Чаще всего единичная окружность используется для определения знака тригонометрической функции, числовые значения находятся в таблицах или вычисляются с помощью калькулятора.
Важно уметь считывать с единичной окружности следующие значения тангенса и котангенса:
(tg) (0^{circ}=0); (tg) (90^{circ}) не существует; (tg) (180 ^{circ}=0); (tg) (270^{circ}) не существует; (tg) (360^{circ}=0) |
(ctg) (0 ^{circ}) не существует; (ctg) (90^{circ}=0); (ctg) (180^{circ}) не существует; (ctg) (270^{circ}=0); (ctg) (360 ^{circ}) не существует |
Примеры:
(ctg:30^° =sqrt{3})
(ctg:(frac{π}{3})=frac{1}{sqrt{3}})
(ctg:2=-0,487…)
Содержание:
- Аргумент и значение
Котангенс острого угла
Котангенс числа или любого угла
Знаки по четвертям
Связь с другими функциями
Аргумент и значение
Аргументом может быть:
— как число или выражение с Пи: (1,3), (frac{π}{4}), (π), (-frac{π}{3}) и т.п.
— так и угол в градусах: (45^°), (360^°),(-800^°), (1^° ) и т.п.
Для обоих случаев значение котангенса вычисляется одинаковым способом – либо через значения синуса и косинуса, либо через тригонометрический круг (см. ниже).
Значение котангенса – всегда действительное число (возможно, иррациональное): (1), (sqrt{3}), (-frac{1}{sqrt{3}}), (-0,1543…)
Котангенс острого угла
Котангенс можно определить с помощью прямоугольного треугольника — он равен отношению прилежащего катета к противолежащему.
Пример:
1) Пусть дан угол и нужно определить (ctgA).
2) Достроим на этом угле любой прямоугольный треугольник.
3) Измерив, нужные стороны, можем вычислить (ctg;A).
Вычисление котангенса числа или любого угла
Для чисел, а также для тупых, развернутых углов и углов больших (360°) котангенс чаще всего определяют с помощью синуса и косинуса, через их отношение:
(ctg: t=)(frac{cos:t}{sin:t})
Пример. Вычислите (ctg: frac{5π}{6}).
Решение: Найдем сначала (frac{5π}{6}) на круге. Затем найдем (cos:frac{5π}{6}) и (sin:frac{5π}{6}), а потом поделим одно на другое.
(ctg:frac{5π}{6}=)(frac{cos:frac{5π}{6}}{sin:frac{5π}{6}})(=-frac{sqrt{3}}{2}:frac{1}{2}=-frac{sqrt{3}}{2} cdot frac{2}{1}=-sqrt{3})
Ответ: (-sqrt{3}).
Пример. Вычислите (ctg:frac{π}{2}).
Решение: Чтобы найти котангенс пи на (2) нужно найти сначала косинус и синус (frac{π}{2}). И то, и другое найдем с помощью тригонометрического круга:
Точка (frac{π}{2}) на числовой окружности совпадает с (1) на оси синусов, значит (sin:frac{π}{2}=1). Если из точки (frac{π}{2}) на числовой окружности провести перпендикуляр к оси косинусов, то мы попадем в точку (0), значит (cos:frac{π}{2}=0). Получается: (ctg:frac{π}{2}=)(frac{cos:frac{π}{2}}{sin:frac{π}{2}})(=)(frac{0}{1})(=0).
Ответ: (0).
Пример. Вычислите (ctg:(-765^circ)).
Решение: (ctg: (-765^circ)=)(frac{cos:(-765^circ)}{sin:(-765^circ)})
Что бы вычислить синус и косинус (-765^°). Отложим (-765^°) на тригонометрическом круге. Для этого надо повернуть в отрицательную сторону на (720^°) , а потом еще на (45^°).
(sin(-765^°)=-frac{sqrt{2}}{2});
(cos(-765^°)=frac{sqrt{2}}{2}) ;
получается (ctg(-765^°)= frac{sqrt{2}}{2} ∶ -frac{sqrt{2}}{2}=-1).
Ответ: (-1).
Пример. Найдите (ctg:frac{π}{3}).
Решение: (ctg: frac{π}{3}=)(frac{cos:frac{π}{3}}{sin:frac{π}{3}}). Опять находим синус пи на 3 и косинус пи на 3 (хоть с помощью тригонометрического круга, хоть по таблице):
(sin(frac{π}{3})=frac{sqrt{3}}{2});
(cos(frac{π}{3})=frac{1}{2}) ;
получается (ctg(frac{π}{3})=frac{1}{2} ∶ frac{sqrt{3}}{2}= frac{1}{2} cdot frac{2}{sqrt{3}}=frac{1}{sqrt{3}}).
Ответ: (frac{1}{sqrt{3}}).
Однако можно определять значение котангенса и напрямую через тригонометрический круг — для этого надо на нем построить дополнительную ось:
Прямая проходящая через (frac{π}{2}) на числовой окружности и параллельная оси абсцисс (косинусов) называется осью котангенсов. Направление оси котангенсов и оси косинусов совпадает.
Ось котангенсов – это фактически копия оси косинусов, только сдвинутая. Поэтому все числа на ней расставляются так же как на оси косинусов.
Чтобы определить значение котангенс с помощью числовой окружности, нужно:
1) Отметить соответствующую аргументу котангенса точку на числовой окружности.
2) Провести прямую через эту точку и начало координат и продлить её до оси котангенсов.
3) Найти координату пересечения этой прямой и оси.
Пример. Вычислите (ctg:frac{π}{4}).
Решение:
1) Отмечаем (frac{π}{4}) на окружности.
2) Проводим через данную точку и начало координат прямую.
3) В данном случае координату долго искать не придется – она равняется (1).
Ответ: (1).
Пример. Найдите значение (ctg: 30°) и (ctg: (-60°)).
Решение:
Для угла (30°) ((∠COA)) котангенс будет равен (sqrt{3}) (приблизительно (1,73)), потому что именно в таком значении сторона угла, проходящая через начало координат и точку (A), пересекает ось котангесов.
(ctg;(-60°)=frac{sqrt{3}}{{3}}) (примерно (-0,58)).
Значения для других часто встречающихся в практике углов смотри в тригонометрической таблице.
В отличие от синуса и косинуса значение котангенса не ограничено и лежит в пределах от (-∞) до (+∞), то есть может быть любым.
При этом котангенс не определен для:
1) всех точек (C) (значение в Пи: …(0), (2π), (4π), (-2π), (-4π) …; и значение в градусах: …(0°),(360°), (720°),(-360°),(-720°)…)
2) всех точек (D) (значение в Пи: …(π), (3π), (5π), (-π), (-3π), (-5π) …; и значение в градусах: …(180°),(540°),(900°),(-180°),(-540°),(-900°)…) .
Так происходит потому, что в этих точках синус равен нулю. А значит, вычисляя значение котангенса мы придем к делению на ноль, что запрещено. И прямая проходящая через начало координат и любую из этих точек никогда не пересечет ось котангенсов, т.к. будет идти параллельно ей. Поэтому в этих точках котангенс – НЕ СУЩЕСТВУЕТ (для всех остальных значений он может быть найден).
Из-за этого при решении тригонометрических уравнений и неравенств с котангенсом необходимо учитывать ограничения на ОДЗ.
Знаки по четвертям
С помощью оси котангенсов легко определить знаки по четвертям тригонометрической окружности. Для этого надо взять любую точку на четверти и определить знак котангенса для нее описанным выше способом. У всей четверти знак будет такой же.
Для примера на рисунке нанесены две зеленые точки в I и III четвертях. Для них значение котангенса положительно (зеленые пунктирные прямые приходят в положительную часть оси), значит и для любой точки из I и III четверти значение будет положительно (знак плюс).
С двумя фиолетовыми точками в II и IV четвертях – аналогично, но с минусом.
Связь с другими тригонометрическими функциями:
— синусом того же угла: формулой (1+ctg^2x=)(frac{1}{sin^2x})
— косинусом и синусом того же угла: (ctg:x=)(frac{cos:x}{sin:x})
— тангенсом того же угла: формулой (tg:x=)(frac{1}{ctg:x})
Другие наиболее часто применяемые формулы смотри здесь.
Смотрите также:
Формулы приведения
Решение уравнений (tgx=a) и (ctgx=a)
Тангенс и котангенс на единичной числовой окружности
- Тангенс и котангенс острого угла в прямоугольном треугольнике
- Базовые формулы тригонометрии
- Тангенс и котангенс угла на числовой окружности
- Знаки тангенса и котангенса
- Тангенсы и котангенсы углов (frac{pi k}{2})
- Тангенсы и котангенсы углов (frac{pi}{4}+frac{pi k}{2})
- Тангенсы и котангенсы углов (frac{pi}{6}+frac{pi k}{2})
- Тангенсы и котангенсы углов (frac{pi}{3}+frac{pi k}{2})
- Примеры
п.1. Тангенс и котангенс острого угла в прямоугольном треугольнике
Тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему. tgα = $frac{a}{b} $ Котангенс острого угла в в прямоугольном треугольнике равен отношению прилежащего катета к противолежащему. ctgα = $frac{b}{a} $ |
Например:
B ΔABC, ∠C = 90°, a = 2, b = 4. Найдем тангенс и котангенс ∠A. $$ tgA=frac{a}{b}=frac{2}{4}=frac{1}{2}, ctgA=frac{b}{a}=frac{4}{2}=2 $$
п.2. Базовые формулы тригонометрии
На данном этапе изучения тригонометрии получаем четыре базовых формулы:
begin{gather*} sin^2alpha+cos^2alpha=1, tgalphacdot ctgalpha=1\ tgalpha=frac{sinalpha}{cosalpha}, ctgalpha=frac{cosalpha}{sinalpha} end{gather*}
п.3. Тангенс и котангенс угла на числовой окружности
Построим вертикальную касательную к числовой окружности в точке A(1;0). Продолжим луч OM до пересечения с касательной, обозначим точку пересечения E. По построению: begin{gather*} begin{cases} angle MKO=angle EAO=90^{circ}\ angle EOA — text{общий (по двум углам)} end{cases} Rightarrow Delta MKOsim Delta EAORightarrow\ Rightarrowfrac{MK}{OK}=frac{EA}{OA}=frac{EA}{1}=EA\ Rightarrow EA=frac{sinalpha}{cosalpha}=tgalpha end{gather*} Таким образом, построенная вертикальная касательная является числовой прямой, на которой находятся тангенсы. |
Ось тангенсов это вертикальная касательная к числовой окружности в точке (1;0), на которой расположены тангенсы соответствующих углов.
Построим горизонтальную касательную к числовой окружности в точке B(0;0). Продолжим луч OM до пересечения с касательной, обозначим точку пересечения E. По построению: begin{gather*} begin{cases} OK || BE\ OE — text{наклонная} end{cases} Rightarrow angle BEO=angle KOE=alpha end{gather*} как накрест лежащие углы. begin{gather*} begin{cases} angle MKO=angle EBO=90^{circ}\ angle KOM=angle BEO end{cases} Rightarrow text{(по двум углам)}\ Delta MKOsim Delta OBERightarrow\ Rightarrowfrac{OK}{EB}=frac{MK}{OB}=frac{MK}{1}=MK\ Rightarrow EB=frac{OK}{MK}=frac{cosalpha}{sinalpha}=ctgalpha end{gather*} Таким образом, построенная горизонтальная касательная является числовой прямой, на которой находятся котангенсы. |
Ось котангенсов это горизонтальная касательная к числовой окружности в точке (0;1), на которой расположены котангенсы соответствующих углов.
п.4. Знаки тангенса и котангенса
Знаки синусов и косинусов – см. §2 данного справочника.
Тангенс является отношением синуса к косинусу, поэтому его знаки будут чередоваться при переходе от одной четверти к другой.
Котангенс является тригонометрической функцией, обратной тангенсу, поэтому его знаки будут совпадать со знаками тангенса.
begin{gather*} tgalphagt 0 text{и} ctgalphagt 0, text{если} 0ltalphaltfracpi2cup piltalphaltfrac{3pi}{2}\ tgalphalt 0 text{и} ctgalphalt 0, text{если} frac{pi}{2}ltalphaltpicup frac{3pi}{2}ltalphalt2pi end{gather*}
п.5. Тангенсы и котангенсы углов(frac{pi k}{2})
Синусы и косинусы углов πk/2 – см. §2 данного справочника
α | 0° | 90° | 180° | 270° |
0 | π/2 | π | 3π/2 | |
tgα | 0 | +∞ | 0 | –∞ |
ctgα | +∞ | 0 | –∞ | 0 |
п.6. Тангенсы и котангенсы углов (frac{pi}{4}+frac{pi k}{2})
Синусы и косинусы углов π/4 + πk/2 – см. §2 данного справочника
α | 45° | 135° | 225° | 315° |
π/4 | 3π/4 | 5π/4 | 7π/4 | |
tgα | 1 | –1 | 1 | –1 |
ctgα | 1 | –1 | 1 | –1 |
п.7.Тангенсы и котангенсы углов (frac{pi}{6}+frac{pi k}{2})
Синусы и косинусы углов π/6 + πk/2 – см. §2 данного справочника
α | 30° | 120° | 210° | 300° |
π/6 | 2π/3 | 7π/6 | 5π/3 | |
tgα | (frac{1}{sqrt{3}}) | (-sqrt{3}) | (frac{1}{sqrt{3}}) | (-sqrt{3}) |
ctgα | (sqrt{3}) | (-frac{1}{sqrt{3}}) | (sqrt{3}) | (-frac{1}{sqrt{3}}) |
п.8. Тангенсы и котангенсы углов (frac{pi}{3}+frac{pi k}{2})
Синусы и косинусы углов π/3 + πk/2 – см. §2 данного справочника
α | 60° | 150° | 240° | 330° |
π/3 | 5π/6 | 4π/3 | 11π/6 | |
tgα | (sqrt{3}) | (-frac{1}{sqrt{3}}) | (sqrt{3}) | (-frac{1}{sqrt{3}}) |
ctgα | (frac{1}{sqrt{3}}) | (-sqrt{3}) | (frac{1}{sqrt{3}}) | (-sqrt{3}) |
п.9. Примеры
Пример 1.
а) Найдите тангенс угла α, если известно, что (sinalpha=0,8, fracpi2 lt alpha lt pi)
Угол находится во второй четверти, значит, косинус отрицательный:
(cosalpha=-sqrt{1-sin^2alpha}=-sqrt{1-0,8^2}=-sqrt{0,36}=-0,6)
Тангенс: (tgalpha=frac{sinalpha}{cosalpha}= frac{0,8}{-0,6}= — frac43= — 1frac13)
б) Найдите котангенс угла, если известно, что (cosalpha=frac{5}{13}, -fracpi2 lt alpha lt 0)
Угол находится в четвертой четверти, значит синус отрицательный:
(sinalpha=-sqrt{1-cos^2alpha}=-sqrt{1-frac{5}{13}^2}=-sqrt{frac{144}{169}}=-frac{12}{13})
Котангенс: (ctgalpha=frac{cosalpha}{sinalpha}=frac{5}{13}:left(-frac{12}{13}right)=-frac{5}{12})
Пример 2. Сравните числа
а) sin20° и tg120°
Угол 20° находится в 1-й четверти, поэтому sin20° > 0
Угол 120° находится в 2-й четверти, поэтому tg120° < 0
Получаем: tg120° < 0 < sin20°
sin20° > tg120°.
б) tg140° и ctg190°
Угол 140° находится во 2-й четверти, поэтому tg140° < 0
Угол 190° находится в 3-й четверти, поэтому ctg190° > 0
Получаем: tg140° < 0 < ctg190°
tg140° < ctg190°.
в) (sin45^{circ}; cos135^{circ}; tg135^{circ}; ctg45^{circ}; 0; frac12; 2)
(sin45^{circ}=frac{sqrt{2}}{2}gt frac12)
(cos135^{circ}=-frac{sqrt{2}}{2}lt 0)
(tg135^{circ}=-1lt-frac{sqrt{2}}{2})
(ctg45^{circ}=1)
Получаем ряд: (-1lt-frac{sqrt{2}}{2}lt0frac12ltfrac{sqrt{2}}{2}lt 2) $$ tg135^{circ}lt cos135^{circ}lt 0ltfrac12lt sin45^{circ}lt ctg45^{circ}lt 2 $$
Пример 3. Запишите числа по возрастанию
а) sin60°; cos60°; tg60°; ctg60°; 0; 1; 2
(sin60^{circ}=frac{sqrt{3}}{2}lt 1)
(cos60^{circ}=frac12ltfrac{sqrt{3}}{2})
(tg60^{circ}=sqrt{3}gt 1)
(ctg60^{circ}=frac{1}{sqrt{3}})
Сравним (frac{1}{sqrt{3}}) и (frac{sqrt{3}}{2}). Для квадратов этих чисел (frac13ltfrac34Rightarrowfrac{1}{sqrt{3}}ltfrac{sqrt{3}}{2})
Сравним (frac{1}{sqrt{3}}) и (frac12). Для квадратов этих чисел (frac13gtfrac14Rightarrow frac{1}{sqrt{3}}gtfrac12)
Получаем ряд: (0lt frac12ltfrac{1}{sqrt{3}}ltfrac{sqrt{3}}{2}lt 1lt sqrt{3}lt 2) $$ 0lt cos60^{circ}lt ctg60^{circ}lt sin60^{circ}lt 1lt tg60^{circ}lt 2 $$
б) sin45°; cos135°; tg135°; ctg45°; 0; (frac12); 2
(sin45^{circ}=frac{sqrt{2}}{2}gt frac12)
(cos135^{circ}=-frac{sqrt{2}}{2}lt 0)
(tg135^{circ}=-1lt-frac{sqrt{2}}{2})
(ctg45^{circ}=1)
Получаем ряд: (-1lt-frac{sqrt{2}}{2}lt 0lt frac12ltfrac{sqrt{2}}{2}lt 1lt 2) $$ tg135^{circ}lt cos135^{circ}lt 0ltfrac12lt sin45^{circ}lt ctg45^{circ}lt 2 $$
Значения тангенса и котангенса на тригонометрическом круге
В прошлой статье мы познакомились с тригонометрическим кругом и научились находить значения синуса и косинуса основных углов.
Как же быть с тангенсом и котангенсом ? Об этом и поговорим сегодня.
Где же на тригонометрическом круге оси тангенсов и котангенсов?
Ось тангенсов параллельна оси синусов (имеет тоже направление, что ось синусов) и проходит через точку (1; 0).
Ось котангенсов параллельна оси косинусов (имеет тоже направление, что ось косинусов) и проходит через точку (0; 1).
На каждой из осей располагается вот такая цепочка основных значений тангенса и котангенса: Почему так?
Я думаю, вы легко сообразите и сами. Можно по-разному рассуждать. Можете, например, использовать тот факт, что и
Собственно, картинка за себя сама говорит.
Если не очень все же понятно, разберем примеры:
Пример 1.
Вычислить
Находим на круге . Эту точку соединяем с точкой (0;0) лучом (начало – точка (0;0)) и смотрим, где этот луч пересекает ось тангенсов. Видим, что
Ответ:
Пример 2.
Вычислить
Находим на круге . Точку (0;0) соединяем с указанной точкой лучом. И видим, что луч никогда не пересечет ось тангенсов.
не существует.
Ответ: не существует
Пример 3.
Вычислить
Находим на круге точку (это та же точка, что и ) и от нее по часовой стрелке (знак минус!) откладываем (). Куда попадаем? Мы окажемся в точке, что на круге у нас (см. рис.) названа как . Эту точку соединяем с точкой (0;0) лучом. Вышли на ось тангенсов в значение .
Так значит,
Ответ:
Пример 4.
Вычислить
Поэтому от точки (именно там будет ) откладываем против часовой стрелки .
Выходим на ось котангенсов, получаем, что
Ответ:
Пример 5.
Вычислить
Находим на круге . Эту точку соединяем с точкой (0; 0). Выходим на ось котангенсов. Видим, что
Ответ:
Теперь, умея находить по тригонометрическому кругу значения тригонометрических функций (а я надеюсь, что статья, где мы начинали знакомство с кругом и учились вычислять значения синусов и косинусов, вами прочитана…), вы можете пройт и тест по теме «Нахождение значений косинуса, синуса, тангенса и котангенса различных углов».
Чтобы не потерять страничку, вы можете сохранить ее у себя:
Котангенс
Котангенс – одна из тригонометрических функций. Как и для всех других функций, значение котангенса определяется для конкретного угла или числа (в этом случае используют числовую окружность).
Аргумент и значение
Аргументом может быть:
— как число или выражение с Пи: (1,3), (frac<π><4>), (π), (-frac<π><3>) и т.п.
— так и угол в градусах: (45^°), (360^°),(-800^°), (1^° ) и т.п.
Для обоих случаев значение котангенса вычисляется одинаковым способом – либо через значения синуса и косинуса, либо через тригонометрический круг (см. ниже).
Котангенс острого угла
Котангенс можно определить с помощью прямоугольного треугольника — он равен отношению прилежащего катета к противолежащему.
1) Пусть дан угол и нужно определить (ctgA).
2) Достроим на этом угле любой прямоугольный треугольник.
3) Измерив, нужные стороны, можем вычислить (ctg;A).
Вычисление котангенса числа или любого угла
Для чисел, а также для тупых, развернутых углов и углов больших (360°) котангенс чаще всего определяют с помощью синуса и косинуса, через их отношение:
Пример. Вычислите (ctg: frac<5π><6>).
Решение: Найдем сначала (frac<5π><6>) на круге. Затем найдем (cos:frac<5π><6>) и (sin:frac<5π><6>), а потом поделим одно на другое.
Решение: Чтобы найти котангенс пи на (2) нужно найти сначала косинус и синус (frac<π><2>). И то, и другое найдем с помощью тригонометрического круга :
Точка (frac<π><2>) на числовой окружности совпадает с (1) на оси синусов, значит (sin:frac<π><2>=1). Если из точки (frac<π><2>) на числовой окружности провести перпендикуляр к оси косинусов, то мы попадем в точку (0), значит (cos:frac<π><2>=0). Получается: (ctg:frac<π><2>=) (frac<2>><2>>) (=)(frac<0><1>)(=0).
Пример. Вычислите (ctg:(-765^circ)).
Решение: (ctg: (-765^circ)=) (frac)
Что бы вычислить синус и косинус (-765^°). Отложим (-765^°) на тригонометрическом круге. Для этого надо повернуть в отрицательную сторону на (720^°) , а потом еще на (45^°).
Однако можно определять значение котангенса и напрямую через тригонометрический круг — для этого надо на нем построить дополнительную ось:
Прямая проходящая через (frac<π><2>) на числовой окружности и параллельная оси абсцисс (косинусов) называется осью котангенсов. Направление оси котангенсов и оси косинусов совпадает.
Ось котангенсов – это фактически копия оси косинусов, только сдвинутая. Поэтому все числа на ней расставляются так же как на оси косинусов.
Чтобы определить значение котангенс с помощью числовой окружности, нужно:
1) Отметить соответствующую аргументу котангенса точку на числовой окружности.
2) Провести прямую через эту точку и начало координат и продлить её до оси котангенсов.
3) Найти координату пересечения этой прямой и оси.
2) Проводим через данную точку и начало координат прямую.
3) В данном случае координату долго искать не придется – она равняется (1).
Пример. Найдите значение (ctg: 30°) и (ctg: (-60°)).
Решение:
Для угла (30°) ((∠COA)) котангенс будет равен (sqrt<3>) (приблизительно (1,73)), потому что именно в таком значении сторона угла, проходящая через начало координат и точку (A), пересекает ось котангесов.
(ctg;(-60°)=frac<sqrt<3>><<3>>) (примерно (-0,58)).
Значения для других часто встречающихся в практике углов смотри в тригонометрической таблице.
В отличие от синуса и косинуса значение котангенса не ограничено и лежит в пределах от (-∞) до (+∞), то есть может быть любым.
При этом котангенс не определен для:
1) всех точек (C) (значение в Пи: …(0), (2π), (4π), (-2π), (-4π) …; и значение в градусах: …(0°),(360°), (720°),(-360°),(-720°)…)
2) всех точек (D) (значение в Пи: …(π), (3π), (5π), (-π), (-3π), (-5π) …; и значение в градусах: …(180°),(540°),(900°),(-180°),(-540°),(-900°)…) .
Так происходит потому, что в этих точках синус равен нулю. А значит, вычисляя значение котангенса мы придем к делению на ноль, что запрещено. И прямая проходящая через начало координат и любую из этих точек никогда не пересечет ось котангенсов, т.к. будет идти параллельно ей. Поэтому в этих точках котангенс – НЕ СУЩЕСТВУЕТ (для всех остальных значений он может быть найден).
Из-за этого при решении тригонометрических уравнений и неравенств с котангенсом необходимо учитывать ограничения на ОДЗ .
Знаки по четвертям
С помощью оси котангенсов легко определить знаки по четвертям тригонометрической окружности. Для этого надо взять любую точку на четверти и определить знак котангенса для нее описанным выше способом. У всей четверти знак будет такой же.
Для примера на рисунке нанесены две зеленые точки в I и III четвертях. Для них значение котангенса положительно (зеленые пунктирные прямые приходят в положительную часть оси), значит и для любой точки из I и III четверти значение будет положительно (знак плюс).
С двумя фиолетовыми точками в II и IV четвертях – аналогично, но с минусом.
Связь с другими тригонометрическими функциями:
— тангенсом того же угла: формулой (tg:x=) (frac<1>)
Другие наиболее часто применяемые формулы смотри здесь .
Синус, косинус, тангенс и котангенс: определения в тригонометрии, примеры, формулы
Тригонометрия — раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии.
Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.
Синус, косинус, тангенс и котангенс. Определения
Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.
Определения тригонометрических функций
Синус угла ( sin α ) — отношение противолежащего этому углу катета к гипотенузе.
Косинус угла ( cos α ) — отношение прилежащего катета к гипотенузе.
Тангенс угла ( t g α ) — отношение противолежащего катета к прилежащему.
Котангенс угла ( c t g α ) — отношение прилежащего катета к противолежащему.
Данные определения даны для острого угла прямоугольного треугольника!
В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.
Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.
Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса — вся числовая прямая, то есть эти функции могут принимать любые значения.
Угол поворота
Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от — ∞ до + ∞ .
В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.
Начальная точка A с координатами ( 1 , 0 ) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A 1 . Определение дается через координаты точки A 1 ( x , y ).
Синус (sin) угла поворота
Синус угла поворота α — это ордината точки A 1 ( x , y ). sin α = y
Косинус угла поворота α — это абсцисса точки A 1 ( x , y ). cos α = х
Тангенс угла поворота α — это отношение ординаты точки A 1 ( x , y ) к ее абсциссе. t g α = y x
Котангенс угла поворота α — это отношение абсциссы точки A 1 ( x , y ) к ее ординате. c t g α = x y
Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой ( 0 , 1 ) и ( 0 , — 1 ). В таких случаях выражение для тангенса t g α = y x просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогично ситуация с котангенсом. Отличием состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.
Синус и косинус определены для любых углов α .
Тангенс определен для всех углов, кроме α = 90 ° + 180 ° · k , k ∈ Z ( α = π 2 + π · k , k ∈ Z )
Котангенс определен для всех углов, кроме α = 180 ° · k , k ∈ Z ( α = π · k , k ∈ Z )
При решении практических примеров не говорят «синус угла поворота α «. Слова «угол поворота» просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.
Числа
Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?
Синус, косинус, тангенс, котангенс числа
Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.
Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.
Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.
Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.
Начальная точка на окружности — точка A c координатами ( 1 , 0 ).
Положительному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .
Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .
Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.
Синус (sin) числа t
Синус числа t — ордината точки единичной окружности, соответствующей числу t. sin t = y
Косинус числа t — абсцисса точки единичной окружности, соответствующей числу t. cos t = x
Тангенс числа t — отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. t g t = y x = sin t cos t
Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.
Тригонометрические функции углового и числового аргумента
Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α , отличным от α = 90 ° + 180 ° · k , k ∈ Z ( α = π 2 + π · k , k ∈ Z ) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α , кроме α = 180 ° · k , k ∈ Z ( α = π · k , k ∈ Z ).
Можно сказать, что sin α , cos α , t g α , c t g α — это функции угла альфа, или функции углового аргумента.
Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу t соответствует определенное значение синуса или косинуса числа t. Всем числам, отличным от π 2 + π · k , k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k , k ∈ Z.
Основные функции тригонометрии
Синус, косинус, тангенс и котангенс — основные тригонометрические функции.
Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.
Связь определений sin, cos, tg и ctg из геометрии и тригонометрии
Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.
Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A ( 1 , 0 ) на угол величиной до 90 градусов и проведем из полученной точки A 1 ( x , y ) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A 1 O H равен углу поворота α , длина катета O H равна абсциссе точки A 1 ( x , y ) . Длина катета, противолежащего углу, равна ординате точки A 1 ( x , y ) , а длина гипотенузы равна единице, так как она является радиусом единичной окружности.
В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.
sin α = A 1 H O A 1 = y 1 = y
Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α , при альфа лежащем в пределах от 0 до 90 градусов.
Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.
http://cos-cos.ru/math/187/
http://zaochnik.com/spravochnik/matematika/trigonometrija/sinus-kosinus-tangens-i-kotangens/
29
Июн 2013
Категория: Справочные материалы
Значения тангенса и котангенса на тригонометрическом круге
2013-06-29
2016-08-04
В прошлой статье мы познакомились с тригонометрическим кругом и научились находить значения синуса и косинуса основных углов.
Как же быть с тангенсом и котангенсом? Об этом и поговорим сегодня.
Где же на тригонометрическом круге оси тангенсов и котангенсов?
Ось тангенсов параллельна оси синусов (имеет тоже направление, что ось синусов) и проходит через точку (1; 0).
Ось котангенсов параллельна оси косинусов (имеет тоже направление, что ось косинусов) и проходит через точку (0; 1).
На каждой из осей располагается вот такая цепочка основных значений тангенса и котангенса: Почему так?
Я думаю, вы легко сообразите и сами. Можно по-разному рассуждать. Можете, например, использовать тот факт, что
и
Изучаем картинку:
Собственно, картинка за себя сама говорит.
Если не очень все же понятно, разберем примеры:
Пример 1.
Вычислить
Решение:
Находим на круге . Эту точку соединяем с точкой (0;0) лучом (начало – точка (0;0)) и смотрим, где этот луч пересекает ось тангенсов. Видим, что
Ответ:
Пример 2.
Вычислить
Решение:
Находим на круге . Точку (0;0) соединяем с указанной точкой лучом. И видим, что луч никогда не пересечет ось тангенсов.
не существует.
Ответ: не существует
Пример 3.
Вычислить
Решение:
Находим на круге точку (это та же точка, что и
) и от нее по часовой стрелке (знак минус!) откладываем
(
). Куда попадаем? Мы окажемся в точке, что на круге у нас (см. рис.) названа как
. Эту точку соединяем с точкой (0;0) лучом. Вышли на ось тангенсов в значение
.
Так значит,
Ответ:
Пример 4.
Вычислить
Решение:
Поэтому от точки (именно там будет
) откладываем против часовой стрелки
.
Выходим на ось котангенсов, получаем, что
Ответ:
Пример 5.
Вычислить
Решение:
Находим на круге . Эту точку соединяем с точкой (0; 0). Выходим на ось котангенсов. Видим, что
Ответ:
Теперь, умея находить по тригонометрическому кругу значения тригонометрических функций (а я надеюсь, что статья, где мы начинали знакомство с кругом и учились вычислять значения синусов и косинусов, вами прочитана…), вы можете пройти тест по теме «Нахождение значений косинуса, синуса, тангенса и котангенса различных углов».
Автор: egeMax |
комментариев 6
Печать страницы