ
удовлет-­
воряет
еще и условию
,
найдем сначала
:

Подставив
в это выражение значение t=0
и поочередно значения
начальных
фаз
и
,
найдем

Так
как всегда A>0
и ω>0,
то условию удовлетворяет
толь­
ко
первое значение начальной фазы.
Таким
образом, искомая начальная
фаза

По
найденному значению φ
постро-­
им
векторную диаграмму (рис. 6.1).
Пример
2.
Материальная
точка
массой т=5
г совершает гармоничес-­
кие колебания
с частотой ν
=0,5 Гц.
Амплитуда
колебаний A=3
см. Оп-­
ределить: 1) скорость υ
точки
в мо-­
мент времени, когда смещение
х=
=
1,5 см; 2) максимальную силу
Fmax,
действующую
на точку; 3)
Рис.
6.1 полную
энергию Е
колеблющейся
точ­
ки.

Решение.
1. Уравнение гармонического колебания
имеет вид

(1)

а
формулу скорости получим, взяв первую
производную по времени от смещения:

(2)

Чтобы
выразить скорость через смещение, надо
исключить из формул (1) и (2) время. Для
этого возведем оба уравнения в квад­рат,
разделим первое на А2,
второе
на A2
ω
2

и сложим:


, или

Решив
последнее уравнение относительно υ,
найдем

Выполнив вычисления
по этой формуле, получим


см/с.

Знак
плюс соответствует случаю, когда
направление скорости совпадает
с положительным направлением оси х,
знак
минус — ког­да
направление скорости совпадает с
отрицательным направлением оси
х.

Смещение при
гармоническом колебании кроме уравнения
(1) может быть определено также уравнением

Повторив
с этим уравнением такое же решение,
получим тот же ответ.

2.
Силу действующую на точку, найдем по
второму закону Нью­тона:

(3)

где а
ускорение
точки, которое получим, взяв производную
по времени
от скорости:


, или

Подставив выражение
ускорения в формулу (3), получим

Отсюда максимальное
значение силы

Подставив
в это уравнение значения величин π,
ν,
т
и
A,
найдем

3.
Полная энергия колеблющейся точки есть
сумма кинетической и
потенциальной энергий, вычисленных для
любого момента вре­мени.

Проще
всего вычислить полную энергию в момент,
когда кинети­ческая
энергия достигает максимального
значения. В этот момент потенциальная
энергия равна нулю. Поэтому полная
энергия E
колеблющейся точки равна максимальной
кинетической энергии

Tmax:

(4)

Максимальную
скорость определим из формулы (2),
положив

:
.
Подставив выражение скорости в фор­-
мулу
(4), найдем

Подставив
значения величин в эту формулу и произведя
вычис­ления, получим

или

мкДж.

Пример
3.

На концах тонкого стержня длиной l
=
1 м и массой m3=400
г
укреплены шарики малых размеров массами
m1=200
г
и
m2=300г.
Стержень
колеблется около горизонтальной оси,
перпен-

дикулярной
стержню и проходящей через его середину
(точка О на рис. 6.2). Определить период Т
колебаний,
совершаемых стержнем.

Решение.
Период колебаний физического маятника,
каким является стержень с шариками,
определяется соотношением


(1)

где
J

момент
инерции маятника относительно оси
колебаний; т
его
масса; lС
расстояние
от центра масс ма­ятника
до оси.

Момент
инерции данного маятника равен сумме
моментов
инерции шариков J1
и
J2
и
стержня J3:


(2)

Принимая
шарики за материальные точки, вы­разим
моменты их инерции:

Так
как ось проходит через середину стержня,
то
его
момент инерции относительно этой оси
J3=
= .
Подставив
полученные выражения
J1
,
J2
и

J3
в формулу (2), найдем общий момент инерции
фи-­
зического маятника:

Произведя
вычисления по этой формуле, найдем

Рис.
6.2 Масса маятника состоит из масс шариков
и массы
стержня:

Расстояние
lС
центра
масс маятника от оси колебаний найдем,
исходя
из следующих соображений. Если ось х
направить
вдоль стержня
и начало координат совместить с точкой
О,
то
искомое рас­стояние
l
равно координате центра масс маятника,
т. е.


, или

Подставив
значения величин m1,
m2,
m,
l
и произведя вычисле­ния,
найдем


см.

Произведя
расчеты по формуле (1), получим период
колебаний физического
маятника:

Пример
4.
Физический
маятник представляет собой стержень
длиной
l=
1 м и массой 3т1
с
прикрепленным
к одному из его концов
обручем
диаметром
и
массой т1.
Горизонтальная
ось Oz

маятника
проходит через середину стержня
перпендикулярно ему (рис. 6.3). Определить
период Т
колебаний
такого маятника.

Решение.
Период
колебаний физического маятника
опреде­ляется
по формуле


(1)

где
J

момент
инерции маятника относительно оси
колебаний; т
его
масса; lC
расстояние
от центра масс
маятника до оси колебаний.

Момент
инерции маятника равен сумме мо­ментов
инерции стержня J1
и
обруча J2:


(2).

Момент
инерции стержня относительно
оси,
перпендикулярной
стержню и проходящей
через
его центр масс, определяется по форму-­
ле
.
В данном случае т=3т1
и

Момент
инерции обруча найдем, восполь-­
зовавшись
теоремой Штейнера
,
где
J

момент
инерции относительно про-­
извольной
оси;
J0

момент
инерции отно-­
сительно
оси, проходящей через центр масс
параллельно
заданной оси; а
расстояние
между
указанными осями. Применив эту фор-­
мулу
к обручу, получим

Рис. 6.3

Подставив
выражения J1
и
J2
в форму­лу
(2), найдем момент инерции маятника
относительно оси вра­щения:

Расстояние
lС
от
оси маятника до его центра масс равно

Подставив
в формулу (1) выражения J,
lс
и массы маятника

, найдем период его колебаний:

После
вычисления по этой формуле получим
T=2,17
с.

Пример
5.
Складываются
два колебания одинакового направле-­
ния,
выражаемых уравнениями
;
х2=
=,
где А1=1
см,
A2=2
см,

с,

с, ω
=
=.
1. Определить начальные фазы φ1
и φ
2

составляющих коле-

баний.
2. Найти амплитуду А
и
начальную фазу φ
результирующего колебания.
Написать уравнение результирующего
колебания.

Решение.
1. Уравнение гармонического колебания
имеет вид


(1)

Преобразуем
уравнения, заданные в условии задачи,
к такому же
виду:


(2)

Из
сравнения выражений (2) с равенством (1)
находим начальные фазы
первого и второго колебаний:


рад и

рад.

2.
Для определения амплитуды А
результирую­щего
колебания удобно воспользоваться
векторной диаграммой,
представленной на рис.
6.4.
Согласно теореме косинусов, получим


(3)

где

— разность фаз составляющих колебаний.
Так
как
,
то, подставляя найденные
значения
φ2
и φ1
получим

рад.

Рис. 6.4

Подставим
значения А1
,
А
2
и

в формулу (3)
и
произведем вычисления:

A=2,65
см.

Тангенс
начальной фазы φ
результирующего колебания опреде-­
лим
непосредственно из рис. 6.4:

, отку-­
да
начальная фаза

Подставим
значения А1,
А2,
φ
1
,
φ
2

и произведем вычисления:


= рад.

Так
как угловые частоты складываемых
колебаний одинаковы,
то
результирующее колебание будет иметь
ту же частоту ω.
Это
позволяет
написать уравнение результирующего
колебания в виде

, где A=2,65
см,
,

рад.

Пример
6.
Материальная
точка участвует одновременно в двух
взаимно перпендикулярных гармонических
колебаниях, уравне­ния
которых


(1).


(2)

где
a1=1
см,
A2=2
см,
.
Найти уравнение траектории точ-­
ки.
Построить траекторию с соблюдением
масштаба и указать
направление
движения точки.

Решение.
Чтобы
найти уравнение траектории точки,
ис­ключим
время t
из
заданных уравнений (1) и (2). Для этого
восполь-

зуемся
формулой
.
В данном случае

, поэтому

Так
как согласно формуле (1)
,
то уравнение траекто-­
рии


(3)

Полученное
выражение представляет собой уравнение
параболы, ось которой совпадает с осью
Ох.
Из
уравнений (1) и (2) следует, что смещение
точки по осям координат ограничено и
заключено в пределах от —1 до +1 см по
оси Ох
и
от —2 до +2 см по оси Оу.

Для
построения траектории найдем по уравнению
(3) значения у,
соответствующие
ряду значений х,
удовлетворяющих
условию

см, и составим таблицу:

X
,
СМ

-1

—0,75

—0,5

0

+0,5

+ 1

у,
см

0

±0,707

±1

±1,41

±1,73

±2

Начертив
координатные оси и выбрав масштаб,
нанесем на пло­скость
хОу
найденные
точки. Соединив их плавной кривой,
получим траекторию точки, совершающей
колеба­ния
в соответствии с уравнениями движе­ния
(1) и (2) (рис. 6.5).

Рис. 6.5

Для
того чтобы указать направление движения
точки, проследим за тем, как из­меняется
ее положение с течением времени. В
начальный момент t=0
координаты точ­ки
равны x(0)=1
см и y(0)=2
см. В по­следующий
момент времени, например при t1=l
с,
координаты точек изменятся и ста­нут
равными х
(1)=
—1
см, y(t)=0.
Зная
положения
точек в начальный и последую­щий
(близкий) моменты времени, можно указать
направление движения точки по траектории.
На рис. 6.5 это направление движения
указано стрелкой (от точки А
к
началу
координат). После того как в мо­мент
t2
= 2 с колеблющаяся точка достиг­нет
точки D,
она
будет двигаться в обратном направлении.

Задачи

Кинематика
гармонических колебаний

6.1.
Уравнение колебаний точки имеет вид
,
где
ω=π
с-1,
τ=0,2
с. Определить период Т
и
начальную фазу φ
колебаний.

6.2.
Определить
период Т,
частоту
v
и
начальную фазу φ
коле­баний,
заданных уравнением
,
где ω=2,5π
с-1,
τ=0,4
с.

6.3.
Точка
совершает колебания по закону
,
где
A=4
см. Определить начальную фазу φ,
если: 1) х(0)=2
см
и

;
2)
х(0)
=см
и
;
3) х(0)=2см
и
;
4)
х(0)=
и
.
Построить векторную диаграмму
для
момента
t=0.

6.4.
Точка
совершает колебания .по закону
,
где
A=4
см. Определить начальную фазу φ,
если: 1) х(0)=2
см
и

; 2) x(0)=
см и
;
3) х(0)=
см и
;
4)
x(0)=см
и
.
Построить векторную диаграмму для
момента
t=0.

Механические колебания и волны

Механические колебания – периодически повторяющееся перемещение материальной точки, при котором она движется по какой-либо траектории поочередно в двух противоположных направлениях относительно положения устойчивого равновесия.

Отличительными признаками колебательного движения являются:

  • повторяемость движения;
  • возвратность движения.

Для существования механических колебаний необходимо:

  • наличие возвращающей силы – силы, стремящейся вернуть тело в положение равновесия (при малых смещениях от положения равновесия);
  • наличие малого трения в системе.

Механические волны – это процесс распространения колебаний в упругой среде.

Содержание

    • Виды волн
  • Гармонические колебания
  • Амплитуда и фаза колебаний
  • Период колебаний
  • Частота колебаний
  • Свободные колебания (математический и пружинный маятники)
  • Вынужденные колебания
  • Резонанс
  • Длина волны
  • Звук
  • Основные формулы по теме «Механические колебания и волны»

Виды волн

  • Поперечная – это волна, в которой колебание частиц среды происходит перпендикулярно направлению распространения волны.

Поперечная волна представляет собой чередование горбов и впадин.
Поперечные волны возникают вследствие сдвига слоев среды относительно друг друга, поэтому они распространяются в твердых телах.

  • Продольная – это волна, в которой колебание частиц среды происходит в направлении распространения волны.

Продольная волна представляет собой чередование областей уплотнения и разряжения.
Продольные волны возникают из-за сжатия и разряжения среды, поэтому они могут возникать в жидких, твердых и газообразных средах.

Важно!
Механические волны не переносят вещество среды. Они переносят энергию, которая складывается из кинетической энергии движения частиц среды и потенциальной энергии ее упругой деформации.

Гармонические колебания

Гармонические колебания – простейшие периодические колебания, при которых координата тела меняется по закону синуса или косинуса:

где ​( x )​ – координата тела – смещение тела от положения равновесия в данный момент времени; ​( A )​ – амплитуда колебаний; ​( omega t+varphi_0 )​ – фаза колебаний; ​( omega )​ – циклическая частота; ​( varphi_0 )​ – начальная фаза.

Если в начальный момент времени тело проходит положение равновесия, то колебания являются синусоидальными.

Если в начальный момент времени смещение тела совпадает с максимальным отклонением от положения равновесия, то колебания являются косинусоидальными.

Скорость гармонических колебаний
Скорость гармонических колебаний есть первая производная координаты по времени:

где ​( v )​ – мгновенное значение скорости, т. е. скорость в данный момент времени.

Амплитуда скорости – максимальное значение скорости колебаний, это величина, стоящая перед знаком синуса или косинуса:

Ускорение гармонических колебаний
Ускорение гармонических колебаний есть первая производная скорости по времени:

где ​( a )​ – мгновенное значение ускорения, т. е. ускорение в данный момент времени.

Амплитуда ускорения – максимальное значение ускорения, это величина, стоящая перед знаком синуса или косинуса:

Если тело совершает гармонические колебания, то сила, действующая на тело, тоже изменяется по гармоническому закону:

где ​( F )​ – мгновенное значение силы, действующей на тело, т. е. сила в данный момент времени.

Амплитуда силы – максимальное значение силы, величина, стоящая перед знаком синуса или косинуса:

Тело, совершающее гармонические колебания, обладает кинетической или потенциальной энергией:

где ​( W_k )​ – мгновенное значение кинетической энергии, т. е. кинетическая энергия в данный момент времени.

Амплитуда кинетической энергии – максимальное значение кинетической энергии, величина, стоящая перед знаком синуса или косинуса:

При гармонических колебаниях каждую четверть периода происходит переход потенциальной энергии в кинетическую и обратно.
В положении равновесия:

  • потенциальная энергия равна нулю;
  • кинетическая энергия максимальна.

При максимальном отклонении от положения равновесия:

  • кинетическая энергия равна нулю;
  • потенциальная энергия максимальна.

Полная механическая энергия гармонических колебаний
При гармонических колебаниях полная механическая энергия равна сумме кинетической и потенциальной энергий в данный момент времени:

Важно!
Следует помнить, что период колебаний кинетической и потенциальной энергий в 2 раза меньше, чем период колебаний координаты, скорости, ускорения и силы. А частота колебаний кинетической и потенциальной энергий в 2 раза больше, чем частота колебаний координаты, скорости, ускорения и силы.

Графики зависимости кинетической, потенциальной и полной энергий всегда лежат выше оси времени.

Если сила сопротивления отсутствует, то полная энергия сохраняется. График зависимости полной энергии от времени есть прямая, параллельная оси времени (в отсутствие сил трения).

Амплитуда и фаза колебаний

Амплитуда колебаний – модуль наибольшего смещения тела от положения равновесия.
Обозначение – ​( A, (X_{max}) )​, единицы измерения – м.

Фаза колебаний – это величина, которая определяет состояние колебательной системы в любой момент времени.
Обозначение – ​( varphi )​, единицы измерения – рад (радиан).

Фаза колебаний – это величина, стоящая под знаком синуса или косинуса. Она показывает, какая часть периода прошла от начала колебаний.
Фаза гармонических колебаний в процессе колебаний изменяется.
( varphi_0 )​ – начальная фаза колебаний.
Начальная фаза колебаний – величина, которая определяет положение тела в начальный момент времени.

Важно!
Путь, пройденный телом за одно полное колебание, равен четырем амплитудам.

Период колебаний

Период колебаний – это время одного полного колебания.
Обозначение – ​( T )​, единицы измерения – с.

Период гармонических колебаний – постоянная величина.

Частота колебаний

Частота колебаний – это число полных колебаний в единицу времени.
Обозначение – ​( nu )​, единицы времени – с-1 или Гц (Герц).

1 Гц – это частота такого колебательного движения, при котором за каждую секунду совершается одно полное колебание:

Период и частота колебаний – взаимно обратные величины:

Циклическая частота – это число колебаний за 2π секунд.
Обозначение – ​( omega )​, единицы измерения – рад/с.

Свободные колебания (математический и пружинный маятники)

Свободные колебания – колебания, которые совершает тело под действием внутренних сил системы за счет начального запаса энергии после того как его вывели из положения устойчивого равновесия.

Условия возникновения свободных колебаний:

  • при выведении тела из положения равновесия должна возникнуть сила, стремящаяся вернуть его в положение равновесия;
  • силы трения в системе должны быть достаточно малы. При наличии сил трения свободные колебания будут затухающими.

При наличии сил трения свободные колебания будут затухающими.
Затухающие колебания – это колебания, амплитуда которых с течением времени уменьшается.

Математический маятник – это материальная точка, подвешенная на невесомой нерастяжимой нити.

Период колебаний математического маятника:

Частота колебаний математического маятника:

Циклическая частота колебаний математического маятника:

Максимальное значение скорости колебаний математического маятника:

Максимальное значение ускорения колебаний математического маятника:

Период свободных колебаний математического маятника, движущегося вверх с ускорением или вниз с замедлением:

Период свободных колебаний математического маятника, движущегося вниз с ускорением или вверх с замедлением:

Период свободных колебаний математического маятника, горизонтально с ускорением или замедлением:

Мгновенное значение потенциальной энергии математического маятника, поднявшегося в процессе колебаний на высоту ​( h )​, определяется по формуле:

где ​( l )​ – длина нити, ​( alpha )​ – угол отклонения от вертикали.

Пружинный маятник – это тело, подвешенное на пружине и совершающее колебания вдоль вертикальной или горизонтальной оси под действием силы упругости пружины.

Период колебаний пружинного маятника:

Частота колебаний пружинного маятника:

Циклическая частота колебаний пружинного маятника:

Максимальное значение скорости колебаний пружинного маятника:

Максимальное значение ускорения колебаний пружинного маятника:

Мгновенную потенциальную энергию пружинного маятника можно найти по формуле:

Амплитуда потенциальной энергии – максимальное значение потенциальной энергии, величина, стоящая перед знаком синуса или косинуса:

Важно!
Если маятник не является ни пружинным, ни математическим (физический маятник), то его циклическую частоту, период и частоту колебаний по формулам, применимым к математическому и пружинному маятнику, рассчитать нельзя. В данном случае эти величины рассчитываются из формулы силы, действующей на маятник, или из формул энергий.

Вынужденные колебания

Вынужденные колебания – это колебания, происходящие под действием внешней периодически изменяющейся силы.

Вынужденные колебания, происходящие под действием гармонически изменяющейся внешней силы, тоже являются гармоническими и незатухающими. Их частота равна частоте внешней силы и называется частотой вынужденных колебаний.

Резонанс

Резонанс – явление резкого возрастания амплитуды колебаний, которое происходит при совпадении частоты вынуждающей силы и собственной частоты колебаний тела.

Условие резонанса:

( v_0 )​ – собственная частота колебаний маятника.

На рисунке изображены резонансные кривые для сред с разным трением. Чем меньше трение, тем выше и острее резонансная кривая.

Явление резонанса учитывается при периодически изменяющихся нагрузках в машинах и различных сооружениях.
Также резонанс используется в акустике, радиотехнике и т. д.

Длина волны

Длина волны – это расстояние, на которое волна распространяется за один период, т. е. это кратчайшее расстояние между двумя точками среды, колеблющимися в одинаковых фазах.
Обозначение – ​( lambda )​, единицы измерения – м.

Расстояние между соседними гребнями или впадинами в поперечной волне и между соседними сгущениями или разряжениями в продольной волне равно длине волны.

Скорость распространения волны – это скорость перемещения горбов и впадин в поперечной волне и сгущений или разряжений в продольной волне.

Звук

Звук – это колебания упругой среды, воспринимаемые органом слуха.

Условия, необходимые для возникновения и ощущения звука:

  • наличие источника звука;
  • наличие упругой среды между источником и приемником звука;
  • наличие приемника звука; • частота колебаний должна лежать в звуковом диапазоне;
  • мощность звука должна быть достаточной для восприятия.

Звуковые волны – это упругие волны, вызывающие у человека ощущение звука, представляющие собой зоны сжатия и разряжения, передающиеся на расстояние с течением времени.

Классификация звуковых волн:

  • инфразвук (​( nu )​ < 16 Гц);
  • звуковой диапазон (16 Гц < ( nu ) < 20 000 Гц);
  • ультразвук (( nu ) > 20 000 Гц).

Скорость звука – это скорость распространения фазы колебания, т. е. области сжатия и разряжения среды.

Скорость звука зависит

  • от упругих свойств среды:

в воздухе – 331 м/с, в воде – 1400 м/с, в металле – 5000 м/с;

  • от температуры среды:

в воздухе при температуре 0°С – 331 м/с,
в воздухе при температуре +15°С – 340 м/с.

Характеристики звуковой волны

  • Громкость – это величина, характеризующая слуховые ощущения человека, зависящая от амплитуды колебаний в звуковой волне. Единицы измерения – дБ (децибел).
  • Высота тона – это величина, характеризующая слуховые ощущения человека, зависящая от частоты колебаний в звуковой волне. Чем больше частота, тем выше звук. Чем меньше частота, тем ниже звук.
  • Тембр – это окраска звука.

Музыкальный звук – это звук, издаваемый гармонически колеблющимся телом. Каждому музыкальному тону соответствует определенная длина и частота звуковой волны.
Шум – хаотическая смесь тонов.

Основные формулы по теме «Механические колебания и волны»

Механические колебания и волны

2.9 (58.68%) 152 votes

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Stalker sniper как найти артефакт шапокляк
  • Как найти центростремительное ускорение земли
  • Как найти зиму в майнкрафте
  • Как найду обязательно сообщу
  • Как найти номер порта в телефоне

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии