Как найти квадрат косинуса через синус

Для того, чтобы выразить косинус через синус, вспомним основное тригонометрическое тождество:

sin²α + cos²α = 1.

Таким образом, если известен синус, то косинус найти можно так:

cos²α = 1 — sin²α.

Возможны 2 варианта:

1) cosα = √(1 — sin²α), если угол α находится в 1 четверти (0 < α < 90) или в 4 четверти (270 < α < 360).

2) cosα = — √(1 — sin²α), если угол α находится во 2 четверти (90 < α < 180) или в 3 четверти (180 < α < 270).


Пример

1) Синус угла α = 0,3 и 90 < α < 180. Нужно найти, чему равен косинус угла α.

Так как угол α находится во второй четверти, то косинус будет отрицательным. Выразим его по формуле:

cosα = — √ (1 — 0,09) = -√0,91 = — 0,95.

2) Синус угла α = 0,7 и 270 < α < 360. Выразим косинус.

Так как угол α находится в 4 четверти, то косинус будет положительным.

cosα = √ (1 — 0,49) = √0,51 = 0,71.

Уравнения разложения тригонометрических функций:квадрат синус альфа, косинус альфа, тангенс альфа, котангенс альфа.

Квадрат синуса

Квадрат косинуса

Квадрат тангенса

Квадрат синуса

Формулы преобразования функций двойного угла (2α) в выражение через одинарный угол (α)

sin(2α)- через sin и cos:

все тригонометрические формулы

sin(2α)- через tg и ctg:

все тригонометрические формулы

cos(2α)- через sin и cos:

все тригонометрические формулы

cos(2α)- через tg и ctg:

все тригонометрические формулы

tg(2α) и сtg(2α):

все тригонометрические формулы

все тригонометрические формулы


Формулы преобразования функций (синус, косинус, тангенс, котангенс), тройного угла (3α) в выражение через одинарный угол (α):

все тригонометрические формулы

все тригонометрические формулы

все тригонометрические формулы

все тригонометрические формулы


Тригонометрические формулы преобразования разности аргументов

все тригонометрические формулы

все тригонометрические формулы

все тригонометрические формулы

все тригонометрические формулы


все тригонометрические формулы

sin(α)=OA

cos(α)=OC

tg(α)=DE

ctg(α)=MK

R=OB=1

Значения функций для некоторых углов, α

все тригонометрические формулы


В таблице показаны формулы приведения для тригонометрических функций (sin, cos, tg, ctg).

формулы приведения для тригонометрических функций

Основные тригонометрические формулы

Содержание

Справочник по математике для школьников тригонометрия связи между тригонометрическими функциямиСвязи между тригонометрическими функциями одного угла
Справочник по математике для школьников тригонометрия тригонометрические функции суммы и разности двух угловТригонометрические функции суммы и разности двух углов
Справочник по математике для школьников тригонометрия тригонометрические функции двойного углаТригонометрические функции двойного угла
Справочник по математике для школьников тригонометрия формулы понижения степени для квадратов тригонометрических функцийФормулы понижения степени для квадратов тригонометрических функций
Справочник по математике для школьников тригонометрия формулы понижения степени для кубов синуса и косинусаФормулы понижения степени для кубов синуса и косинуса
Справочник по математике для школьников тригонометрия выражение тангенса угла через синус и косинус двойного углаВыражение тангенса угла через синус и косинус двойного угла
Справочник по математике для школьников тригонометрия преобразование суммы тригонометрических функций в произведениеПреобразование суммы тригонометрических функций в произведение
Справочник по математике для школьников тригонометрия преобразование произведения тригонометрических функций в суммуПреобразование произведения тригонометрических функций в сумму
Справочник по математике для школьников тригонометрия выражение тригонометрических функций через тангенс половинного углаВыражение тригонометрических функций через тангенс половинного угла
Справочник по математике для школьников тригонометрия тригонометрические функции тройного углаТригонометрические функции тройного угла

тригонометрические формулы синус косинус суммы углов разности углов синус косинус двойного тройного углов синус косинус тангенс через тангенс половинного угла

Связи между тригонометрическими функциями одного угла

Тригонометрические функции суммы и разности двух углов

Тригонометрические функции двойного угла

Формула Название формулы
sin 2α = 2 sin α cos α Синус двойного угла

cos 2α = cos 2α – sin2α

cos 2α = 2cos 2α – 1

cos 2α = 1 – 2sin 2α

Косинус двойного угла
Основные тригонометрические формулы тригонометрические функции двойного угла Тангенс двойного угла
Синус двойного угла
sin 2α = 2 sin α cos α
Косинус двойного угла

cos 2α = cos 2α – sin2α

cos 2α = 2cos 2α – 1

cos 2α = 1 – 2sin 2α

Тангенс двойного угла
Основные тригонометрические формулы тригонометрические функции двойного угла

Формулы понижения степени для квадратов тригонометрических функций

Формула Название формулы
Основные тригонометрические формулы формулы понижения степени для квадратов тригонометрических функций

Выражение квадрата синуса через косинус двойного угла

Основные тригонометрические формулы формулы понижения степени для квадратов тригонометрических функций

Выражение квадрата косинуса через косинус двойного угла

Основные тригонометрические формулы формулы понижения степени для квадратов тригонометрических функций

Выражение квадрата тангенса через косинус двойного угла

Формулы понижения степени для кубов синуса и косинуса

Формула Название формулы
Основные тригонометрические формулы формулы понижения степени для кубов синуса и косинуса

Выражение куба синуса через синус угла и синус тройного угла

Основные тригонометрические формулы формулы понижения степени для кубов синуса и косинуса

Выражение куба косинуса через косинус угла и косинус тройного угла

Выражение куба синуса через синус угла и синус тройного угла

Основные тригонометрические формулы формулы понижения степени для кубов синуса и косинуса

Выражение куба косинуса через косинус угла и косинус тройного угла

Основные тригонометрические формулы формулы понижения степени для кубов синуса и косинуса

Выражение тангенса через синус и косинус двойного угла

Основные тригонометрические формулы выражение тангенса через синус и косинус двойного угла

Основные тригонометрические формулы выражение тангенса через синус и косинус двойного угла

Преобразование суммы тригонометрических функций в произведение

Сумма синусов

Основные тригонометрические формулы преобразование суммы тригонометрических функций в произведение

Основные тригонометрические формулы преобразование суммы тригонометрических функций в произведение

Разность синусов

Основные тригонометрические формулы преобразование суммы тригонометрических функций в произведение

Основные тригонометрические формулы преобразование суммы тригонометрических функций в произведение

Сумма косинусов

Основные тригонометрические формулы преобразование суммы тригонометрических функций в произведение

Основные тригонометрические формулы преобразование суммы тригонометрических функций в произведение

Разность косинусов

Основные тригонометрические формулы преобразование суммы тригонометрических функций в произведение

Основные тригонометрические формулы преобразование суммы тригонометрических функций в произведение

Сумма тангенсов
Основные тригонометрические формулы преобразование суммы тригонометрических функций в произведение
Разность тангенсов
Основные тригонометрические формулы преобразование суммы тригонометрических функций в произведение

Преобразование произведения тригонометрических функций в сумму

Произведение синусов

Основные тригонометрические формулы преобразование произведения тригонометрических функций в сумму

Основные тригонометрические формулы преобразование произведения тригонометрических функций в сумму

Произведение косинусов

Основные тригонометрические формулы преобразование произведения тригонометрических функций в сумму

Основные тригонометрические формулы преобразование произведения тригонометрических функций в сумму

Произведение синуса и косинуса

Основные тригонометрические формулы преобразование произведения тригонометрических функций в сумму

Основные тригонометрические формулы преобразование произведения тригонометрических функций в сумму

Выражение тригонометрических функций через тангенс половинного угла

Формула Название формулы
Основные тригонометрические формулы выражение тригонометрических функций через тангенс половинного угла

Выражение синуса угла через тангенс половинного угла

Основные тригонометрические формулы выражение тригонометрических функций через тангенс половинного угла

Выражение косинуса угла через тангенс половинного угла

Основные тригонометрические формулы выражение тригонометрических функций через тангенс половинного угла

Выражение тангенса угла через тангенс половинного угла

Тригонометрические функции тройного угла

Формула Название формулы
sin 3α = 3sin α – 4sin3α Синус тройного угла
cos 3α = 4cos3α –3cos α Косинус тройного угла
Основные тригонометрические формулы тригонометрические функции тройного угла Тангенс тройного угла
Синус тройного угла
sin 3α = 3sin α – 4sin3α
Косинус тройного угла
cos 3α = 4cos3α –3cos α
Тангенс тройного угла
Основные тригонометрические формулы тригонометрические функции тройного угла

Синус в квадрате

Синус (sin) — это тригонометрическая функция, геометрически представляющая отношение противолежащего катета к гипотенузе в прямоугольном треугольнике.

sin 2 (x)=sin(x)*sin(x)

Значение синуса находится в диапазоне от -1 до +1.

Смотрите также калькулятор вычисления синуса угла.

Быстро выполнить эту простейшую математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.

На этой странице представлен самый простой онлайн калькулятор вычисления квадрата синуса (синуса в квадрате). С помощью этого калькулятора вы в один клик сможете вычислить квадрат синуса любого угла.

Косинус в квадрате и синус в квадрате

Разбираемся с простыми понятиями: синус и косинус и вычисление косинуса в квадрате и синуса в квадрате.

Синус и косинус изучаются в тригонометрии (науке о треугольниках с прямым углом).

Поэтому для начала вспомним основные понятия прямоугольного треугольника:

Гипотенуза — сторона, которая всегда лежит напротив прямого угла (угла в 90 градусов). Гипотенуза — это самая длинная сторона треугольника с прямым углом.

Оставшиеся две стороны в прямоугольном треугольнике называются катетами.

Также следует помнить, что три угла в треугольнике всегда имеют сумму в 180°.

kosinus-v-kvadrate-sinus-v-kvadrate

Теперь переходим к косинусу и синусу угла альфа (∠α) (так можно назвать любой непрямой угол в треугольнике или использовать в качестве обозначение икс — «x», что не меняет сути).

Синус угла альфа (sin ∠α) — это отношение противолежащего катета (сторона, лежащая напротив соответствующего угла) к гипотенузе. Если смотреть по рисунку, то sin ∠ABC = AC / BC

Косинус угла альфа (cos ∠α) — отношение прилежащего к углу катета к гипотенузе. Если снова смотреть по рисунку выше, то cos ∠ABC = AB / BC

И просто для напоминания: косинус и синус никогда не будут больше единицы, так как любой катит короче гипотенузы (а гипотенуза — это самая длинная сторона любого треугольника, ведь самая длинная сторона расположена напротив самого большого угла в треугольнике).

Косинус в квадрате, синус в квадрате

Теперь переходим к основным тригонометрическим формулам: вычисление косинуса в квадрате и синуса в квадрате.

Для их вычисления следует запомнить основное тригонометрическое тождество:

sin 2 α + cos 2 α = 1 (синус квадрат плюс косинус квадрат одного угла всегда равняются единице).

Из тригонометрического тождества делаем выводы о синусе:

sin 2 α = 1 — cos 2 α

или более сложный вариант формулы: синус квадрат альфа равен единице минус косинус двойного угла альфа и всё это делить на два.

sin 2 α = (1 – cos(2α)) / 2

​​​​​​​Из тригонометрического тождества делаем выводы о косинусе:

cos 2 α = 1 — sin 2 α

или более сложный вариант формулы: косинус квадрат альфа равен единице плюс косинус двойного угла альфа и также делим всё на два.

cos 2 α = (1 + cos(2α)) / 2

Эти две более сложные формулы синуса в квадрате и косинуса в квадрате называют еще «понижение степени для квадратов тригонометрических функций». Т.е. была вторая степень, понизили до первой и вычисления стали удобнее.

Добавить интересную новость

Добавить анкету репетитора и получать бесплатно заявки на обучение от учеников

user->isGuest) »]) . ‘ или ‘ . Html::a(‘зарегистрируйтесь’, [‘/user/registration/register’], [‘class’ => »]) . ‘ , чтобы получать деньги $$$ за каждый набранный балл!’); > else user->identity->profile->first_name) || !empty(Yii::$app->user->identity->profile->surname))user->identity->profile->first_name . ‘ ‘ . Yii::$app->user->identity->profile->surname; > else echo ‘Получайте деньги за каждый набранный балл!’; > ?>—>

Формулы двойного угла в тригонометрии

Формулы двойного угла служат для выражения синусов, косинусов, тангенсов, котангенсов угла со значением 2 α , используя тригонометрические функции угла α . Данная статья познакомит со всеми формулами двойного угла с доказательствами. Будут рассмотрены примеры применения формул. В заключительной части будут показаны формулы тройного, четверного углов.

Список формул двойного угла

Для преобразования формул двойного угла следует помнить о том, что углы в тригонометрии имеют вид n α записи, где n является натуральным числом, значение выражение записывается без скобок. Таким образом, считается, что запись sin n α имеет то же значение, что и sin ( n α ) . При обозначении sin n α имеем аналогичную запись ( sin α ) n . Использование записи применимо для всех тригонометрических функций со степенями n .

Ниже приведены формулы двойного угла:

sin 2 α = 2 · sin α · cos α cos 2 α = cos 2 α — sin 2 α , cos 2 α = 1 — 2 · sin 2 α , cos 2 α = 2 · cos 2 α — 1 t g 2 α = 2 · t g α 1 — t g 2 α c t g 2 α — c t g 2 α — 1 2 · c t g α

Отметим, что данные формулы sin и cos применимы с любым значением угла α . Формула тангенса двойного угла справедлива при любом значении α , где t g 2 α имеет смысл, то есть α ≠ π 4 + π 2 · z , z является любым целым числом. Котангенс двойного угла существует при любом α , где c t g 2 α определен на α ≠ π 2 · z .

Косинус двойного угла имеет тройную запись двойного угла. Все они являются применимыми.

Доказательство формул двойного угла

Доказательство формул берет начало из формул сложения. Применим формулы синуса суммы:

sin ( α + β ) = sin α · cos β + cos α · sin β и косинуса суммы cos ( α + β ) = cos α · cos β — sin α · sin β . Предположим, что β = α , тогда получим, что

sin ( α + α ) = sin α · cos α + cos α · sin α = 2 · sin α · cos α и cos ( α + α ) = cos α · cos α — sin α · sin α = cos 2 α — sin 2 α

Таким образом доказываются формулы синуса и косинуса двойного угла sin 2 α = 2 · sin α · cos α и cos 2 α = cos 2 α — sin 2 α .

Остальные формулы cos 2 α = 1 — 2 · sin 2 α и cos 2 α = 2 · cos 2 α — 1 приводят к виду cos 2 α = cos 2 α = cos 2 α — sin 2 α , при замене 1 на сумму квадратов по основному тождеству sin 2 α + cos 2 α = 1 . Получаем, что sin 2 α + cos 2 α = 1 . Так 1 — 2 · sin 2 α = sin 2 α + cos 2 α — 2 · sin 2 α = cos 2 α — sin 2 α и 2 · cos 2 α — 1 = 2 · cos 2 α — ( sin 2 α + cos 2 α ) = cos 2 α — sin 2 α .

Для доказательства формул двойного угла тангенса и котангенса применим равенства t g 2 α = sin 2 α cos 2 α и c t g 2 α = cos 2 α sin 2 α . После преобразования получим, что t g 2 α = sin 2 α cos 2 α = 2 · sin α · cos α cos 2 α — sin 2 α и c t g 2 α = cos 2 α sin 2 α = cos 2 α — sin 2 α 2 · sin α · cos α . Разделим выражение на cos 2 α , где cos 2 α ≠ 0 с любым значением α , когда t g α определен. Другое выражение поделим на sin 2 α , где sin 2 α ≠ 0 с любыми значениями α , когда c t g 2 α имеет смысл. Чтобы доказать формулу двойного угла для тангенса и котангенса, подставим и получим:

t g 2 α = sin 2 α cos 2 α = 2 · sin α · cos α cos 2 α — sin 2 α = 2 · sin α · cos α cos 2 α cos 2 α — sin 2 α cos 2 α = 2 · sin 2 α cos 2 α 1 — sin 2 α cos 2 α = 2 · t g α 1 — t g 2 α c t g 2 α = cos 2 α sin 2 α = cos 2 α — sin 2 α 2 · sin α · cos = cos 2 α — sin 2 α sin 2 α 2 · sin α · cos α sin 2 α = cos 2 α sin 2 α — 1 2 · cos α sin α = c t g 2 α — 1 2 · c t g α

Примеры использования формул двойного угла

Данный пункт показывает несколько примеров решения с формулами двойного угла. Конкретные примеры помогут глубже понять изучаемый материал. Чтобы убедиться в справедливости формул 2 α для α = 30 ° , применим значения тригонометрических функций для этих углов. Если α = 30 ° , тогда 2 α = 60 ° . Проверим значения sin 60 ° = 2 · sin 30 ° · cos 30 ° , cos 60 ° = cos 2 30 ° — sin 2 30 ° .

Подставив значения, получим t g 60 ° = 2 · t g 30 ° 1 — t g 2 30 ° и c t g 60 ° = c t g 2 30 ° — 1 2 · c t g 30 ° . .

Известно, что sin 30 ° = 1 2 , cos 30 ° = 3 2 , t g 30 ° = 3 3 , c t g 30 ° = 3 и

sin 60 ° = 3 2 , cos 60 ° = 1 2 , t g 60 ° = 3 , c t g 60 ° = 3 3 , тогда отсюда видим, что

2 · sin 30 ° · cos 30 ° = 2 · 1 2 · 3 2 = 3 2 , cos 2 30 ° — sin 2 30 ° = ( 3 2 ) 2 — ( 1 2 ) 2 = 1 2 , 2 · t g 30 ° 1 — t g 2 30 ° = 2 · 3 2 1 — ( 3 3 ) = 3

и c t g 2 30 ° — 1 2 · c t g 30 ° = ( 3 ) 2 — 1 2 · 3 = 3 3

Проведя вычисления, можно сделать вывод, что справедливость для α = 30 ° подтверждена.

Основное использование тригонометрических формул двойного угла – это преобразования тригонометрических выражений. Рассмотрим пример применения двойного угла, года имеем угол, отличный от 2 α . В примере допускается применение формулы двойного угла 3 π 5 . Тогда его необходимо преобразовать, в результате чего получим α = 3 π 5 : 2 = 3 π 10 . Отсюда следует, что формула двойного угла для косинуса будет иметь вид cos 3 π 5 = cos 2 3 π 10 — sin 2 3 π 10 .

Представить sin 2 α 3 через тригонометрические функции, при α 6 .

Заметим, что из условия имеем 2 α 3 = 4 · α 6 . Тогда использовав 2 раза формулу двойного угла, выразим sin 2 α 3 через тригонометрические функции угла α 6 . Применяя формулу двойного угла, получим sin 2 α 3 = 2 · sin α 3 · cos α 3 . После чего к функциям sin α 3 и cos α 3 применим формулы двойного угла: sin 2 α 2 = 2 · sin α 3 · cos α 3 = 2 · ( 2 · sin α 5 · cos α 6 ) · ( cos 2 α 6 — sin α 6 ) = = 4 · sin α 6 · cos 3 α 6 — 4 · sin 3 α 6 · cos α 6

Ответ: sin 2 α 3 = 4 · sin α 6 · cos 3 α 6 — 4 · sin 3 α 6 · cos α 6 .

Формулы тройного, четверного и т.д. угла

Таким же образом выводятся формулы тройного, четверного и т.д. углов. Формулы тройного угла можно вывести из формул сложения двойного угла.

sin 3 α = sin ( 2 α + α ) = sin 2 α · cos α + cos 2 α · sin α = 2 · sin α · cos α · cos α + ( cos 2 α — sin 2 α ) · sin α = = 3 · sin α · cos 2 α — sin 3 α

При замене cos 2 α на 1 — sin 2 α из формулы sin 3 α = 3 · sin α · cos 2 α — sin 3 α , она будет иметь вид sin 3 α = 3 · sin α — 4 · sin 3 α .

Так же приводится формула косинуса тройного угла:

cos 3 α = cos ( 2 α + α ) = cos 2 α · cos α — sin 2 α · sin α = = ( cos 2 α — sin 2 α ) · cos α — 2 · sin α · cos α · sin α = cos 3 α — 3 · sin 2 α · cos α

При замене sin 2 α на 1 — cos 2 α получим формулу вида cos 3 α = — 3 · cos α + 4 · cos 3 α .

При помощи полученных формул преобразуем формулу тройного угла для тангенса и котангенса тройного угла:

t g 3 α = sin 3 α cos 3 α = 3 · sin α · cos 2 α — sin 3 α cos 3 α — 3 · sin 2 α · cos α = 3 · sin α · cos 2 α — sin 3 α cos 3 α cos 3 α — 3 · sin 2 α · cos α cos 3 α = = 3 · sin α cos α — sin 3 α cos 3 α 1 — 3 · sin 2 α cos 2 α = 3 · t g α — t g 3 α 1 — 3 · t g 2 α ; c t g 3 α = cos 3 α sin 3 α = cos 3 α — 3 · sin 2 α · cos α 3 · sin α · cos 2 α — sin 3 α = cos 3 α — 3 · sin 2 α · cos α sin 3 α 3 · sin α · cos 2 α — sin 3 α sin 3 α = = cos 3 α sin 3 α — 3 · cos α sin α 3 · cos 2 α sin 2 α — 1 = c t g 3 α — 3 · c t g α 3 · c t g 2 α — 1

Чтобы выводить формулы четвертой степени, имеет смысл представить 4 α как 2 · 2 α , тогда имеет место использование формулы двойного угла два раза. Для выводы формулы 5 степени, представляем 5 α в виде 3 α + 2 α , что позволит применить формулы тройного и двойного углов для ее преобразования. Таким же образом делаются преобразования разных степеней тригонометрических функций. Их применение достаточно редкое в тригонометрии.


2

Как найти косинус угла, если известен синус?

11 ответов:



10



0

Ответ мой будет аналогичным ответу на похожий вопрос (см. здесь).

Из основного тригонометрического тождества:

yc452jeu8bLKQW3P3wz5YC946XwCzY5.png

выразим косинус в квадрате угла а:

Значит косинус угла равен либо корню квадратному из этого выражения, либо ему же, только со знаком -.

<hr />

Знак перед корнем зависит от ограничения, которое накладывается для определенности в условии задачи.

Если дано положительное значение синуса,то угол находится в 1-й или во 2-й четверти. В первой четверти (0< a< 90) значение косинуса будет положительным. Здесь выбираем знак плюс. Во второй четверти (90< a< 180) значение косинуса будет отрицательным. Тогда перед корнем выбираем знак минус.

Если значение синуса отрицательное, то угол расположен в 3-й или 4-й четверти. В 3 четверти (180< a< 270) косинус угла будет меньше нуля.

В 4 четверти (270< a< 360) косинус угла будет больше нуля.

<hr />

Примеры.

Пример 1. Найти косинус угла, если sina = -0,6. 180<a<270 (в градусах)

Решение. Находим разность 1 и квадрата значения sina, т.е. квадрата (-0,6).

-0,6 в квадрате находится так: (-0,6)*(-0,6) = 0,36. Подставим его в искомую разность:

1-0,36=0,64

Получили квадрат значения косинуса. Для нахождения значения самого косинуса, извлечем корень квадратный из 0,64 и возьмем его со знаком + или со знаком — . Получим 0,8 или -0,8.

Так как по условию угол находится в 3 четверти, то искомое значение косинуса будет также меньше нуля. Значит выбираем -0,8.

Ответ: cos a =-0,8.

Рассмотрим пример для случая, когда угол находится в 4 четверти:

Пример 2. Найти косинус угла, если sina = -0,6. 270<a<360 (в градусах)

Решение такое же (см. пример 1).

Перед выбором ответа рассуждаем так:

Т. к. по условию угол расположен в 4 четверти, то значение косинуса будет больше нуля. Значит выбираем 0,8.

Ответ: cos a =0,8.



2



0

Что-то из них по тригонометрии равен отношению того к отношению этого, т.е надо перевернуть доску другой стороной кверху если синус угла наклона внизу и вернуть в исходное положение для того чтобы найти косинус угла наклона!



2



0

Всё предельно просто и основные вычисления строятся на базе одного всем известного уравнения, при котором сумма квадратов cos и sin одного и того же угла дают в итоге единицу.

Основным моментом, который может вызвать затруднения станет постановка положительного или отрицательного знак перед корнем.



1



0

Для таких случаев нужно помнить всегда главное тригонометрическое тождество

косинус квадрат альфа+ синус квадрат альфа=1

cos^2альфа+sin^2альфа=1

и вот отсюда уже выводим

cos^2альфа=1-sin^2альфа

соsальфа=sqrt(1-sin^2альфа)



1



0

Будем считать, что основное тригонометрическое тождество помнят все.

Если кто — то забыл, то напоминаю:

Сумма квадратов синуса и косинуса какого — то (одного) угла Альфа равняется одному (1).

Формулу вспомнили, а дальше все легко.

В левой части уравнения оставляем косинус угла в квадрате, а в правую часть (где уже присутствует единица) перекидываем квадрат синуса угла. Получается следующее:

Нам нужен не квадрат косинуса, а косинус, поэтому уравнение выше преобразовываем и получаем:

Косинус угла равен квадратному корню единицы минус квадрат синуса (cos=sqrt(1-sin^2)).



1



0

Найти косинус угла можно из этого выражения:

cos^2альфа+sin^2альфа=1

То есть для того чтобы найти косинус нужно оставить косинус на левой стороне. Получится вот такое выражение — cos=sqrt(1-sin^2), косинус найден.



0



0

Как называется формула не помню:

cos^2+sin^2=1

cos=sqrt(1-sin^2).



0



0

С уроков в школе примерно 10-11 класс, я помню формулу основного тригонометрического тождества, которую мы учили наизусть:

Получаем искомую функцию:

Таким несложным способом можно найти косинус, если известен синус. И использовать его при решении задач.



0



0

Формулы по тригонометрии — это тема, которую изучают ученики в 10 и 11 классах. Чтобы найти косинус угла, зная синус, нужно воспользоваться основной формулой.

Сначала воспользуемся теоремой Пифагора

KmolYSs4eFX5DU3cCR88SBNWT7lcmHR1.png

теперь подставляем полученные данные

EDnXLGuqhQxJHcBBGI8PyuN8J0Do4Ww.png



0



0

Вычислить косинус угла, зная его синус очень просто. Для этого стоит знать основу основ тригонометрии — сумма квадратов синуса и косинуса равна единице. Зная эту формулу, легко вычислить косинус угла. Тригонометрическое тождество визуально представлено в следующих формулах, по которым можно вычислить в том числе и косинус.

Не стоит забывать, что при нахождении косинуса, следует убрать его квадрат и вычислить его квадратный корень. То есть те же значения после цифры равно поставить в квадратный корень при вычислении.



0



0

Между синусом и косинусом для одного и того же угла можно найти взаимосвязь, которая позволит найти косинус, зная синус. Вот так выглядит эта взаимосвязь:

Получается чтобы найти косинус в данном случае нам просто напросто будет нужно произвести извлечение корня из выражения (1-sin в квадрате конкретного угла).

Читайте также

Большинство школьников не разбираются даже в тангенсах и котангенсах, а Вы надеетесь что они знают и понимают, что такое секанс и косеканс. Я сам, конечно, знаю ответ, и пришлю его Вам на личную почту (Я не знаю, нужен ли Вам ответ, или вопрос задан с иной целью). Мне просто любопытно, дадут ли правильный ответ, и как скоро это произойдет.

По правде сказать, я практически ничего не помню про синусы, косинусы и тангенсы с котангенсами. Какие-то формулы смутно маячат на задворках моей памяти, но вспомнить их для меня уже затруднительно. А все потому, что после окончания школы я ими не занималась, поскольку дальнейшее мое образование было гуманитарного толка, и математику я уже больше не изучала.

Тем не менее я считаю, что изучение всех этих функций в школе пользу приносит. В частности, мозги развивает. Так что, может быть, эти синусы и косинусы мне и пригодились в некоторым смысле. Как знать, вдруг мое мышление было бы другим без их изучения.

Перепишем ваше неравенство следующим образом

y=cosx-sgrt2*sin(x/2)>1 (1)

Здесь sgrt2=2^(1/2) – квадратный корень из 2. Сокращение sgrt происходит от английских слов square root – квадратный корень. Так часто пишут в интернете. Удобно произвести такую замену

х=2А (2)

Тогда неравенство (1) запишется так cos(2A)-sgrt2*sinA>1. Вспомним хорошо известную в тригонометрии формулу для косинуса двойного угла cos(2A)=1-2sin^2(A), где sin^2(A) – синус А в квадрате. Тогда наше неравенство сводится к виду 1-2sin^2(A)-sgrt2*sinA>1.

Перепишем его так (единицы сокращаются)

2sin^2(A)+sgrt2*sinA<0 (3)

Удобно сделать еще одну замену

у= sgrt2*sinA (4)

Тогда у^2=2sin^2(A). Уравнение (3) приобретает вид у^2+у<0. Или у(у+1)<0. При каких у это выражение меньше нуля? 1) Если у<0 и y+1>0. То есть у<0 и у>-1. Эти 2 неравенства можно свети к такому виду -1<y<0. 2) Если у>0 и y+1<0. То есть у>0 и у<-1. Нет такого у, чтобы оно было одновременно и больше нуля и меньше -1. Остается только первый случай

-1<y<0 (5)

Но у дается выражением (4). То есть -1<sgrt2*sinA<0. Отсюда имеем –(1/2)sgrt2<sinA<0. Мы знаем, что sin(-45°)=–(1/2)sgrt2 и sin0=0. Тогда имеем такой интервал для величины А

-45°<A<0 или -pi/4<A<0 (6)

Из уравнения (2) имеем А=х/2. Тогда из (6) получим диапазон значений для величины х

-pi/2<х<0 (7)

Это третья и четвертая координатная четверть.

Проверка. Возьмем правый предел х=0. Тогда cos0=1, sin0=0. Из нашего уравнения (1) имеем у=1. И для уравнения (1) это есть предельное значение у. Но должно быть у>1. Так что, как видно и из (7), х=0 не входит в диапазон значений для переменной х. Возьмем левый предел для величины х, х=-pi/2. Тогда cosx=cos(-pi/2)=0, sin(x/2)=sin(-pi/4)=-(sgrt2)/2 и тогда имеем из неравенства (1) у=1. Это такое же предельное значение для у. Можно убедиться, что при х внутри диапазона (7) величина у больше 1.

Итак, ответ -pi/2<х<0.

Можно воспользоваться основным геометрическим тождеством.

***Основное геометрическое тождество

Sin^2 (x)+cos^2 (x)=1****

Следовательно

Cos (x) = Корень (1-sin^2 (x))

Cos (x) = корень (1-1^2) = корень (1-1) = корень (0) = 0

Ответ: 4) 0

Если область определения множество всех действительных чисел, то в записи функции не должно быть квадратных корней, переменной в знаменателе дроби. Если область значений отрезок от -3 до 3, то это точно не тангенс или котангенс, а коэффициент перед синусом или косинусом равен 3.

Например, y = sinx или y = cosx или y = sin(k*x) или y = cos(k*x), где к — какое либо действительное число.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти премию в экономике
  • Как составить уравнение колмогорова по графу
  • Как нарисовать торт найти
  • Как можно исправить кривые зубы без брекетов в домашних условиях
  • This bios is exclusively for acer only copyright c 2002 2011 acer inc как исправить

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии