Как найти максимальную эдс в катушке

Магнитный поток, пронизывающий катушку, равен
[Phi =Bcdot Scdot cos alpha ,]
где по условию катушка вращается, поэтому угол α = ω∙t, ω = 2π/T.
По закону электромагнитной индукции ЭДС индукции равна
[e=-Phi ‘cdot N=-Ncdot left(Bcdot Scdot cos omega cdot tright)^{{‘} } =Ncdot Bcdot Scdot omega cdot sin omega cdot t.]
Максимальная ЭДС — это величина, стоящая перед синусом, т.е.
[E_{i, max } =Ncdot Bcdot Scdot omega =frac{2pi cdot Ncdot Bcdot S}{T} ,]
Ei max = 0,25 В.

58 / 58 / 29

Регистрация: 21.09.2009

Сообщений: 313

Записей в блоге: 1

1

Найти максимальную ЭДС индукции в катушке.

11.05.2012, 21:09. Показов 11377. Ответов 4


Студворк — интернет-сервис помощи студентам

Состоящая из N = 200 витков катушка равномерно вращается в однородном магнитном поле с индукцией В = 0,1 Тл. Ось вращения перпендикулярна к оси катушки и к направлению линий магнитной индукции. Найти максимальную ЭДС индукции в катушке, если ее период обращения T = 0,20 с и площадь поперечного сечения S = 4,0 см2.



0



4444 / 2448 / 227

Регистрация: 20.08.2011

Сообщений: 3,108

12.05.2012, 01:19

2

Цитата
Сообщение от KillJoy
Посмотреть сообщение

.. Найти максимальную ЭДС индукции в катушке..
.. При какой частоте вращения n на концах стержня .. U = 0,10 В?

На будущее: одна тема — одна задача. Не нарушайте правила. Иначе буду закрывать темы!

Катушка: Bn=Bcos(wt). Поток и ЭДС — сами.
Стержень: найти напряженность из равновесия эл. и магн. сил eE=ewrB, и напряжение — через интеграл, либо выразить площадь, заметаемую в ед. времени, через n: dS/dt=пl2n, ЭДС = BdS/dt. В обоих случаях U=wBl2/2.



0



58 / 58 / 29

Регистрация: 21.09.2009

Сообщений: 313

Записей в блоге: 1

12.05.2012, 08:11

 [ТС]

3

1)Находим магнитный поток через один виток катушки : Ф = B*S*cos(a), где a = 10pi*t.
2)Тогда магнитный поток через всю катушку равен Ф = 200*B*S*cos(10*pi*t)
3)По закону Фарадея E = — dФ/dt = 200*B*S*10pi*sin(10pi*t)= 0.25*sin(10pi*t)
Что подставлять вместо t ?



0



4444 / 2448 / 227

Регистрация: 20.08.2011

Сообщений: 3,108

13.05.2012, 18:51

4

Цитата
Сообщение от KillJoy
Посмотреть сообщение

1).. поток через всю катушку.. 2) .. Что подставлять вместо t ?

1) Что через один виток, что через всю катушку поток один и тот же. Потоки не складываются. Складываются ЭДС.
2) «Найти максимальную ЭДС»



0



58 / 58 / 29

Регистрация: 21.09.2009

Сообщений: 313

Записей в блоге: 1

18.05.2012, 20:17

 [ТС]

5

У меня нет никаких идей по поводу решения этой задачи



0



IT_Exp

Эксперт

87844 / 49110 / 22898

Регистрация: 17.06.2006

Сообщений: 92,604

18.05.2012, 20:17

5

Если
в контуре с индуктивностью L
течёт ток I,
то в момент размыкания цепи возникает
индукционный ток и им совершается
работа. Эта работа совершается за счёт
энергии исчезнувшего при размыкании
цепи магнитного поля. На основании
закона сохранения и превращения энергию
магнитного поля превращается главным
образом в энергию электрического поля,
за счёт которой происходит нагревание
проводников. Работа может быть определена
из соотношения

dA=εсмIdt

Так
как
,
то

dA=-LIdI

Уменьшение
энергии магнитного поля равно работе
тока, поэтому

(16.18)

Формула
справедлива для любого контура и
показывает, что энергия магнитного поля
зависит от индуктивности контура и силы
тока, протекающего по нему.

Рассчитаем
энергию однородного магнитного поля
длинного соленоида, индуктивность
которого определяется по формуле L
= μμ0n2V.
B
этом случае формула энергии примет вид

Учитывая,
что напряжённость поля внутри бесконечно
длинного соленоида Н=In,
получаем

(16.19)

Выразим
энергию через индукцию магнитного поля
B=
μμ0H:

(16.20)

Или

(16.21)

Вследствие
того, что магнитное поле соленоида
однородно и локализовано внутри
соленоида, энергия распределена по
объёму соленоида с постоянной плотностью

(16.22)

Учитывая
последние три формулы, получаем



Учитывая
правило Ленца, можно заметить, что
явление самоиндукции аналогично
проявлению инертности тел в механике.
Так, вследствие инертности тело не
мгновенно приобретает определённую
скорость, а постепенно. Так же постепенно
происходит и его торможение. То же самое,
как мы видели, происходит и с силой тока
при самоиндукции. Эту аналогию можно
провести и дальше.


и

эти
уравнения эквивалентны.

т.е.
m
~L
, υ~I

Эквивалентны
и формулы

Примеры решения задач

Пример.
В магнитном поле, изменяющемся по закону
B=B0cosωt
(B0=5мТл,

ω=5с-1),
помещён круговой проволочный виток
радиусом r=30см,
причём нормаль к витку образует с
направлением поля угол α=30º. Определите
ЭДС индукции, возникающую в витке в
момент времени t=10с.

Дано:
B=B0cosωt;
B0=5мТл=5∙10-3
Тл;
ω=5с-1;
r=30см=0,3
м;
α=30º; t=10 с.

Найти:
εi.

Решение:
Согласно
закону Фарадея,

,
(1)

Где
магнитный поток, сцепленный с витком
при произвольном его расположении
относительно магнитного поля.

Ф=BScosα.

По
условию задачи B=B0cosωt,
а площадь кольца S=πr2,
поэтому

Ф=πr2
B0cosωt∙cosα.
(2)

Подставив
выражение (2) в формулу (1) и продифференцировав,
получаем искомую ЭДС индукции в заданный
момент времени:

Ответ:
εi=4,69
мВ.

Пример
В
соленоиде длиной ℓ=50см и диаметром
d=6см
сила тока равномерно увеличивается на
0,3А за одну секунду. Определите число
витков соленоида, если сила индукционного
тока в кольце радиусом 3,1 см из медной
проволоки (ρ=17нОм∙м), надетом на катушку,
Iк=0,3
А.

Дано:
ℓ=50см=0,5
м; d=6см=0,06м;
;rк=3,1см=3.1∙10-2м;
ρ=17нОм∙м=17∙10-9
Ом∙м; Iк=0,3
А.

Найти:
N.

Решение.
При изменении силы тока в соленоиде
возникает ЭДС самоиндукции

(1)

где

индуктивность соленоида. Подставив это
выражение в (1)

с
учётом

.

ЭДС
индукции, возникающая в одном кольце,
в N
раз меньше, чем найденное значение ЭДС
самоиндукции в соленоиде, состоящем из
N
витков, т.е.

.
(2)

Согласно
закону Ома, сила индукционного тока в
кольце

,
(3)

где

сопротивление кольца. Поскольку ℓк=πd,
а Sк=πrк2,
выражение (3) примет вид

Подставив
в эту формулу выражение (2), найдём искомое
число витков соленоид

.

Ответ:
N=150

Пример
В
однородном магнитном поле подвижная
сторона (её длина ℓ=20см) прямоугольной
рамки (см. рисунок) перемещается
перпендикулярно линиям магнитной
индукции со скоростью υ=5 м/с. Определите
индукцию В магнитного поля, если
возникающая в рамке ЭДС индукции εi=0,2
В.

Дано:
ℓ=20см=0,2
м; υ=5 м/с; εi=0,2
В.

Найти:
B.

Решение.
При движении в магнитном поле подвижной
стороны рамки поток Ф вектора магнитной
индукции сквозь рамку возрастает, что,
согласно закону Фарадея,

,
(1)

приводит
к возникновению ЭДС индукции.

Поток
вектора магнитной индукции, сцепленный
с рамкой,

Ф=Bℓx.
(2)

Подставив
выражение (2) в формулу (1) и учитывая, что
B
и ℓ — величины постоянные, получаем

откуда
искомая индукция магнитного поля

Ответ:
В=0,2 Тл.

Пример
В
однородном магнитном поле с индукцией
В=0,2 Тл равномерно вращается катушка,
содержащая N=600
витков, с частотой n=6
с-1.
Площадь
S
поперечного сечения катушка 100см2.
Ось вращения перпендикулярна оси катушки
и направлению магнитного поля. Определите
максимальную ЭДС индукции вращающейся
катушки.

Дано:
В=0,2
Тл; N=600;
n=6
с-1;
S=100см2=10-2
м2.

Найти:
i)max.

Решение.
Согласно закону Фарадея,

где
Ф – полный магнитный поток, сцеплённый
со всеми витками катушки. При произвольном
расположении катушки относительно
магнитного поля

Ф=NBScosωt,
(1)

где
круговая частота ω=2πn.
Подставив ω в (1), получим

Ф=NBScos2πnt.

Тогда

εi=-NBS2πn(-sin2πnt)=2πnNBSsin2πnt,

εi=(
εi)max
при
sin2πnt=1, поэтому

i)max=2πnNBS

Ответ:
i)max=45,2
В.

Пример
Однослойная
длинная катушка содержит N=300
витков, плотно прилегающих друг к другу.
Определите индуктивность катушки, если
диаметр проволоки d=0,7
мм (изоляция ничтожной толщины) и она
намотана на картонный цилиндр радиусом
r=1
см. .

Дано:
N=300;
d=0,7
мм=7∙10-4
м; r=1
см=10-2
м.

Найти:
L.

Решение.
Индуктивность катушки

(1)

где
Ф – полный магнитный поток, сцепленный
со всеми витками катушки; I
— сила тока в катушке.

Учитывая,
что полный магнитный поток

Ф=NBS

(N-число
витков катушки; В – магнитная индукция;
S
– площадь поперечного сечения катушки);
магнитная индукция в катушке без
сердечника

0
– магнитная постоянная; ℓ- длина
катушки), длина катушки

ℓ=Nd

(d-диаметр
проволоки; витки вплотную прилегают
друг к другу), площадь поперечного
сечения катушки

S=πr2,

Получим
осле подстановки записанных выражений
в формулу (1) искомую индуктивность
катушки:

Ответ:
L=1,69
мГн.

Пример
Первичная
обмотка понижающего трансформатора с
коэффициентом трансформации k=0,1
включена в сеть с источником переменного
напряжения с ЭДС ε1=220
В. Пренебрегая потерями энергии в
первичной обмотке, определите напряжение
U2
на зажимах вторичной обмотки, если её
сопротивление R2=5
Ом и сила тока в ней I2=2А.

Дано:
k=0,1;
ε1=220
В; R2=5
Ом; I2=2А.

Найти:
U2.

Решение.
В первичной обмотке под действием
переменной ЭДС ε1
возникает переменный ток I1,
создающий в сердечнике трансформатора
переменногый магнитный поток Ф, который
пронизывает вторичную обмотку. Согласно
закону Ома, для первичной обмотки

где
R1
– сопротивление первичной обмотки.
Падение напряжения I1R1
при быстропеременных полях мало по
сравнению с ε1
и ε2.
Тогда можем записать:

(1)

ЭДС
взаимной индукции, возникающая во
вторичной обмотке,

(2)

Из
выражений (1) и (2) получаем

,

где

коэффициент трансформации, а знак «-»
показывает, что ЭДС в первичной и
вторичной обмотках противоположны по
фазе. Следовательно, ЭДС во вторичной
обмотке

ε2=k
ε2.

Напряжение
на зажимах вторичной обмотки

U2=
ε2-I2R2=
1-I2R2.

Ответ:
U2=12
В.

Пример
Соленоид
без сердечника с однослойной обмоткой
из проволоки диаметром d=0,4
мм имеет длину ℓ=0.5 м и поперечное сечение
S=60см2.
За какое время при напряжении U=10
В и силе тока I=1,5
А в обмотке выделится количество теплоты,
равное энергии поля внутри соленоида?
Поле считать однородным.

Дано:
d=0,4
мм=0,4∙10-4
м; ℓ=0,5 м; S=60см2=6∙10-3
м2;
I=1,5А;
U=10В;
Q=W.

Найти:
t.

Решение.
При прохождении тока I
при напряжении U
в обмотке за время t
выделяется теплота

Q=IUt.
(1)

Энергия
поля внутри соленоида

(2)

где
(N
– общее число витков соленоида). Если
витки вплотную прилегают друг к другу,
то ℓ=Nd,
откуда
.
Подставив выражение для В иN
в
(2), получаем

.
(3)

Согласно
условию задачи, Q=W.
Приравняв выражение (1) и (3),найдём искомое
время:

Ответ:
t
=1,77 мс.

Пример
Катушка
без сердечника длиной ℓ=50 см содержит
N=200
витков. По катушке течёт ток I=1А.
Определите объёмную плотность энергии
магнитного поля внутри катушки..

Дано:
ℓ=50
см=0,5
м;
N=200; I=1 А.

Найти:
ω.

Решение.
Объёмная плотность энергии магнитного
поля (энергия единицы объёма)

,
(1)

где

энергия магнитного поля (L
— индуктивность катушки); V=Sℓ-
объём катушки (S
— площадь катушки; ℓ- длина катушки).

Магнитная
индукция поля внутри соленоида с
сердечником с магнитной проницаемостью
μ равна

.

Полный
магнитный поток, сцепленный со всеми
витками соленоида,

.

Учитывая,
что Ф=LI,
получаем формулу для индуктивности
соленоида:

(2)

Подставив
выражение (2) в формулу (1) с учётом того,
что
,
найдём искомую объёмную плотность
энергии магнитного поля внутри катушки:

Ответ:
ω=0,1
Дж/м3.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Самоиндукция

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: самоиндукция, индуктивность, энергия магнитного поля.

Самоиндукция является частным случаем электромагнитной индукции. Оказывается, что электрический ток в контуре, меняющийся со временем, определённым образом воздействует сам на себя.

Ситуация 1 .Предположим, что сила тока в контуре возрастает. Пусть ток течёт против часовой стрелки; тогда магнитное поле этого тока направлено вверх и увеличивается (рис. 1).

Рис. 1. Вихревое поле препятствует увеличению тока

Таким образом, наш контур оказывается в переменном магнитном поле своего собственного тока. Магнитное поле в данном случае возрастает (вместе с током) и потому порождает вихревое электрическое поле, линии которого направлены по часовой стрелке в соответствии с правилом Ленца.

Как видим, вихревое электрическое поле направлено против тока, препятствуя его возрастанию; оно как бы «тормозит» ток. Поэтому при замыкании любой цепи ток устанавливается не мгновенно — требуется некоторое время, чтобы преодолеть тормозящее действие возникающего вихревого электрического поля.

Ситуация 2 . Предположим теперь, что сила тока в контуре уменьшается. Магнитное поле тока также убывает и порождает вихревое электрическое поле, направленное против часовой стрелки (рис. 2).

Рис. 2. Вихревое поле поддерживает убывающий ток

Теперь вихревое электрическое поле направлено в ту же сторону, что и ток; оно поддерживает ток, препятствуя его убыванию.

Как мы знаем, работа вихревого электрического поля по перемещению единичного положительного заряда вокруг контура — это ЭДС индукции. Поэтому мы можем дать такое определение.

Явление самоиндукции состоит в том, что при изменении силы тока в контуре возникает ЭДС индукции в этом же самом контуре.

При возрастании силы тока (в ситуации 1) вихревое электрическое поле совершает отрицательную работу, тормозя свободные заряды. Стало быть, ЭДС индукции в этом случае отрицательна.

При убывании силы тока (в ситуации 2) вихревое электрическое поле совершает положительную работу, «подталкивая» свободные заряды и препятствуя убыванию тока. ЭДС индукции в этом случае также положительна (нетрудно убедиться в том, что знак ЭДС индукции, определённый таким образом, согласуется с правилом выбора знака для ЭДС индукции, сформулированным в листке «Электромагнитная индукция»).

Индуктивность

Мы знаем, что магнитный поток, пронизывающий контур, пропорционален индукции магнитного поля: Phi sim B. Кроме того, опыт показывает, что величина индукции магнитного поля контура с током пропорциональна силе тока: B sim I. Стало быть, магнитный поток через поверхность контура, создаваемый магнитным полем тока в этом самом контуре, пропорционален силе тока: Phi sim I.

Коэффициент пропорциональности обозначается L и называется индуктивностью контура:

Phi = LI. (1)

Индуктивность зависит от геометрических свойств контура (формы и размеров), а также от магнитных свойств среды, в которую помещён контур (Улавливаете аналогию? Ёмкость конденсатора зависит от его геометрических характеристик, а также от диэлектрической проницаемости среды между обкладками конденсатора). Единицей измерения индуктивности служит генри (Гн).

Допустим, что форма контура, его размеры и магнитные свойства среды остаются постоянными (например, наш контур — это катушка, в которую не вводится сердечник); изменение магнитного потока через контур вызвано только изменением силы тока. Тогда Delta Phi = L Delta L, и закон Фарадея mathcal E_i = -Delta Phi / Delta t приобретает вид:

mathcal E_i = -L frac{displaystyle Delta I}{displaystyle Delta t vphantom{1^a}} = -LI. (2)

Благодаря знаку «минус» в (2) ЭДС индукции оказывается отрицательной при возрастании тока и положительной при убывании тока, что мы и видели выше.

Рассмотрим два опыта, демонстрирующих явление самоиндукции при замыкании и размыкании цепи.

Рис. 3. Самоиндукция при замыкании цепи

В первом опыте к батарейке подключены параллельно две лампочки, причём вторая — последовательно с катушкой достаточно большой индуктивности L (рис. 3).

Ключ вначале разомкнут.

При замыкании ключа лампочка 1 загорается сразу, а лампочка 2 — постепенно. Дело в том, что в катушке возникает ЭДС индукции, препятствующая возрастанию тока. Поэтому максимальное значение тока во второй лампочке устанавливается лишь спустя некоторое заметное время после вспыхивания первой лампочки.

Это время запаздывания тем больше, чем больше индуктивность катушки. Объяснение простое: ведь тогда больше будет напряжённость вихревого электрического поля, возникающего в катушке, и потому батарейке придётся совершить большую работу по преодолению вихревого поля, тормозящего заряженные частицы.

Во втором опыте к батарейке подключены параллельно катушка и лампочка (рис. 4). Сопротивление катушки много меньше сопротивления лампочки.

Рис. 4. Самоиндукция при размыкании цепи

Ключ вначале замкнут. Лампочка не горит — напряжение на ней близко к нулю из-за малости сопротивления катушки. Почти весь ток, идущий в неразветвлённой цепи, проходит через катушку.

При размыкании ключа лампочка ярко вспыхивает! Почему? Ток через катушку начинает резко убывать, и возникает значительная ЭДС индукции, поддерживающая убывающий ток (ведь ЭДС индукции, как видно из (2), пропорциональна скорости изменения тока).

Иными словами, при размыкании ключа в катушке появляется весьма большое вихревое электрическое поле, разгоняющее свободные заряды. Под действием этого вихревого поля через лампочку пробегает импульс тока, и мы видим яркую вспышку. При достаточно большой индуктивности катушки ЭДС индукции может стать существенно больше ЭДС батарейки, и лампочка вовсе перегорит.

Лампочку-то, может, и не жалко, но в промышленности и энергетике данный эффект является серьёзной проблемой. Так как при размыкании цепи ток начинает уменьшаться очень быстро, возникающая в цепи ЭДС индукции может значительно превышать номинальные напряжения и достигать опасно больших величин. Поэтому в агрегатах, потребляющих большой ток, предусмотрены специальные аппаратные меры предосторожности (например, масляные выключатели на электростанциях), препятствующие моментальному размыканию цепи.

Электромеханическая аналогия

Нетрудно заметить определённую аналогию между индуктивностью L в электродинамике и массой m в механике.

1. Чтобы разогнать тело до заданной скорости, требуется некоторое время — мгновенно изменить скорость тела не получается. При неизменной силе, приложенной к телу, это время тем больше, чем больше масса m тела.

Чтобы ток в катушке достиг своего максимального значения, требуется некоторое время; мгновенно ток не устанавливается. Время установления тока тем больше, чем больше индуктивность L катушки.

2. Если тело налетает на неподвижную стену, то скорость тела уменьшается очень быстро. Стена принимает на себя удар, и его разрушительное действие тем сильнее, чем больше масса тела.

При размыкании цепи с катушкой ток уменьшается очень быстро. Цепь принимает на себя «удар» в виде вихревого электрического поля, порождаемого убывающим магнитным полем тока, и этот «удар» тем сильнее, чем больше индуктивность катушки. ЭДС индукции может достичь столь больших величин, что пробой воздушного промежутка выведет из строя оборудование.

На самом деле эти электромеханические аналогии простираются довольно далеко; они касаются не только индуктивности и массы, но и других величин, и оказываются весьма полезными на практике. Мы ещё поговорим об этом в листке про электромагнитные колебания.

Энергия магнитного поля

Вспомним второй опыт с лампочкой, которая не горит при замкнутом ключе и ярко вспыхивает при размыкании цепи. Мы непосредственно наблюдаем, что после размыкания ключа в лампочке выделяется энергия. Но откуда эта энергия берётся?

Берётся она, ясное дело, из катушки — больше неоткуда. Но что за энергия была запасена в катушке и как вычислить эту энергию? Чтобы понять это, продолжим нашу электромеханическую аналогию между индуктивностью и массой.

Чтобы разогнать тело массы m из состояния покоя до скорости v, внешняя сила должна совершить работу A. Тело приобретает кинетическую энергию, которая равна затраченной работе: K=A=mv^2/2.

Чтобы после замыкания цепи ток в катушке индуктивности L достиг величины I, источник тока должен совершить работу по преодолению вихревого электрического поля, направленного против тока. Работа источника идёт на создание тока и превращается в энергию магнитного поля созданного тока. Эта энергия запасается в катушке; именно эта энергия и выделяется потом в лампочке после размыкания ключа (во втором опыте).

Индуктивность L служит аналогом массы m; сила тока I является очевидным аналогом скорости v. Поэтому естественно предположить, что для энергии магнитного поля катушки может иметь место формула, аналогичная выражению для кинетической энергии:

W = frac{displaystyle LI^2}{displaystyle 2 vphantom{1^a}}. (3)

(тем более, что правая часть данной формулы имеет размерность энергии — проверьте!).

Формула (3) действительно оказывается справедливой. Уметь её выводить пока не обязательно, но если вы знаете, что такое интеграл, то вам не составит труда понять следующие рассуждения.

Пусть в данный момент сила тока через катушку равна I. Возьмём малый промежуток времени dt. В течение этого промежутка приращение силы тока равно dI; величина dt считается настолько малой, что dI много меньше, чем I.

За время dt по цепи проходит заряд dq=Idt. Вихревое электрическое поле совершает при этом отрицательную работу:

dA_B = mathcal E_i dq = mathcal E_i Idt = -L frac{displaystyle dI}{displaystyle dt vphantom{1^a}}Idt=-LIdI.

Источник тока совершает такую же по модулю положительную работу dA (сопротивлением катушки, напомним, мы пренебрегаем, так что вся работа источника совершается против вихревого поля):

dA = -dA_B = LIdI.

Интегрируя это от нуля до I, найдем работу источника A, которая затрачивается на создание тока I:

A = int_{0}^{I}LIdI=frac{displaystyle LI^2}{displaystyle 2 vphantom{1^a}}.

Эта работа превращается в энергию W магнитного поля созданного тока, и мы приходим к формуле (3).

Разберем задачи ЕГЭ по физике по темам: «Самоиндукция», «Магнитный поток», «Индуктивность», «Электромагнитная индукция».

Задача 1. На катушке сопротивлением 8,2 Ом и индуктивностью 25 мГн поддерживается постоянное напряжение 55 В. Сколько энергии выделится при размыкании цепи? Какая средняя ЭДС самоиндукции появится при этом в катушке, если энергия будет выделяться в течение 12 мс?

Дано:

R = 8,2 Ом;
L= 25 мГн =25cdot 10^{-3} Гн;
t = 12 мс = 12;

Найти:
Wм — ? Eis — ?

Решение:

Решение любой задачи по физике должно начинаться с создания модели, которая поясняет ситуацию, описанную в данной задачи. В качестве модели может выступать чертеж, пояснительный рисунок, электрическая схема.

Для этой задачи необходимо начертить электрическую схему.

На схеме изображены катушка индуктивности, источник тока, поддерживающий на ней постоянное напряжение, ключ.

При замкнутом ключе через катушку протекает постоянный электрический ток, величину которого можно рассчитать, используя закон Ома для участка цепи. Катушка аналогична резистору, подключенному в эту цепь.

displaystyle I=frac{U}{R}, I=frac{55}{8,2}approx 6,7(A).

Энергия магнитного поля рассчитывается по формуле:

displaystyle W_{M}=frac{Li^{2}}{2}, W_{M}=frac{25cdot 10^{-3}cdot 6,7^{2}}{2}approx 0,56 (Дж).

Стоит обратить внимание, что эта формула аналогична формуле кинетической энергии в механике: displaystyle E_{K}=frac{mv^{2}}{2}.

При размыкании ключа, через катушку начинает протекать уже переменный ток. Поэтому магнитный поток, пронизывающий катушку, меняется. В самой катушке возникает ЭДС индукции, так как в ней течёт переменный ток. Тем самым, возникает явление самоиндукции.

Используя закон электромагнитной индукции в виде displaystyle mathcal E _{is}=-Lfrac{Delta I}{Delta t}, приходим к расчету второй неизвестной величины этой задачи:

displaystyle mathcal E _{is}=25cdot 10^{-3}frac{6,7}{12cdot 10^{-3}}approx 14 (B).

В этих расчетах мы не учитывали знак (-), который указан в законе электромагнитной индукции. Смысл этого знака заключен в учёте правила Ленца, определяющего направление индукционного тока. Но так как о направлении индукционного тока речь в задаче не идет, то в расчетах именно получено значение модуля ЭДС самоиндукции.

Ответ: 0,56 Дж, 14 В.

Задача 2. На рисунке приведён график зависимости силы тока от времени в электрической цепи, индуктивность которой 1 мГн. Определите модуль ЭДС самоиндукции в интервале времени от 5 до 15 с. Ответ выразите в мкВ.

Решение

Решение любых графических задач необходимо начинать с «чтения» самого графика. В этой задаче рассматривается зависимость силы тока от времени в цепи, содержащей катушку индуктивности. Необходимо обратить внимание на те интервалы времени, в течение которых происходит изменение силы тока. С изменением этой величины связано изменение магнитного потока и, как следствие, возникновение ЭДС самоиндукции. Сила тока меняется в интервале от 0 до 5 с, от 5 до 10 с и от 15 до 20 с.  В интервале от 10 до 15 с сила тока постоянна, изменение магнитного потока не происходит, поэтому mathcal E _{si}=0. Для участка от 5 до 10 с надо применить закон электромагнитной индукции displaystyle mathcal E _{is}=-Lfrac{Delta I}{Delta t}.

Для модуля ЭДС самоиндукции, т.е. без учета направления индукционного тока, этот закон будет иметь вид:

displaystyle |mathcal E _{is}|=left|Lfrac{Delta I}{Delta t} right|.

Данные для расчета необходимо взять из графической зависимости, учитывая при этом перевод в систему «СИ».

displaystyle mathcal E_{is}=left| 1cdot 10^{-3} frac{20cdot 10^{-3}-30cdot 10^{-3}}{10-5}right|=2cdot 10^{-6}(B)=2(мкВ).

Ответ: 2 мкВ.

Задача 3. Катушка, обладающая индуктивностью L, соединена с источником питания с ЭДС mathcal E и двумя одинаковыми резисторами R. Электрическая схема соединения показана на рис. 1. В начальный момент ключ в цепи разомкнут.

В момент времени t=0 ключ замыкают, что приводит к изменениям силы тока, регистрируемым амперметром, как показано на рис. 2. Основываясь на известных физических законах, объясните почему при замыкании ключа сила тока плавно увеличивается до некоторого нового значения — I_{1}. Определите значение силы тока I_{1}. Внутренним сопротивлением источника тока пренебречь.

Решение

В данной задаче необходимо рассмотреть две ситуации, которые происходят до и после замыкания ключа.

  1. До замыкания ключа в цепи устанавливается постоянная сила тока, которая определяется законом Ома для полной цепи displaystyle I=frac{mathcal E}{R+r}. Так как по условию внутренним сопротивлением источника можно пренебречь, то displaystyle I=frac{mathcal E}{R}=3 (A).
  2. После замыкания ключа параллельно к первому резистору подключается второй, имеющий такое же сопротивление. Тогда общее сопротивление цепи можно рассчитать, как displaystyle frac{1}{R_{ob}}=frac{1}{R}+frac{1}{R}=frac{2}{R}; R_{ob}=frac{R}{2}. Таким образом, внешнее сопротивление цепи уменьшается в 2 раза.
    Наличие в цепи катушки индуктивности, в которой возникает ЭДС самоиндукции, препятствует мгновенному нарастанию силы тока (по аналогии с механикой – тело большой массы не может быстро изменить свою скорость). Поэтому сила тока плавно увеличивается до некоторого значения I_{1}.
  3. Так как ЭДС самоиндукции с течением времени уменьшается до нулевого значения, то ток в цепи будет возрастать в 2 раза, так как общее сопротивление уменьшается также в 2 раза.
    displaystyle I_{1}=frac{mathcal E}{R/2}=frac{2mathcal E}{R}=6 (A).

Ответ: 6 А.

Задача 4. Катушка Проволочная рамка площадью 60 см2 помещена в однородное магнитное поле так, что плоскость рамки перпендикулярна вектору индукции vec{B}. Проекция B_{n} индукции магнитного поля на нормаль к плоскости рамки изменяется во времени t согласно графику на рисунке.

Из приведенного ниже списка выберите все верные утверждения о процессах, происходящих в рамке.

  1. Модуль ЭДС электромагнитной индукции, возникающий в рамке, максимален в интервале от 0 до 1мс.
    Ответ. Согласно закону электромагнитной индукции displaystyle mathcal E=-frac{Delta Phi }{Delta t}=-frac{Delta Bcdot S}{Delta t}.
    Т.е. максимальное значение ЭДС индукции будет наблюдаться на интервале максимального изменения B_{n} с течением времени. В интервале от 0 до 1 мс скорость изменения проекции B_{n} наибольшая.
    Утверждение верное.
  2. Магнитный поток через рамку в интервале от 2 до 4 мс равен 12 мВб.
    Ответ. Формула для расчета магнитного потока имеет вид Phi=B_{n}S.
    В данном временном интервале проекция B_{n} постоянна и равна 2 Тл.
    displaystyle Phi=2cdot 60cdot 10^{-4}=12cdot 10^{-3} (Вб) = 12 (мВб).
    Утверждение верное.
  3. Модуль ЭДС электромагнитной индукции, возникающей в рамке, в интервале от 4 до 6 мс равен 6 В.
    Ответ. Согласно закону электромагнитной индукции displaystyle mathcal E=-frac{Delta Phi }{Delta t}=-frac{Delta Bcdot S}{Delta t}.
    displaystyle mathcal E=left|frac{(-2-2)cdot 60cdot 10^{-4}}{2cdot 10^{-3}}right|=12 (B).
    Утверждение неверное.
  4. Модуль скорости изменения магнитного потока через рамку минимален в интервале от 0 до 1 мс.
    Ответ. В той задаче изменение магнитного потока связано с изменением проекции B_{n} индукции магнитного поля. В интервале от 0 до 1 мс проекция B_{n} меняется быстрее всего, потому и изменение магнитного потока максимальное.
    Утверждение неверное.
  5. Модуль ЭДС электромагнитной индукции, возникающей в рамке, равен нулю в интервале времени от 2 до 4 мс.
    Ответ. Согласно закону электромагнитной индукции displaystyle mathcal E=-frac{Delta Phi }{Delta t}=-frac{Delta Bcdot S}{Delta t}.
    В интервале от 2 до 4 мс проекция B_{n} не изменяется, потому Delta B=0 и mathcal E=0.
    Тогда в проволочной рамке ЭДС индукции не возникает.
    Утверждение верное.

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Самоиндукция» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Если по катушке идет переменный ток, то магнитный поток, пронизывающий катушку, меняется. Поэтому возникает ЭДС индукции в том же самом проводнике, по которому идет переменный ток. Это явление называют самоиндукцией.

При самоиндукции проводящий контур выполняет двойную роль. С одной стороны, переменный ток в проводнике вызывает появление магнитного потока через поверхность, ограниченную контуром. А так как магнитный поток изменяется со временем, появляется ЭДС индукции εis. По правилу Ленца в момент нарастания тока напряженность вихревого электрического поля направлена против тока. Следовательно, в этот момент вихревое поле препятствует нарастанию тока. Наоборот, в момент уменьшения тока вихревое поле поддерживает его.

Явление самоиндукции можно наблюдать в простых опытах. На рисунке представлена схема параллельного соединения двух одинаковых ламп. Одну из них подключают к источнику через резистор R, а другую — последовательно с катушкой L, снабженной железным сердечником.

При замыкании ключа первая лампа вспыхивает практически сразу, а вторая — с заметным запозданием. ЭДС самоиндукции в цепи этой лампы велика, и сила тока не сразу достигает своего максимального значения (см. график ниже).

Появление ЭДС самоиндукции при размыкании можно наблюдать в опыте с цепью, схематически показанной на следующем рисунке. При размыкании ключа в катушке L возникает ЭДС самоиндукции, поддерживающая первоначальный ток. В результате в момент размыкания через гальванометр идет ток (цветная стрелка), направленный против начального тока до размыкания (черная стрелка). Сила тока при размыкании цепи может превышать силу тока, проходящего через гальванометр при замкнутом ключе. Это означает, что ЭДС самоиндукции εis больше ЭДС ε батареи элементов.

Самоиндукция и инерция

Явление самоиндукции проще понять, проведя аналогию с инерцией в механике. Инерция приводит к тому, что под действием силы тело не мгновенно приобретает скорость, а постепенно. Тело нельзя мгновенно затормозить, как бы велика ни была тормозящая сила. Точно так же за счет самоиндукции при замыкании цепи сила тока не сразу приобретает определенное значение, а нарастает постепенно. Выключая источник, мы не прекращаем ток сразу. Самоиндукция его поддерживает некоторое время, несмотря на сопротивление цепи.

Чтобы увеличить скорость тела, согласно законам механики нужно совершить работу. При торможении тело само совершает работу. Точно так же для создания тока нужно совершить работу против вихревого электрического поля, а при исчезновении тока это поле совершает положительную работу.

Индуктивность

Модуль вектора индукции В магнитного поля, создаваемого током, пропорционален силе тока. Так как магнитный поток Ф пропорционален В, то Ф ~ В~ I. Это дает право утверждать, что:

Φ=LI

L — коэффициент пропорциональности между током в проводящем контуре и магнитным потоком, пронизывающим этот контур. Эту величину также называют индуктивностью контура, или его коэффициентом самоиндукции.

Применив закон электромагнитной индукции, а также считая, что форма контура остается неизменной, и поток меняется только за счет изменения силы тока, получим:

εis=ΔΦΔt=LΔIΔt

Эта формула позволяет дать такую формулировку L, которая точно отражает суть этой величины.

Определение

Индуктивность — это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

Единица измерения индуктивности — генри (Гн). Индуктивность проводника равна 1 Гн, если в нем при изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции в 1 В.

Индуктивность подобна электроемкости. Она зависит от геометрических факторов: размеров проводника и его формы, но не зависит непосредственно от силы тока в проводнике. Кроме геометрии проводника, индуктивность зависит от магнитных свойств среды, в которой находится проводник.

Пример №1. При равномерном изменении силы тока в катушке на 10 А за 0,02 с в ней возникает ЭДС самоиндукции, равная 200 В. Чему равна индуктивность катушки?

Выразим индуктивность из формулы для ЭДС самоиндукции:

L=ΔtεisΔI=0,02·20010=0,4 (Гн)

Знак «минус» означает, что ЭДС самоиндукции действует так, что индукционный ток препятствует изменению магнитного потока. Поэтому само значение индуктивности мы можем принять за модуль полученного результата — 0,4 Гн.

Задание EF17686

Катушка, обладающая индуктивностью L, соединена с источником питания с ЭДС ε и двумя одинаковыми резисторами R. Электрическая схема соединения показана на рис. 1. В начальный момент ключ в цепи разомкнут.

В момент времени t=0 ключ замыкают, что приводит к изменениям силы тока, регистрируемым амперметром, как показано на рис. 2. Основываясь на известных физических законах, объясните, почему при замыкании ключа сила тока плавно увеличивается до некоторого нового значения – I1. Определите значение силы тока I1. Внутренним сопротивлением источника тока пренебречь.


Алгоритм решения

1.Установить, какими физическими законами можно описать эксперимент.

2.Описать, что происходит до замыкания ключа.

3.Определить, что произойдет после замыкания ключа.

4.Вычислить силу тока в катушке.

Решение

На рисунке 1 изображена схема, в которой катушка индуктивности подключена последовательно к двум параллельно соединенным резистором и источнику тока. Амперметр тоже соединен с катушкой последовательно, следовательно, он определяет силу тока, проходящую через нее.

Для описания процесса можно подходит закон Ома для полной цепи и формула ЭДС самоиндукции, которая будет возникать при изменении силы тока в цепи:

IRобщ=ε+εis

εis=LΔIΔt

До замыкания ключа общее сопротивление цепи равно сопротивлению одного резистора — R. Так как ток в этом случае постоянный, ЭДС самоиндукции отсутствует. Тогда закон Ома принимает вид:

I0=εR

Когда ключ замыкается, сопротивление в цепи уменьшается вдвое, так как подключается второй резистор:

1Rобщ=1R+1R=2R

Rобщ=0,5R

Изменение сопротивления в цепи вызывает изменение силы тока. В результате возникает ЭДС самоиндукции. Она препятствует изменению силы тока через катушку в соответствии с правилом Ленца. Поэтому сила тока через катушку при замыкании ключа не претерпевает скачка.

Постепенно ЭДС самоиндукции уменьшается до нуля, а сила тока через катушку плавно возрастает до значения:

I1=ε0,5R=2I0

На рисунке 2 начальная сила тока равна 3 А. Следовательно:

I1=3·2=6 (А)

Ответ: 6

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17724

В электрической цепи, показанной на рисунке, ЭДС и внутреннее сопротивление источника тока соответственно равны 12 В и 1 Ом, ёмкость конденсатора 2 мФ, индуктивность катушки 36 мГн и сопротивление лампы 5 Ом. В начальный момент времени ключ К замкнут. Какая энергия выделится в лампе после размыкания ключа? Сопротивлением катушки и проводов пренебречь. Ответ записать в мДж.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.

2.Установить величину электромагнитного поля катушки и электрического поля конденсатора.

3.Выполнить решение задачи в общем виде.

4.Подставить неизвестные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 ЭДС источника тока: ε = 12 В.

 Сопротивление источника тока: r = 1 Ом.

 Емкость конденсатора: C = 2 мФ.

 Индуктивность катушки: L = 36 мГн.

 Сопротивление лампы: R = 5 Ом.

2 мФ = 2∙10–3 Ф

36 мГн = 36∙10–3 Гн

Пока ключ замкнут, через катушку L течёт ток определяемый внутренним сопротивлением источника и сопротивлением лампочки. Его можно вычислить, используя закон Ома для полной цепи:

I=εR+r

При этом конденсатор будет заряжен до напряжения U, которое определяется законом Ома для участка цепи:

U=IR

Подставив в это выражение закон Ома для полной цепи, получим:

U=εRR+r

Энергия электрического поля в конденсаторе определяется формулой:

Wкон=CU22=C2(εRR+r)2

Энергия электромагнитного поля в катушке определяется формулой:

Wкат=LI22=L2(εR+r)2

После размыкания ключа начинаются затухающие электромагнитные колебания, и вся энергия, запасённая в конденсаторе и катушке, выделится на лампе:

E=Wкон+Wкат=C2(εRR+r)2+L2(εR+r)2

Ответ: 172

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18478

Катушка индуктивности подключена к источнику тока с пренебрежимо малым внутренним сопротивлением через резистор Ом (см. рисунок). В момент ключ К замыкают. Значения силы тока в цепи, измеренные в последовательные моменты времени
с точностью 0,01 А, представлены в таблице.

Выберите два верных утверждения о процессах, происходящих в цепи.

Ответ:

  1. Напряжение на резисторе в момент времени t= 1,0 c равно 1,9 В.
  2. Энергия катушки максимальна в момент времени t= 0 c.
  3. ЭДС источника тока равна 18 В.
  4. Напряжение на катушке максимально в момент времени t= 6,0 c.
  5. Модуль ЭДС самоиндукции катушки в момент времени t = 2,0 с равен 2,4В.

Алгоритм решения

1.Проверить истинность каждого утверждения.

2.Выбрать 2 верных утверждения.

Решение

Согласно утверждению 1, напряжение на резисторе в момент времени t = 1,0 c равно 1,9 В. Так как сила тока еще не установилась, а сопротивление источника тока пренебрежимо мало, вычислить напряжение на резисторе можно с помощью закона Ома для полной цепи:

I=εεisR

U=εεis=IR=0,19·60=11,4 (В)

Следовательно, утверждение 1 — неверно.

Согласно утверждению 2, энергия катушки максимальна в момент времени t = 0 c. Энергия катушки определяется формулой:

Wкат=LI22

Так как сила тока в начальный момент времени равна нулю, то энергия катушки в это время тоже нулевая.

Следовательно, утверждение 2 — неверно.

Согласно утверждению 3, ЭДС источника тока равна 18 В. Вычислить ЭДС источника тока можно, используя закон Ома для полной цепи в момент, когда сила тока в цепи достигнет максимального значения. В этом случае ЭДС самоиндукции будет равна 0. Тогда:

I=εR

ε=IR=0,3·60=18 (В).

Это действительно так. Следовательно, утверждение 3 — верно.

Согласно утверждению 4, напряжение на катушке максимально в момент времени t = 6,0 c. Напряжение на катушке равно разности напряжения ЭДС источника тока и напряжения на резисторе (так как они соединены последовательно):

U=εIR

Так как значение силы тока в момент времени t = 6,0 с максимально, то напряжение на катушке. Следовательно, утверждение 4 — неверно.

Согласно утверждению 5, модуль ЭДС самоиндукции катушки в момент времени t = 2,0 с равен 2,4В. Проверяя истинность утверждения 3, мы выяснили, что ЭДС источника тока равна 18 В. Следовательно, ЭДС самоиндукции равна:

εis=εIR

Для вычислений используем значения из таблицы для момента времени t = 2,0 с:

εis=180,26·60=2,4 (В)

Следовательно, утверждение 5 — верно.

Ответ: 35

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 4.2k

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти парня для опыта работы
  • Как найти unity разработчика
  • Как составить план методической работы школы за
  • Как найти работу которая тебе будет нравится
  • Как найти фитнес браслет по фото

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии