19
Мар 2012
13 Задание (2022) (C2)ВИДЕОУРОКИ
Угол между плоскостями. Метод координат. Задание 14
Угол между плоскостями. Метод координант.
В этой статье я расскажу, как решать задачи на нахождение угла между плоскостями с помощью метода координат.
Сначала немного теории.
Две пересекающиеся плоскости образуют две пары равных между собой двугранных углов.
Величина двугранного угла измеряется величиной соответствующего линейного угла.
Чтобы построить линейный угол двугранного угла, нужно взять на линии пересечения плоскостей произвольную точку, и в каждой плоскости провести к этой точке луч перпендикулярно линии пересечения плоскостей. Угол, образованный этими лучами и есть линейный угол двугранного угла:
Пусть наши плоскости и
заданы уравнениями:
:
:
Косинус угла между плоскостями находится по такой формуле:
В ответе мы записываем , так как величиной угла между плоскостями называется величина меньшего двугранного угла.
Решим задачу, которая была предложена на пробнике для подготовке к ЕГЭ 17 марта 2012 года.
В правильной четырехугольной призме со стороной основания 12 и высотой 21 на ребре
взята точка М так, что
. На ребре
взята точка K так, что
. Найдите угол между плоскостью
и плоскостью
.
Сделаем чертеж. Так как мы будем использовать метод координат, сразу введем систему координат:
Теперь перед нами стоит задача написать уравнения плоскости и плоскости
Подробный алгоритм нахождения уравнения плоскости по трем точкам я описывала здесь.
После того, как мы найдем коэффициенты в уравнениях плоскости и плоскости
, подставим их в формулу для нахождения косинуса угла между плоскостями, и найдем угол.
Предлагаю вам посмотреть подробное видеорешение этой задачи:
КУПИТЬ видеокурс «Векторы и координаты. Часть В и Задание 14»
И.В. Фельдман, репетитор по математике.
Для вас другие записи этой рубрики:
- Решение задачи с параметром с помощью параметрической плоскости. Задание С5
- Видеотека. Решение текстовых задач на проценты.
- Наибольшее и наименьшее значение функции. Задание В15 (2014)
- Видеолекция «Метод координат. Задание 14. Углы в пространстве»
- Задание 14 из ЕГЭ по математике 2.06.2017
- Видеорешение диагностической работы от 1 марта 2012 года
|
Отзывов (50)
| Метки: решение задания С2
Метод координат (углы между векторами и плоскостями)
Нахождение координат и длин вектора.
Вычисление угла между векторами.
Составление уравнение плоскости по трем точкам.
Решение задач с доказательством.
Для того, чтобы успешно решать задачи методом координат, полезно помнить:
Чтобы задать вектор, проходящий черерз 2 точки, нужно из координат второй точки вычесть координаты первой точки.
Чтобы найти длину вектора, нужно извлечь корень квадратный из суммы квадратов его координат.
Задача. Найти координаты и длины векторов AB, BC, AC, если точки имееют координаты А = (5; 8; 3), B = (1; 0; −3), C = (−2; 5; −1).
AB = (1−5; 0-8; −3−3) = (−4; −8; −6)
AC = (−2−5; 5−8; −1−3) = (−7; −3; −4)
BC = (1−(−2); 0−5; −1−3) = (3; −5; −4)
Для нахождения угла между двумя векторами a = (x1; y1; z1) и b = (x2; y2; z2):
Задача. Найдите площадь треугольника, ограниченную точками A = (−4; 4; 4), B = (3; 1; 0), C = (−1; 0; 6).
- Находим координаты векторов.
- Вычисляем косинус угла между векторами.
- Через основное тригометрическое тождество получаем синус.
- Подставляем в формулу площади.
AB = (3−(−4); 1−4; 0−4) = (7; −3; −4)
AC = (−1−(−4); 0−4; 6−4) = (3; −4; 2)
Задача. Задайте уравнение плоскости, проходящей через точки A = (−4; 4; 4), B = (3; 1; 0), C = (−1; 0; 6).
- Находим координаты векторов.
- Задаем матрицу плоскости.
- Вычисляем ее определитель, это и есть уравнение плоскости.
AB = (3−(−4); 1−4; 0−4) = (7; −3; −4)
AC = (−1−(−4); 0−4; 6−4) = (3; −4; 2)
Первая строчка заполняется переменными x, y, z, и из них вычитаются координаты любой точки плоскости. В данном случае вычитается точка С = (−1; 0; 6). Тогда получится такая строка: (x−(−1); y−0; z−6).
Вторая строчка — координаты первого вектора.
Третья строчка — координаты второго вектора (нет разницы какой из векторов задавать во второй строчке, а какой в третьей).
Четвертая заполняется аналогично первой.
Пятая — аналогично второй.
Теперь перемножаем все значения на одном синем отрезке и складываем с другими значениями на других отрезках:
(х+1)*(−3)*2 + 7*(−4)*(z−6) + 3*y*(−4)
Аналогично делаем с зелеными отрезками:
(z−6)*(−3)*3 + (−4)*(−4)*(x+1) + 2*y*7
Осталось из значений синих отрезков вычесть значения зеленых отрезков:
(х+1)*(−3)*2 + 7*(−4)*(z−6) + 3*y*(−4) − ((z−6)*(−3)*3 + (−4)*(−4)*(x+1) + 2*y*7) =
= −22х −26y −19z + 92
−22х −26y −19z + 92 — искомое уравнение плоскости, проходящей через точки A = (−4; 4; 4), B = (3; 1; 0), C = (−1; 0; 6).
P.s. Если вам кажется, что это сложно, то огорчу вас. Одна из первых тем (самых простых), которые вы будите проходить на первом курсе любого университета — это матрицы, так что можно немного облегчить себе жизнь и разобраться заранее.
Задача. Найдите угол между плоскостью, проходящей через точки A = (−4; 4; 4), B = (3; 1; 0), C = (−1; 0; 6), и плоскостью, заданную уравнением
14x + 6y −27z + 51 = 0.
- Задаем уравнение плоскости, проходящей через 3 точки ( нашли в предыдущей задаче).
- Находим косинус угла между плоскостями ( формула аналогична косинусу угла между прямыми).
Будь в курсе новых статеек, видео и легкого математического юмора.
Угол между плоскостями
Содержание:
- Углы между плоскостями — обозначение
-
Расположение плоскостей и формула вычисления угла между ними
- Параллельность
- Перпендикулярность
- Угол между плоскостями
- Примеры решения задач
Углы между плоскостями — обозначение
Определение
Углом между плоскостями именуется такой угол, который образовался между перпендикулярными прямыми, опущенными в пределах этих плоскостей к линии их пересечения.
Рассмотрим данное понятие наглядно с помощью картинки:
Допустим, α и β — пересекающиеся плоскости. Проведем к линии с перпендикуляр a, который принадлежит α. Далее проведем прямую b, лежащую в β и образующую с прямой c угол в 90°. Угол между α и β равен углу, который образовался между а и b, обозначенному на картинке как φ. В записи это выглядит следующим образом:
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
∠(α, β)=∠(а, b)=φ
На схеме видно, что при пересечении α и β возникают четыре угла, но углом между плоскостями считается острый угол. В случае, когда плоскости при пересечении создают прямые углы, они считаются перпендикулярными друг другу.
Расположение плоскостей и формула вычисления угла между ними
Существует несколько вариаций взаимного расположения двух плоскостей.
Параллельность
Теорема
Две плоскости считаются параллельными в том случае, если у них отсутствуют общие точки.
Возьмем за условие, что плоскости α, расположенной в некоторой прямоугольной системе координат, соответствует общее уравнение: А1х+В1у+С1z+D1=0. А плоскость β определяется общим уравнением вида: А2х+В2у+С2z+D2=0.
Согласно теореме о параллельности плоскостей, чтобы α и β являлись параллельными, достаточно отсутствия решений системы линейных уравнений вида:
(left{begin{array}{l}A_1x+B_1y+C_1z+D_1=0\A_2x+B_2y+C_2z+D_2=0end{array}right.)
То есть приведенная выше система должна быть несовместной.
Доказательство
Допустим, указанные плоскости, соответствующие уравнениям А1х+В1у+С1z+D1=0 и А2х+В2у+С2z+D2=0 параллельны друг другу, следовательно, у них отсутствуют общие точки. Это значит, что нет ни одной точки в прямоугольной системе координат, находящейся в трехмерном пространстве, чьи координаты отвечали бы условиям обоих уравнений одновременно или:
(left{begin{array}{l}A_1x+B_1y+C_1z+D_1=0\A_2x+B_2y+C_2z+D_2=0end{array}right.)
не имеет решения.
В случае, если данная система уравнений не имеет решений, то в прямоугольной системе координат трехмерного пространства отсутствуют точки с координатами, одновременно отвечающими условиям обоих уравнений, входящих в рассматриваемую систему. Отсюда можно сделать вывод, что плоскости α и β с соответствующими им уравнениями А1х+В1у+С1z+D1=0 и А2х+В2у+С2z+D2=0 не обладают ни одной общей точкой, а значит, являются параллельными. Теорема доказана.
Перпендикулярность
Две плоскости перпендикулярны друг другу, в ситуации, когда они при взаимном пересечении образуют прямой угол, то есть угол в 90°.
Теорема
Если одна из двух плоскостей проходит через прямую, которая перпендикулярна другой плоскости, то такие плоскости являются перпендикулярными.
Доказательство
Пусть: AB∈α, AB⊥β, AB∩β=A.
Необходимо доказать, что α⊥β.
- α∩β=AC, причем AB⊥AC по условию.
- Проведем прямую AD, принадлежащую плоскости β и перпендикулярную AC.
- ∠BAD=90°, поскольку AB⊥β. Следовательно, заданные плоскости перпендикулярны, что и требовалось доказать.
Следствие
Плоскость, перпендикулярная к прямой, по которой пересекаются две заданные плоскости, перпендикулярна к каждой из этих плоскостей.
Теорема
Явность перпендикулярных пересекающихся плоскостей достигается при необходимом и достаточном условии, что нормальные векторы данных плоскостей при пересечении образовали прямой угол.
Доказательство
Допустим, в трехмерном пространстве существует некоторая прямоугольная система координат. При наличии нормальных векторов заданных плоскостей α и β с координатами:
(overrightarrow{n_1}=(A_1,B_1,C_1),)
(overrightarrow{n_2}=(A_2,B_2,C_2),)
то необходимо и достаточно, чтобы эти векторы приняли вид:
(left(overrightarrow{n_1},overrightarrow{;n_2}right)=0Leftrightarrow A_1times A_2+B_1times B_2+C_1times C_2=0)
Отсюда следует, что:
(overrightarrow{n_1}=(A_1,B_1,C_1),)
(overrightarrow{n_2}=(A_2,B_2,C_2))
— нормальные векторы плоскостей α и β. Чтобы заданные плоскости были перпендикулярными, достаточно, чтобы скалярное произведение данных векторов ровнялось нулю, то есть принимало вид:
(left(overrightarrow{n_1},overrightarrow{;n_2}right)=0Leftrightarrow A_1times A_2+B_1times B_2+C_1times C_2=0)
Равенство соблюдено.
Угол между плоскостями
Для вычисления угла между двумя пересекающимися плоскостями используют метод координат. Суть данного способа заключается в нахождении косинуса угла, образованного при пересечении плоскостей.
Предположим, что плоскости P1 и P2 заданы следующими уравнениями:
(P_1:;A_1x+B_1y+C_1z+D_1=0,;{overline N}_1=left(A_1,B_1,C_1right);)
(P_2:;A_2x+B_2y+C_2z+D_2=0,;{overline N}_2=left(A_2,B_2,C_2right))
Найдем косинус угла между P1 и P2 по формуле:
(cosleft(overbrace{P_1,P_2}right)=frac{overline{N_1}timesoverline{N_2}}{left|overline{N_1}right|timesleft|overline{N_2}right|}frac{A_1times A_2+B_1times B_2+C_1times C_2}{sqrt{A_1^2+B_1^2+C_1^2}timessqrt{A_2^2+B_2^2+C_2^2}})
Запишем в ответе модуль косинуса угла, поскольку за величину угла между плоскостями принимают острый угол.
Примеры решения задач
Задача №1
Плоскости заданы уравнениями:
(alpha:;x-y+1=0)
(beta:y-z+1=0)
Определить пересекаются ли α и β. В случае пересечения заданных плоскостей найти угол между ними.
Решение:
Найдем угол между заданными плоскостями:
(alpha:;x-y+1=0,Rightarrowoverline{N_1}=(1,-1,0);)
(beta:;y-z+1=0,Rightarrowoverline{N_2}=(0,1,-1))
Далее вычислим косинус угла между α и β:
(cosleft(overbrace{alpha,beta}right)=frac{overline{N_1}timesoverline{N_2}}{left|overline{N_1}right|timesleft|overline{N_2}right|}=frac{1times0+left(-1right)times1+0timesleft(-1right)}{sqrt{1^2+left(-1right)^2+0^2}timessqrt{0^2+1^2+left(-1right)^2}}=frac{-1}{sqrt4}=-frac12)
В ответе запишем модуль найденной величины.
Ответ: плоскости α и β пересекаются, а косинус угла между ними равен ½.
Задача №2
Плоскость α проходит через точку A(1,1,−1) и перпендикулярна к плоскостям, заданным уравнениями:
(beta:;2x-y+5z+3=0;)
(varphi:;x+3y-z-7=0)
Составьте уравнение плоскости α.
Решение:
Необходимым и достаточным условием перпендикулярности α к плоскостям β и φ является параллельность α к нормалям β и φ — N1 и N2, иными словами, α должна быть перпендикулярна к произведению векторов [N1,N2].
(x = {-b pm sqrt{b^2-4ac} over 2a}beta:;2x-y+5z+3=0,Rightarrow;overline{N_1}=left(2,-1,5right))
(varphi:;x+3y-z-73=0,Rightarrow;overline{N_2}=left(1,3,-1right))
(left[N_1,N_2right]=begin{vmatrix}i&j&k\2&-1&5\1&3&-1end{vmatrix}=ileft(1-15right)-jleft(-2-5right)+kleft(6+1right)=-14i+7j+7k)
Следующим шагом выпишем уравнение плоскости α, проходящей через точку A(1,1,−1) и перпендикулярную вектору [N1,N2]=(−14,7,7):
(-14left(x-1right)+7left(y-1right)+7left(z+1right)=left.0right|:7)
(-2left(x-1right)+y-1+z+1=0)
(−2x+y+z+2=0)
Ответ: (−2x+y+z+2=0.)
Угол между плоскостями.
Определение.
Двугранный угол между плоскостями равен углу образованному нормальными векторами этих плоскостей.
Определение.
Двугранный угол между плоскостями равен углу образованному прямыми l1 и l2, лежащими в соответствующих плоскостях и перпендикулярными линии пересечения плоскостей.
Формула для вычисления угла между плоскостями
Если заданы уравнения плоскостей A1x + B1y + C1z + D1 = 0 и A2x + B2y + C2z + D2 = 0, то угол между плоскостями можно найти, используя следующую формулу
cos α = | |A1·A2 + B1·B2 + C1·C2| |
√A12 + B12 + C12√A22 + B22 + C22 |
Примеры задач на вычисление угла между плоскостями
Пример 1.
Найти угол между плоскостями 2x + 4y — 4z — 6 = 0 и 4x + 3y + 9 = 0.
Решение. Подставим в формулу вычисления угла между плоскостями соответствующие коэффициенты:
cos α =
|2·4 + 4·3 + (-4)·0|√22 + 42 + (-4)2√42 + 32 + 02
=
|8 + 12|√36√25
=
2030
=
23
Ответ: косинус угла между плоскостями равен cos α = 23.
Угол между плоскостями. Онлайн калькулятор
С помощю этого онлайн калькулятора можно найти угол между плоскостями. Дается подробное решение с пояснениями. Для вычисления угла между плоскостями, введите элементы уравнения плоскостей в ячейки и нажимайте на кнопку «Решить».
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Угол между плоскостями − теория
Пусть заданы две плоскости α и β общими уравнениями
Из определения скалярного произведения, имеем
(3) |
Тогда из (3) можно найти косинус угла между нормальными векторами n1 и n2:
(4) |
Учитывая, что (n1, n2)=A1A2+B1B2+C1C2 и длины векторов |n1|= и |n2|=
выражение (4) можно записать так:
(5) |
Таким образом косинус угла между нормальными векторами и, следовательно, косинус угла между плоскостями α и β определяется формулой (5). Далее можно найти угол φ с помощью функции arccos.
Отметим, что пересекающиеся плоскости образую два угла. Другой угол можно найти так: φ‘=180−φ.
Угол между плоскостями.
Формула для вычисления угла между плоскостями
Если заданы уравнения плоскостей A1 x + B1 y + C1 z + D1 = 0 и A2 x + B2 y + C2 z + D2 = 0, то угол между плоскостями можно найти, используя следующую формулу
cos α = | |A1·A2 + B1·B2 + C1·C2| |
√ A1 2 + B1 2 + C1 2 √ A2 2 + B2 2 + C2 2 |
Примеры задач на вычисление угла между плоскостями
Решение. Подставим в формулу вычисления угла между плоскостями соответствующие коэффициенты:
cos α = |2·4 + 4·3 + (-4)·0| √ 2 2 + 4 2 + (-4) 2 √ 4 2 + 3 2 + 0 2 = |8 + 12| √ 36 √ 25 = 20 30 = 2 3
Ответ: косинус угла между плоскостями равен cos α = 2 3 .
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Угол между плоскостями. Метод координат. Задание 14
Угол между плоскостями. Метод координант.
В этой статье я расскажу, как решать задачи на нахождение угла между плоскостями с помощью метода координат.
Сначала немного теории.
Две пересекающиеся плоскости образуют две пары равных между собой двугранных углов.
Величина двугранного угла измеряется величиной соответствующего линейного угла.
Чтобы построить линейный угол двугранного угла, нужно взять на линии пересечения плоскостей произвольную точку, и в каждой плоскости провести к этой точке луч перпендикулярно линии пересечения плоскостей. Угол, образованный этими лучами и есть линейный угол двугранного угла:
Пусть наши плоскости и заданы уравнениями:
:
:
Косинус угла между плоскостями находится по такой формуле:
В ответе мы записываем , так как величиной угла между плоскостями называется величина меньшего двугранного угла.
Решим задачу, которая была предложена на пробнике для подготовке к ЕГЭ 17 марта 2012 года.
В правильной четырехугольной призме со стороной основания 12 и высотой 21 на ребре взята точка М так, что . На ребре взята точка K так, что . Найдите угол между плоскостью и плоскостью .
Сделаем чертеж. Так как мы будем использовать метод координат, сразу введем систему координат:
Теперь перед нами стоит задача написать уравнения плоскости и плоскости
Подробный алгоритм нахождения уравнения плоскости по трем точкам я описывала здесь.
После того, как мы найдем коэффициенты в уравнениях плоскости и плоскости , подставим их в формулу для нахождения косинуса угла между плоскостями, и найдем угол.
Предлагаю вам посмотреть подробное видеорешение этой задачи:
http://ru.onlinemschool.com/math/library/analytic_geometry/plane_angl/
http://ege-ok.ru/2012/03/19/ugol-mezhdu-ploskostyami-metod-koordinat-zadanie-14