Как найти корни в тригонометрической форме

Извлечение корня из комплексного числа

30 ноября 2021

Третий урок по комплексным числам. В этом уроке вы узнаете:

  1. Определение комплексного корня;
  2. Основная формула — как извлекать корни;
  3. Геометрическая интерпретация;
  4. Почему корней всегда ровно n;
  5. Краткие выводы — если лень читать урок.:)

Начнём с ключевого определения.

1. Определение комплексного корня

Определение. Корнем $n$-й степени из комплексного числа $z$, где $nin mathbb{N}$, $n gt 1$, называется такое комплексное число $omega $, что

[{{omega }^{n}}=z]

т.е. $n$-я степень числа $omega $ равна $z$.

Таких корней на множестве комплексных чисел всегда будет ровно $n$ штук. Все они обозначаются привычным знаком радикала:

[omega =sqrt[n]{z}]

Пример. Вычислить $sqrt[3]{-1}$ на множестве комплексных чисел.

Очевидно, привычная нам единица является таким корнем, потому что ${{left( -1 right)}^{3}}=-1$. Но есть ещё два корня:

[begin{align} {{left( frac{1}{2}+icdot frac{sqrt{3}}{2} right)}^{3}} &={{left( 1cdot left( cos frac{pi }{3}+icdot sin frac{pi }{3} right) right)}^{3}}= \ & =1cdot left( cos pi +isin pi right)=-1 \ {{left( frac{1}{2}-icdot frac{sqrt{3}}{2} right)}^{3}} &={{left( 1cdot left( cos left( -frac{pi }{3} right)+icdot sin left( -frac{pi }{3} right) right) right)}^{3}}= \ & =1cdot left( cos left( -pi right)+isin left( -pi right) right)=-1 end{align}]

Итого три корня. Как и предполагалось.

Теорема. Для любого комплексного числа $zne 0$ существует ровно $n$ комплексных чисел, каждое из которых является корнем $n$-й степени из числа $z.$

Все эти корни считаются по следующей формуле.

2. Формула корней

Теорема. Пусть комплексное число записано в тригонометрической форме:

[z=left| z right|cdot left( cos varphi +isin varphi right)]

Тогда все корни степени $n$ из этого числа можно найти по формуле:

[begin{align} sqrt[n]{z} & =sqrt[n]{left| z right|}cdot left( cos frac{varphi +2pi k}{n}+isin frac{varphi +2pi k}{n} right) \ k & in left{ 0,1,2,…,n-1 right} \ end{align}]

По сути, эта теорема является обратной к формуле Муавра:

[{{z}^{n}}={{left| z right|}^{n}}cdot left( cos nvarphi +isin n varphi right)]

Почему степень всегда одна, а корней несколько — об этом в конце урока. Сейчас для нас главное — алгоритм извлечения корня из комплексного числа. Он состоит из четырёх шагов:

  1. Перевести комплексное число в тригонометрическую форму;
  2. Записать общую формулу корня степени $n$;
  3. Подставить в эту формулу $k=0$, затем $k=1$ и так до $k=n-1$.
  4. Получим $n$ комплексных корней. Вместе они и будут ответом.

В ответе всегда будет набор из $n$ чисел. Потому что невозможно однозначно извлечь корень из комплексного числа $zne 0$.

Пример. Вычислить $sqrt[3]{-8i}$.

Представим число $-8i$ в тригонометрической форме:

[begin{align} -8i &=0+left( -8 right)cdot i= \ & =8cdot left( 0+left( -1 right)cdot i right)= \ & =8cdot left( cos left( -frac{pi }{2} right)+isin left( -frac{pi }{2} right) right) end{align}]

Запишем формулу корней в общем виде:

[begin{align} sqrt[3]{-8i} & =sqrt[3]{8cdot left( cos left( -frac{pi }{2} right)+isin left( -frac{pi }{2} right) right)}= \ & =sqrt[3]{8}cdot left( cos frac{-frac{pi }{2}+2pi k}{3}+isin frac{-frac{pi }{2}+2pi k}{3} right)= \ & =2cdot left( cos left( -frac{pi }{6}+frac{2pi k}{3} right)+isin left( -frac{pi }{6}+frac{2pi k}{3} right) right) \ end{align}]

Подставим $k=0$:

[sqrt[3]{-8i}=2cdot left( cos left( -frac{pi }{6} right)+isin left( -frac{pi }{6} right) right)=sqrt{3}-i]

Подставим $k=1$:

[sqrt[3]{-8i}=2cdot left( cos frac{pi }{2}+isin frac{pi }{2} right)=2i]

И, наконец, $k=2$:

[sqrt[3]{-8i}=2cdot left( cos frac{7pi }{6}+isin frac{7pi }{6} right)=-sqrt{3}-i]

В ответе нужно указать все три числа: $2i$; $sqrt{3}-i$; $-sqrt{3}-i$.

Ещё раз: подставляя разные $k$, мы будем получать разные корни. Всего таких корней будет ровно $n$. А если взять $k$ за пределами диапазона $left{ 0,1,…,n-1 right}$, то корни начнут повторяться, и ничего нового мы не получим.

3. Геометрическая интерпретация

Если отметить на комплексной плоскости все значения корня $n$-й степени из некоторого комплексного числа $zne 0$, то все они будут лежать на окружности с центром в начале координат и радиусом $R=sqrt[n]{left| z right|}$. Более того: эти точки образуют правильный $n$-угольник.

Отметить на комплексной плоскости все числа вида $sqrt[3]{i}$.

Представим число $z=i$ в тригонометрической форме:

[begin{align} z & =1cdot left( 0+icdot 1 right)= \ & =1cdot left( cos frac{pi }{2}+isin frac{pi }{2} right) end{align}]

Формула комплексных корней:

[sqrt[3]{z}=1cdot left( cos left( frac{pi }{6}+frac{2pi k}{3} right)+isin left( frac{pi }{6}+frac{2pi k}{3} right) right)]

Это три точки ${{z}_{1}}$, ${{z}_{2}}$ и ${{z}_{3}}$ на окружности радиуса $R=1$:

Получили правильный треугольник. Его первая вершина лежит на пересечении окружности радиуса 1 и начального луча, который образован поворотом оси $OX$ на угол ${pi }/{6};$.

Рассмотрим более сложный пример:

Отметить на комплексной плоскости все числа вида $sqrt[4]{1+i}$.

Сразу запишем формулу корней с выделением начального луча:

[sqrt[4]{z}=sqrt[8]{2}cdot left( cos left( frac{pi }{16}+frac{pi k}{2} right)+isin left( frac{pi }{16}+frac{pi k}{2} right) right)]

Отмечаем эти точки на комплексной плоскости. Радиус окружности $R=sqrt[8]{2}$, начальный луч ${pi }/{16};$:

И вновь всё чётко: четыре точки — правильный четырёхугольник, т.е. квадрат. С отклонением начального луча ${pi }/{16};$.

Ну и ещё один пример — вновь без промежуточных вычислений. Только формулировка задачи, формула корней и окончательный чертёж:

Отметить на комплексной плоскости все числа вида $sqrt[6]{-64}$.

Формула корней с выделением начального луча:

[sqrt[6]{z}=2cdot left( cos left( frac{pi }{6}+frac{pi k}{3} right)+isin left( frac{pi }{6}+frac{pi k}{3} right) right)]

Получили правильный шестиугольник со стороной 2 и начальным лучом ${pi }/{6};$.

Таким образом, мы получаем «графический» алгоритм извлечения корня $n$-й степени из комплексного числа $zne 0$:

  1. Перевести число в тригонометрическую форму;
  2. Найти модуль корня: $sqrt[n]{left| z right|}$ — это будет радиусом окружности;
  3. Построить начальный луч с отклонением $varphi ={arg left( z right)}/{n};$;
  4. Построить все остальные лучи с шагом ${2pi }/{n};$;
  5. Получим точки пересечения лучей с окружностью — это и есть искомые корни.

Такой алгоритм прекрасно работает, когда аргумент исходного числа и отклонение начального луча $varphi $ — стандартные «табличные» углы вроде ${pi }/{6};$. На практике чаще всего именно так и бывает. Поэтому берите на вооружение.:)

4. Почему корней всегда ровно n

С геометрической точки зрения, всё очевидно: если мы будем последовательно зачёркивать вершины правильного $n$-угольника, то ровно через $n$ шагов все вершины будут зачёркнуты. И для дальнейшего зачёркивания придётся выбирать вершину среди уже зачёркнутых.

Однако рассмотрим проблему с точки зрения алгебры. Ещё раз запишем формулу корня $n$-й степени:

[begin{align} sqrt[n]{z} & =sqrt[n]{left| z right|}cdot left( cos frac{varphi +2pi k}{n}+isin frac{varphi +2pi k}{n} right) \ k & in left{ 0;1;2;…;n-1 right} \ end{align}]

Последовательно подставим в эту формулу указанные значения параметра $k$:

[begin{align} {{omega }_{0}} & =sqrt[n]{left| z right|}cdot left( cos frac{varphi }{n}+isin frac{varphi }{n} right) \ {{omega }_{1}} & =sqrt[n]{left| z right|}cdot left( cos frac{varphi +2pi }{n}+isin frac{varphi +2pi }{n} right) \ & … \ {{omega }_{n-1}} & =sqrt[n]{left| z right|}cdot left( cos frac{varphi +2pi cdot left( n-1 right)}{n}+isin frac{varphi +2pi cdot left( n-1 right)}{n} right) \ end{align}]

Очевидно, последняя строка получена при $k=n-1$. Подставим теперь $k=n$:

[begin{align} {{omega }_{n}} & =sqrt[n]{left| z right|}cdot left( cos frac{varphi +2pi n}{n}+isin frac{varphi +2pi n}{n} right)= \ & =sqrt[n]{left| z right|}cdot left( cos left( frac{varphi }{n}+2pi right)+isin left( frac{varphi }{n}+2pi right) right)= \ & =sqrt[n]{left| z right|}cdot left( cos frac{varphi }{n}+isin frac{varphi }{n} right)={{omega }_{0}} \ end{align}]

Поскольку синус и косинус — периодические функции с периодом $2pi $, ${{omega }_{n}}={{omega }_{0}}$, и далее корни будут повторяться. Как мы и заявляли в самом начале урока.

5. Выводы

Ключевые факты из урока.

Определение. Корень степени $n$ из комплексного числа $z$ — это такое число $omega $, что ${{omega }^{n}}=z$.

Обозначение. Для обозначения комплексных корней используется знакомый знак радикала: $omega =sqrt[n]{z}$.

Замечание. Если $zne 0$, таких чисел корней будет ровно $n$ штук.

Алгоритм нахождения корней состоит из двух шагов.

Шаг 1. Представить исходное число в тригонометрической форме:

[z=left| z right|cdot left( cos varphi +isin varphi right)]

Шаг 2. Воспользоваться формулой Муавра для вычисления корней:

[begin{align} sqrt[n]{z} & =sqrt[n]{left| z right|}cdot left( cos frac{varphi +2pi k}{n}+isin frac{varphi +2pi k}{n} right) \ k & in left{ 0;1;2;…;n-1 right} \ end{align}]

Все полученные корни лежат на окружности радиуса $sqrt[n]{left| z right|}$ с центром в начале координат и являются вершинами правильного $n$-угольника. Первая вершина лежит на т.н. «начальном луче», который отклонён от положительной полуоси $OX$ на угол ${varphi }/{n};$. Остальные вершины обычно легко находятся из соображений симметрии с помощью циркуля и линейки.

Геометрическую интерпретацию можно использовать для быстрого «графического» извлечения корней. Но это требует практики и хорошего понимания, что именно и зачем вы делаете. Технология такого извлечения корней описана выше в разделе «Геометрическая интерпретация».

Всё. В следующем уроке начнём решать уравнения в комплексных числах.:)

Смотрите также:

  1. Тригонометрическая форма комплексного числа
  2. Системы линейных уравнений: основные понятия
  3. Радианная мера угла
  4. Как представить обычную дробь в виде десятичной
  5. Задача B2 на проценты: железнодорожные билеты
  6. Логарифмические уравнения в задаче C1

Комплексные числа в тригонометрической
и показательной формах

Тригонометрическая форма комплексного числа

Каждому комплексному числу z=x+iy геометрически соответствует точка M(x,y) на плоскости Oxy. Но положение точки на плоскости, кроме декартовых координат (x,y), можно зафиксировать другой парой — ее полярных координат (r,varphi) в полярной системе (рис. 1.3,a).

Величина r является неотрицательной и для данной точки определяется единственным образом, а угол varphi может принимать бесчисленное множество значений (при этом zne0): если точке соответствует некоторое значение varphi_0, то ей также соответствуют значения varphi=varphi_0+2kpi,~ k=0,pm1,pm2,ldots. Например, если для точки z=-1-i (см. рис. 1.1) выбрать varphi_0=frac{5pi}{4}, то ей соответствует любое varphi=frac{5pi}{4}+2kpi,~ k=0,pm1,ldots, в частности varphi=-frac{3pi}{4} при k=-1. Если же выбрать varphi_0=-frac{3pi}{4}, то varphi=-frac{3pi}{4}+2kpi,~ k=0,pm1,ldots, а при k=1 получаем varphi=frac{5pi}{4}.

Положение точки на плоскости в полярных координатах

Используя связь декартовых и полярных координат точки Mcolon begin{cases} x=rcosvarphi,\ y=rsinvarphiend{cases} (рис. 1.3,б), из алгебраической формы записи комплексного числа z=x+iy получаем тригонометрическую форму:

z=r bigl(cosvarphi+isinvarphibigr).

(1.3)


Показательная форма комплексного числа

Если обозначить комплексное число z, у которого operatorname{Re}z= cosvarphi, а operatorname{Im}z=sinvarphi, через e^{i,varphi}, то есть cosvarphi+isinvarphi=e^{i,varphi}, то из (1.3) получим показательную форму записи комплексного числа:

z=r,e^{i,varphi}.

(1.4)

Равенство e^{i,varphi}= cosvarphi+isinvarphi называется формулой Эйлера.

Заметим, что геометрически задание комплексного числа z=(r,varphi) равносильно заданию вектора overrightarrow{OM}, длина которого равна r, то есть bigl|overrightarrow{OM}bigr|=r, а направление — под углом varphi к оси Ox (рис. 1.3,б).


Модуль комплексного числа

Число r — длина радиуса-вектора точки M(x,y) называется модулем комплексного числа z=x+iy. Обозначение: |z|=r.

Из рис. 1.3,б получаем формулу для нахождения модуля числа, заданного и алгебраической форме z=x+iycolon

|z|=sqrt{x^2+y^2},.

(1.5)

Геометрический смысл модуля комплексного числа

Очевидно, что |z|geqslant0 и |z|=0 только для числа z=0~(x=0,,y=0).

С помощью правила вычитания запишем модуль числа z=z_1-z_2, где z_1=x_1+iy_1 и z_2=x_2+iy_2,colon

bigl|z_1-z_2bigr|= sqrt{(x_1-x_2)^2+(y_1-y_2)^2},.

А это, как известно, есть формула для расстояния между точками M_1(x_1,y_1) и M_2(x_2,y_2).

Таким образом, число |z_1-z_2| есть расстояние между точками z_1 и z_2 на комплексной плоскости.

Пример 1.13. Найти модули комплексных чисел:

bold{1)}~z_1=2,~z_2=-2+sqrt{3},;qquad bold{2)}~z_3=-2i,~ z_4=(2-sqrt{3})i,;qquad bold{3)}~ z_5=-1+2i,.

Решение


Аргумент комплексного числа

Полярный угол varphi точки M(x,y) называется аргументом комплексного числа z=x+iy. Обозначение: varphi=arg z.

В дальнейшем, если нет специальных оговорок, под arg z будем понимать значение varphi, удовлетворяющее условию -pi<varphileqslantpi. Так, для точки z=-1-i (см. рис. 1.1) arg z=-frac{3pi}{4}.

Формулу для нахождения аргумента комплексного числа z=x+iy, заданного в алгебраической форме, получаем, используя связь декартовых и полярных координат точки M(x,y) (см. рис. 1.3,б). Для точек, не лежащих на мнимой оси, т.е. для z, у которых xne0, получаем operatorname{tg}varphi= frac{y}{x}; для точек мнимой положительной полуоси, т.е. для z, у которых x=0,~ y>0, имеем varphi=frac{pi}{2}; для точек мнимой отрицательной полуоси, т.е. для z, у которых x=0,~ y<0, соответственно varphi=-frac{pi}{2}.

Аргумент числа z=0 — величина неопределенная.

Нахождение аргумента при xne0 сводится к решению тригонометрического уравнения operatorname{tg}varphi= frac{y}{x}. При y=0, т.е. когда z=x — число действительное, имеем varphi=0 при x>0 и varphi=pi при x<0. При yne0 решение уравнения зависит от четверти плоскости Oxy. Четверть, в которое расположена точка z, определяется по знакам operatorname{Re}z и operatorname{Im}z. В результате получаем:

Аргумент комплексного числа

arg z= begin{cases}operatorname{arctg}dfrac{y}{x},& x>0;\ pi+operatorname{arctg}dfrac{y}{x},& x<0,ygeqslant0;\ -pi+operatorname{arctg}dfrac{y}{x},& x<0,y<0;\ dfrac{pi}{2},& x=0,~y>0;\ -dfrac{pi}{2},& x=0,~y<0.end{cases}

(1.6)

При решении примеров удобно пользоваться схемой, которая изображена на рис. 1.5.

Пример 1.14. Найти аргументы чисел из примера 1.13.

Решение

Пример 1.15. Найти модуль и аргумент числа z=2-i.

Решение. Находим |z|=sqrt{2^2+(-1)^2}= sqrt{5}. Так как operatorname{Re}z=2>0,~ operatorname{Im}z=-1<0, т.е. точка расположена в четвертой четверти, то из равенства operatorname{tg}varphi=-frac{1}{2} получаем varphi= operatorname{arctg}!left(-frac{1}{2}right) (рис. 1.5).


Главное значение аргумента комплексного числа

Аргумент комплексного числа определяется неоднозначно. Это следует из неоднозначности задания величины угла varphi для данной точки, а также из тригонометрической формы записи комплексного числа и свойства периодичности функций sinvarphi и cosvarphi.

Всякий угол, отличающийся от arg z на слагаемое, кратное 2pi, обозначается operatorname{Arg}z и записывается равенством:

operatorname{Arg}z=arg z+2kpi,quad k=0,pm1,pm2,ldots,

(1.7)

где arg z — главное значение аргумента, -pi<arg zleqslantpi.

Комплексные числа с нулевыми вещественными и мнимыми частями

Пример 1.16. Записать arg z и operatorname{Arg}z для чисел z_1=1,~ z_2=-1,~ z_3=i,~ z_4=-i.

Решение. Числа z_1 и z_2 — действительные, расположены на действительной оси (рис. 1.6), поэтому

arg z_1=0,~~ operatorname{Arg}z_1=2kpi;qquad arg z_2=pi,~~ operatorname{Arg}z_2= pi+2kpi,quad k=0,pm1,pm2,ldots;

числа z_3 и z_4 — чисто мнимые, расположены на мнимой оси (рис. 1.6), поэтому

arg z_3=frac{pi}{2},~~ operatorname{Arg}z_3=frac{pi}{2}+2kpi;qquad arg z_4=-frac{pi}{2},~~ operatorname{Arg}z_4= -frac{pi}{2}+2kpi,quad k=0,pm1, pm2,ldots

Пример 1.17. Записать комплексные числа из примера 1.16:

а) в тригонометрической форме;

б) в показательной форме.

Решение

Модули всех чисел, очевидно, равны 1. Поэтому, используя решение предыдущего примера и формулы (1.3) и (1.4), получаем:

а) 1=cos2kpi+ isin2kpi;~~ -1=cos(pi+2kpi)+ isin(pi+2kpi);~~ k=0,pm1,pm2,ldots

i=cos!left(frac{pi}{2}+2kpiright)+ isin!left(frac{pi}{2}+2kpiright);quad -i=cos!left(-frac{pi}{2}+2kpiright)+ isin!left(-frac{pi}{2}+2kpiright);

б) 1=e^{2kpi i};~~ -1=e^{(pi+2kpi)i};~~ i=e^{left(frac{pi}{2}+2kpiright)i};~~ -i=e^{left(-frac{pi}{2}+2kpiright)i},~~ k=0,pm1,pm2,ldots.

Пример 1.18. Записать в тригонометрической форме числа z_1=-1-i,~ z_2=cosfrac{pi}{5}-isinfrac{pi}{5},~ z_3= ileft(cosfrac{pi}{5}-isinfrac{pi}{5}right).

Решение

Числа z_1 и z_2 записаны в алгебраической форме (заметим, что заданная запись числа z_2 не является тригонометрической формой записи (сравните с (1.3)). Находим модули чисел по формуле (1.5):

|z_1|= sqrt{(-1)^2+(-1)^2}= sqrt{2},,qquad |z_2|=sqrt{cos^2 frac{pi}{5}+ left(-sin frac{pi}{5}right)^2}=1.

Далее находим аргументы. Для числа z_1 имеем operatorname{tg}varphi=1 и, так как operatorname{Re}z_1<0,~ operatorname{Im}z_1<0 (точка расположена в третьей четверти), получаем arg z_1=-pi+frac{pi}{4}=-frac{3pi}{4} (см. рис. 1.5). Для числа z_2 имеем operatorname{tg}varphi=-operatorname{tg}frac{pi}{5}, или operatorname{tg}varphi= operatorname{tg}left(-frac{pi}{5}right), и, так как operatorname{Re}z_2>0,~ operatorname{Im}z_2<0 (точка расположена в четвертой четверти (см. рис. 1.5)), получаем arg z_2=-frac{pi}{5}.

Записываем числа z_1 и z_2 в тригонометрической форме

begin{gathered}z_1= sqrt{2} left[cosleft(-frac{3pi}{4}+2kpiright)+ isinleft(-frac{3pi}{4}+2kpiright)right];\[5pt] z_2= cosleft(-frac{pi}{5}+2kpiright)+ isinleft(-frac{pi}{5}+ 2kpiright)!,quad k=0,pm1,pm2,ldots end{gathered}

Заметим, что для числа z_2 решение можно найти иначе, а именно используя свойства тригонометрических функций: cosalpha=cos(-alpha),~ -sinalpha=sin(-alpha).

Число z_3 является произведением двух чисел. Выполнив умножение, получим алгебраическую форму записи (найдем operatorname{Re}z_3 и operatorname{Im}z_3): z_3=sin frac{pi}{5}+ icos frac{pi}{5}. Здесь, как и для числа z_2, при решении удобно использовать преобразования тригонометрических выражений, а именно sinfrac{pi}{5}= cos!left(frac{pi}{2}-frac{pi}{5}right)!,~ cosfrac{pi}{5}= sin!left(frac{pi}{2}-frac{pi}{5}right).

Рассуждая, как выше, найдем |z_3|=1,~ arg z_3=frac{pi}{2}-frac{pi}{5}= frac{3pi}{10}. Для числа z_3=sin frac{pi}{5}+ icos frac{pi}{5}, записанного в алгебраической форме, получаем тригонометрическую форму:

z_3= cos!left(frac{3pi}{10}+2kpiright)+ isin!left(frac{3pi}{10}+2kpiright)!,quad k=0,pm1,pm2,ldots


Равенство комплексных чисел в тригонометрической форме

Условия равенства комплексных чисел получаем, используя геометрический смысл модуля и аргумента комплексного числа, заданного в тригонометрической форме. Так, для чисел z_1=r_1(cosvarphi_1+ isinvarphi_1), z_2=r_2(cosvarphi_2+ isinvarphi_2), из условия z_1=z_2. очевидно, следует:

r_1=r_2;qquad varphi_1-varphi_2=2kpi,quad k=0,pm1,pm2,ldots

или

|z_1|=|z_2|,quad operatorname{Arg}z_1-operatorname{Arg}z_2= 2kpi,quad k=0,pm1,pm2,ldots

(1.8)

Аргументы равных комплексных чисел либо равны (в частности равны главные значения), либо отличаются на слагаемое, кратное 2pi.

Для пары сопряженных комплексных чисел z и overline{z} справедливы следующие равенства:

|overline{z}|= |z|,qquad argoverline{z}=-arg z,.

(1.9)


Умножение комплексных чисел в тригонометрической форме

Зададим два комплексных числа в тригонометрической форме z_1=r_1(cosvarphi_1+ isinvarphi_1) и z_2=r_2(cosvarphi_2+isinvarphi_2) и перемножим их по правилу умножения двучленов:

begin{aligned}z_1cdot z_2&= r_1cdot r_2cdot (cosvarphi_1+ isinvarphi_1)cdot (cosvarphi_2+isinvarphi_2)=\ &= r_1cdot r_2 bigl(cosvarphi_1cosvarphi_2- sinvarphi_1 sinvarphi_2+ i(cosvarphi_1 sinvarphi_2+ sinvarphi_1 cosvarphi_2)bigr) end{aligned}

или

z_1cdot z_2= r_1cdot r_2cdot bigl(cos(varphi_1+varphi_2)+ isin(varphi_1+ varphi_2)bigr).

Получили новое число z, записанное в тригонометрической форме: z=r(cosvarphi+ isinvarphi), для которого r=r_1cdot r_2,~ varphi= varphi_1+ varphi_2.

Правило умножения. При умножении комплексных чисел, заданных в тригонометрической форме, их модули перемножаются, а аргументы складываются:

|z_1cdot z_2|= |z_1|cdot |z_2|,qquad operatorname{Arg}(z_1cdot z_2)= arg z_1+arg z_2.

(1.10)

В результате умножения чисел может получиться аргумент произведения, не являющийся главным значением.

Пример 1.19. Найти модули и аргументы чисел:

bold{1)}~ z=-2i left(cosfrac{4pi}{7}- isinfrac{4pi}{7}right)!;qquad bold{2)}~ z=(1+i)(sqrt{3}-i).

Решение

Каждое из заданных чисел записано в виде произведения. Найдем модули и аргументы сомножителей и воспользуемся правилом (1.10) умножения чисел, заданных в тригонометрической форме:

bold{1)}quad z=z_1cdot z_2,quad z_1=-2i,quad z_2= cosfrac{4pi}{7}- isinfrac{4pi}{7}= cos!left(-frac{4pi}{7}right)+ isin!left(-frac{4pi}{7}right),.

Для чисел z_1 и z_2 находим модули и аргументы: |z_1|=2,~ arg z_1=-frac{pi}{2};~ |z_2|=1,~ arg z_2=-frac{4pi}{7}. Используя формулы (1.10), получаем

|z|=|z_1|cdot|z_2|=2,quad operatorname{Arg}z= arg z_1+arg z_2= -frac{pi}{2}-frac{4pi}{7};quad arg z= 2pi- frac{15pi}{14}= frac{13pi}{14}

б) z=z_1cdot z_2,~ z_1=1+i,~ z_2=sqrt{3}-i. Для числа z_1 имеем: |z_1|=sqrt{2},~ arg z_1=frac{pi}{4}; для числа z_2colon, |z_2|=2,~ operatorname{tg}varphi_2=-frac{1}{sqrt{3}}, и так как operatorname{Re}z_2>0,~ operatorname{Im}z_2<0 (точка расположена в четвертой четверти), то arg z_2=-frac{pi}{6}. Используя формулы (1.10), получаем |z|=2sqrt{2},~ arg z=frac{pi}{4}-frac{pi}{6}=frac{pi}{12}.

Заметим, что для решения этой задачи можно раскрыть скобки, записать каждое число в алгебраической форме, а затем найти |z| и arg z, используя формулы (1.5), (1.6).


Деление комплексных чисел в тригонометрической форме

Рассмотрим частное комплексных чисел frac{z_1}{z_2}, заданных в тригонометрической форме. Из определения частного z=frac{z_1}{z_2} имеем z_1=zcdot z_2 и, применяя к произведению правило умножения (формулы (1.10)), получаем r=frac{r_1}{r_2},~ varphi=varphi_1-varphi_2.

Правило деления. Модуль частного, полученного в результате деления чисел, заданных в тригонометрической форме, равен частному от деления модуля числителя на модуль знаменателя, а аргумент частного равен разности аргументов делимого и делителя:

left|frac{z_1}{z_2}right|= frac{|z_1|}{|z_2|},qquad operatorname{Arg}frac{z_1}{z_2}= arg z_1-arg z_2.

(1.11)

В результате деления чисел по формуле (1.11) может получиться аргумент честного, не являющийся главным значением.

Пример 1.20. Записать в тригонометрической форме комплексное число frac{1+i}{sqrt{3}-i}.

Решение. Обозначим z=frac{z_1}{z_2},~ z_1=1+i,~ z_2=sqrt{3}-i. Для чисел z_1 и z_2 находим модули и аргументы: |z_1|=sqrt{2},~ arg z_1=frac{pi}{4}; |z_2|=2,~ arg z_2=-frac{pi}{6} (см. пример 1.19). По формуле (1.11) получаем |z|=frac{|z_1|}{|z_2|}=frac{sqrt{2}}{2},~ arg z=arg z_1-arg z_2=frac{pi}{4}-left(-frac{pi}{6}right)= frac{5pi}{12} и

frac{1+i}{sqrt{3}-i}= frac{sqrt{2}}{2}left(cosleft(frac{5pi}{12}+2kpiright)+ isinleft(frac{5pi}{12}+2kpiright)right)!,~ k=0,pm1,pm2,ldots


Возведение в степень комплексного числа в тригонометрической форме

Из определения степени z^n и правила умножения чисел, записанных в тригонометрической форме (формула (1.10)), получаем

|z^n|=r^n,quad operatorname{Arg}z^n=nvarphi, где z=r(cosvarphi+ isinvarphi).

Правило возведения в степень. При возведении в степень комплексного числа в эту степень возводится модуль числа, а аргумент умножается на показатель степени:

|z^n|= |z|^n,qquad operatorname{Arg}z^n= narg z,.

(1.12)

Записывая число z^n в тригонометрической форме z^n= r^n(cos nvarphi+ isin nvarphi), получаем формулу возведения в степень:

bigl[r(cosvarphi+ isinvarphi)bigr]^n= r^n(cos nvarphi+ isin nvarphi).

(1.13)

При r=1 это равенство принимает вид и называется формула Муавра

(cosvarphi+ isinvarphi)^n= cos nvarphi+ isin nvarphi,.

(1.14)

Пример 1.21. Найти модуль и аргумент комплексного числа (1+i)^5.

Решение. Обозначим z=z_1^5,~ z_1=1+i. Находим модуль и аргумент числа z_1colon, |z_1|=sqrt{2},~ arg z_1=frac{pi}{4}. Поэтому |z|= (sqrt{2})^5 и operatorname{Arg}z=5arg z_1=frac{5pi}{4}. Так как по определению для главного значения аргумента выполняется условие -pi<arg zleqslantpi, то arg z= frac{5pi}{4}-2pi=-frac{3pi}{4}.

Пример 1.22. Записать в тригонометрической форме число (1+i)^5(sqrt{3}-i)^7.

Решение

Пример 1.23. Используя формулу Муавра, найти выражения для cos3varphi и sin3varphi через тригонометрические функции угла varphi.

Решение

Из формулы (1.14) при n=3 имеем (cosvarphi+ isinvarphi)^3= cos3varphi+isin3varphi. Возведем левую часть в степень, учитывая, что i^3=-i (см. пример 1.8):

begin{aligned}cos^3varphi+ i3cos^2varphisinvarphi- 3cosvarphi sin^2varphi+ i^3sin^3varphi&= cos3varphi+ isin3varphi,\ (cos^3varphi-3cosvarphisin^2varphi)+ i(3cos^2varphisinvarphi-sin^3varphi)&= cos3varphi+ isin3varphi.end{aligned}

Используя условие равенства комплексных чисел, получаем:

cos3varphi= cos^3varphi- 3cosvarphisin^2varphi,qquad sin3varphi= 3cos^2varphi sinvarphi- sin^3varphi.


Извлечение корня из комплексного числа в тригонометрической форме

Рассмотрим задачу извлечения корня из комплексного числа, заданного в показательной или тригонометрической форме z=r,e^{ivarphi}, или z=r(cosvarphi+ isinvarphi). Искомое число w=sqrt[LARGE{n}]{z} также запишем в показательной форме: w=rho,e^{ivarphi},~ rho=|w|,~ theta=arg w. Используя определение операции извлечения корня z=w^n и условия (1.8), получаем соотношения

rho^n=r,qquad ncdottheta= varphi+2kpi,quad k=0,pm1,pm2,ldots

или

rho= sqrt[LARGE{n}]{r},quad theta= frac{varphi+2kpi}{n},quad k=0,pm1,pm2,ldots

(1.15)

Правило извлечения корня. Чтобы извлечь корень из комплексного числа, нужно извлечь корень (арифметический) той же степени из модуля данного числа, а аргумент (operatorname{Arg}z) разделить на показатель корня:

bigl|sqrt[LARGE{n}]{z}bigr|= sqrt[LARGE{n}]{|z|},qquad operatorname{Arg}sqrt[LARGE{n}]{z}= frac{operatorname{Arg}z}{n},.

(1.16)

Теперь можно записать число w=sqrt[LARGE{n}]{z} в показательной форме:

sqrt[LARGE{n}]{z}= sqrt[LARGE{n}]{|z|}cdot exp frac{i operatorname{Arg}z}{n},.

Если записать это соотношение в тригонометрической форме, то, учитывая периодичность тригонометрических функций, нетрудно убедиться, что выражение sqrt[LARGE{n}]{z} принимает только n различных значений. Для их записи достаточно в формуле (1.15) взять n последовательных значений k, например k=0,1,2,ldots,n-1. В результате получаем формулу извлечения корня из комплексного числа в тригонометрической форме, где r=|z|,~ varphi=arg z:

sqrt[LARGE{n}]{z}= sqrt[LARGE{n}]{r} left(cos frac{varphi+2kpi}{n}+ isin frac{varphi+2kpi}{n}right)!,quad 0,1,2,ldots,n-1.

(1.17)


Значения корня комплексного числа

Замечания 1.1

1. Рассмотренная задача извлечения корня степени n из комплексного числа равносильна решению уравнения вида z^n-a=0, где, очевидно, z=sqrt[LARGE{n}]{a}.

Для решения уравнения нужно найти n значений sqrt[LARGE{n}]{a}, а для этого необходимо найти r=|a|,~ varphi=arg a и использовать формулу извлечения корня.

2. Исследование формулы (1.17) показывает, что все комплексные числа w_k,~ k=1,2,ldots,n (значения sqrt[LARGE{n}]{z}) имеют равные модули, т.е. геометрически расположены на окружности радиуса R=sqrt[LARGE{n}]{r},~ r=|z|. Аргументы двух последовательных чисел отличаются на frac{2pi}{n}, так как arg w_{k+1}-arg w_k= frac{2pi}{n}, т.е. каждое последующее значение w_{k+1} может быть получено из предыдущего w_k поворотом радиуса-вектора точки w_k на frac{2pi}{n}.В этом заключается геометрический смысл формулы (1.17), что можно сформулировать следующим образом.

Точки, соответствующие значениям sqrt[LARGE{n}]{z}, расположены в вершинах правильного n-угольника, вписанного в окружность с центром в начале координат, радиус которой R= sqrt[LARGE{n}]{|z|}, причем аргумент одного из значений w_k равен frac{arg z}{n}= frac{varphi}{n} (рис. 1.7).


Алгоритм решения комплексных уравнений вида z^n-a=0

1. Найти модуль и аргумент числа acolon, r=|a|,~ varphi=arg a.
2. Записать формулу (1.17) при заданном значении ncolon, sqrt[LARGE{n}]{a}= sqrt[LARGE{n}]{r} left(cos frac{varphi+2kpi}{n}+ isin frac{varphi+2kpi}{n}right).
3. Выписать значения корней уравнения z_k, придавая значения k=0,1,2,ldots,n-1.

Пример 1.24. Решить уравнения: a) z^6-1=0; б) z^3-i=0.

Решение

Задача равносильна задаче нахождения всех значений корня из комплексного числа. Решаем в каждом случае по алгоритму.

а) Найдем z=sqrt[LARGE{6}]{1}.
1. Определим модуль и аргумент числа 1colon, r=1,~ varphi=0.
2. При полученных значениях r и varphi записываем формулу (1.17):

z= sqrt[LARGE{6}]{1}= sqrt[LARGE{6}]{1} left(cosfrac{2kpi}{6}+ isinfrac{2kpi}{6}right)!,qquad k=0,1,2,3,4,5.

Заметим, что справа стоит sqrt[LARGE{6}]{1} — арифметический корень, его единственное значение равно 1.

3. Придавая k последовательно значения от 0 до 5, выписываем решения уравнения:

begin{array}{ll}z_1= cos0+isin0=1,&qquad z_2=cos dfrac{pi}{3}+isindfrac{pi}{3}= dfrac{1}{2}+ i,dfrac{sqrt{3}}{2},\[7pt] z_3= cosdfrac{2pi}{3}+ isindfrac{2pi}{3}= -dfrac{1}{2}+ i,dfrac{sqrt{3}}{2},&qquad z_4=cospi+isinpi=-1,\[10pt] z_5= cosdfrac{4pi}{3}+ isindfrac{4pi}{3}= -dfrac{1}{2}-i,dfrac{sqrt{3}}{2},&qquad z_6= cosdfrac{5pi}{3}+ isindfrac{5pi}{3}= dfrac{1}{2}-i,dfrac{sqrt{3}}{2}.end{array}

Геометрически соответствующие точки расположены в вершинах правильного шестиугольника, вписанного в окружность радиуса R=1, одна из точек (соответствует k=0) z_1=1. Строим шестиугольник (рис. 1.8,в). Отметим свойства корней этого уравнения с действительными коэффициентами — его комплексные корни являются попарно сопряженными: z_6= overline{z}_2,~ z_5= overline{z}_3,~ z_1 и z_4 — действительные числа.

б) Найдем z=sqrt[LARGE{3}]{i}.
1. Определим модуль и аргумент числа rcolon, r=|i|=1,~ varphi=arg i=frac{pi}{2}.
2. По формуле (1.17) имеем

sqrt[LARGE{3}]{i}= 1cdot left(cosfrac{frac{pi}{2}+2kpi}{3}+ isin frac{frac{pi}{2}+2kpi}{3}right)= cos!left(frac{pi}{6}+ frac{2}{3}kpiright)+ isin!left(frac{pi}{6}+ frac{2}{3}kpiright)!,quad k=0,1,2.

3. Выписываем корни z_1,,z_2,,z_3colon, z_1= frac{sqrt{3}}{2}+i frac{1}{2},~ z_2= -frac{sqrt{3}}{2}+i frac{1}{2},~ z_3=-i.

Геометрический смысл комплексных корней

Для геометрического представления решения уравнения достаточно изобразить одно значение, например z_1=cosfrac{pi}{6}+ isinfrac{pi}{6} (при k=0) — это точка окружности |z|=1, лежащая на луче varphi=frac{pi}{6}. После этого строим правильный треугольник, вписанный в окружность |z|=1 (рис. 1.8,б).

Пример 1.25. Найти корень уравнения z^4-1+i=0, для которого operatorname{Re}z<0,~ operatorname{Im}z>0.

Решение

Геометрическая интерпретация корней комплексного уравнения

Задача равносильна задаче нахождения z=sqrt[LARGE{4}]{1-i} при условие operatorname{Re}z<0,~ operatorname{Im}z>0.

1. Находим модуль и аргумент числа 1-icolon, r=|1-i|=sqrt{2},~ varphi=arg(1-i)=-frac{pi}{4}.

2. По формуле (1.17) имеем: z_{k+1}= sqrt[LARGE{4}]{1-i}= sqrt[LARGE{8}]{2}e^{left(-frac{pi}{16}+frac{2kpi}{4}right) i},~ k=0,1,2,3.

3. Для нахождения искомого решения нет необходимости выписывать все значения корня. Нужно выбрать значение k~(k=0,1,2,3), при котором выполняется условие frac{pi}{2}< arg zleqslantpi (соответствующая точка — точка второй четверти). Удобно при этом использовать чертеж (рис. 1.9).

Условию поставленной задачи удовлетворяет корень z_3 (при k=2): z_3= sqrt[LARGE{8}]{2}e^{left(pi-frac{pi}{16}right)i}= sqrt[LARGE{8}]{2}e^{frac{15pi}{16},i}.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

      1. Извлечение корня из комплексных чисел в тригонометрической форме

Определения и утверждения к 3.1.8 можно
найти в [1, с. 191-192].

Комплексное число
называется корнемn
степени из комплексного числаz,
если.

Утверждение. При любом натуральномn > 1 и любом
комплексномz
существует ровноnразличных чисел,
таких, что:

(1.4)

где k= 0, 1, 2, …,n– 1.

Пример 25 Вычислить.

Решение. Для того чтобы воспользоваться
формулой (1.4), необходимо представить
число, стоящее под знаком корня, в
тригонометрической форме. Для числаz
= ‑1 найдем его модуль и аргумент:,.
В итоге.

По формуле
(1.4)
.
Тогда:

Пример 26 Вычислить
.

Решение.
Для числа
найдем его модульи аргумент:,,
так как число
лежит на отрицательной части мнимой
оси. В итоге.
По формуле (1.4),

гдеk= 0, 1, 2, 3, 4. Тогда:

Для
иаргументами будути,
а неисоответственно, так как.

Пример 27 Вычислить.

Решение. Для числамодульи аргументесть:=,.

В итоге
=.
По формуле (1.4)

Тогда:

Из
формулы (1.4) видно, что аргументы корнейотличаются на одну и ту же величину,
а модули всех корней одинаковые и равны.
Значит, на комплексной плоскости всележат на окружности с центром в начале
координат и радиусомна одинаковом расстоянии друг от друга.
Для примера 27 изображения самого числаи его корней,,можно видеть на рис. 1.10.

  1. Многочлены

    1. Многочлены и действия над ними

Определения и утверждения к 2.1 можно
найти в [1, с. 203-206].

Для действительной переменной x
функция вида,
гдеa иx
–действительные числа, аn
– натуральное число или 0 (по-другому
это можно записать как),
называется одночленом с действительным
коэффициентом.

Многочлен ‑ это сумма одночленов,
т.е. функция вида

.
При
этомназывается
старшим коэффициентом и,‑ свободным членом,n
‑ степенью многочлена.

Многочлен тождественно равен 0 тогда
и только тогда, когда все его коэффициенты
равны 0.

Если в записи многочлена нет какой-либо
степени неизвестного, это значит, что
коэффициент при этой степени равен 0.

На множестве многочленов определены
следующие действия:

1.
Сложение.

Пример
28
.
Найти.

2.
Умножение.

Пример
29
.
Найти.

3. Деление с остатком.

Разделить
на‑ значит записатьв виде,
или.
Последняя запись аналогична записи
для чисел:,
или 17 = 53 + 2.

Теорема (о делении с остатком)
[1, с. 206]. Для любых многочленовисуществуют, и притом единственные,
многочленыи,
такие, что

. (2.1)
При
этом степеньменьше
степени,‑ неполное частное,‑ остаток.
Разделитьна‑ значит записатьв виде (2.1).

Для практического нахождения частного
и остатка существует метод деления
«уголком».

Пример 30 Выполнить «уголком» деление
с остатком:

=на
=
.

Решение.Запишем делимое
и делитель
как при делении многозначных чисел:

Находим
частное от деления старшего члена
делимого на старший член делителя ()
и записываем результат в графу частного:

x

Умножаем
делитель на результат деления и
записываем под делимым:

x

Вычитаем из
делимого результат умножения:

x

Проверяем
степень получившегося в результате
вычитания многочлена. Если она меньше
степени делителя, то процесс деления
закончен, и полученный многочлен
является остатком. В противном случае
деление продолжается аналогично
описанному ранее:

x1

‑ 4x

Так как
степень полученного многочлена меньше
степени делителя, то процесс деления
закончен. В результате:
=
x– 1– неполное
частное, а

=
–4x – остаток.

Ответ:
,
или

.

Пример 31 Выполнить деление с
остатком:на.

Решение. Запишем делимое и делитель
как при делении многозначных чисел.
Если в записи многочлена отсутствует
одна или несколько степеней, то при
записи, для удобства вычислений, следует
на их места записать нули:

3x
+1

Получившиеся
в результате умножения многочлены
удобнее записывать, располагая слагаемые
в соответствии с их степенями. Так как
степень полученного многочлена меньше
степени делителя, то процесс деления
закончен. В результате:
=
неполное частное, а=
3x + 1 – остаток.

Ответ:,
или.

Пример 32 Делится ли нацело многочленна многочлен?

Решение. Разделим один многочлен
на другой «уголком».

0
В
остатке от деления получился нуль,
значит,многочлен
делится на многочленнацело
и возможны записи:

,
или.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Отбор корней в тригонометрическом уравнение

В этой статье и постараюсь объяснить 2 способа отбора корней в тригонометрическом уравнение: с помощью неравенств и с помощью тригонометрической окружности. Перейдем сразу к наглядному примеру и походу дела будем разбираться.

а) Решить уравнение sqrt(2)cos^2x=sin(Pi/2+x)
б) Найдите все корни этого уравнения, принадлежащие промежутку [-7Pi/2; -2Pi]

Решим пункт а.

Воспользуемся формулой приведения для синуса sin(Pi/2+x) = cos(x)

sqrt(2)cos^2x — cosx = 0

cosx(sqrt(2)cosx — 1) = 0

x1 = Pi/2 + Pin, n ∈ Z

sqrt(2)cosx — 1 = 0

x2 = arccos(sqrt(2)/2) + 2Pin, n ∈ Z
x3 = -arccos(sqrt(2)/2) + 2Pin, n ∈ Z

x2 = Pi/4 + 2Pin, n ∈ Z
x3 = -Pi/4 + 2Pin, n ∈ Z

Решим пункт б.

1) Отбор корней с помощью неравенств

Здесь все делается просто, полученные корни подставляем в заданный нам промежуток [-7Pi/2; -2Pi], находим целые значения для n.

-7Pi/2 меньше или равно Pi/2 + Pin меньше или равно -2Pi

Сразу делим все на Pi

-7/2 меньше или равно 1/2 + n меньше или равно -2

-7/2 — 1/2 меньше или равно n меньше или равно -2 — 1/2

-4 меньше или равно n меньше или равно -5/2

Целые n в этом промежутку это -4 и -3. Значит корни принадлежащие этому промежутку буду Pi/2 + Pi(-4) = -7Pi/2, Pi/2 + Pi(-3) = -5Pi/2

Аналогично делаем еще два неравенства

-7Pi/2 меньше или равно Pi/4 + 2Pin меньше или равно -2Pi
-15/8 меньше или равно n меньше или равно -9/8

Целых n в этом промежутке нет

-7Pi/2 меньше или равно -Pi/4 + 2Pin меньше или равно -2Pi
-13/8 меньше или равно n меньше или равно -7/8

Одно целое n в этом промежутку это -1. Значит отобранный корень на этом промежутку -Pi/4 + 2Pi*(-1) = -9Pi/4.

Значит ответ в пункте б: -7Pi/2, -5Pi/2, -9Pi/4

2) Отбор корней с помощью тригонометрической окружности

Чтобы пользоваться этим способом надо понимать как работает эта окружность. Постараюсь простым языком объяснить как это понимаю я. Думаю в школах на уроках алгебры эта тема объяснялась много раз умными словами учителя, в учебниках сложные формулировки. Лично я понимаю это как окружность, которую можно обходить бесконечное число раз, объясняется это тем, что функции синус и косинус периодичны.

Обойдем раз против часовой стрелки

Обойдем 2 раза против часовой стрелки

Обойдем 1 раз по часовой стрелки (значения будут отрицательные)

Вернемся к нашем вопросу, нам надо отобрать корни на промежутке [-7Pi/2; -2Pi]

Чтобы попасть к числам -7Pi/2 и -2Pi надо обойти окружность против часовой стрелки два раза. Для того, чтобы найти корни уравнения на этом промежутке надо прикидывать и подставлять.

Рассмотри x = Pi/2 + Pin. Какой приблизительно должен быть n, чтобы значение x было где-то в этом промежутке? Подставляем, допустим -2, получаем Pi/2 — 2Pi = -3Pi/2, очевидно это не входит в наш промежуток, значит берем меньше -3, Pi/2 — 3Pi = -5Pi/2, это подходит, попробуем еще -4, Pi/2 — 4Pi = -7Pi/2, также подходит.

Рассуждая аналогично для Pi/4 + 2Pin и -Pi/4 + 2Pin, находим еще один корень -9Pi/4.

Сравнение двух методов.

Первый способ (с помощью неравенств) гораздо надежнее и намного проще для пониманию, но если действительно серьезно разобраться с тригонометрической окружностью и со вторым методом отбора, то отбор корней будет гораздо быстрее, можно сэкономить около 15 минут на экзамене.

Способы отбора корней в тригонометрических уравнениях

Класс: 10

Автор проекта:
Шелкова Полина,
Класс: 10

Руководитель:
Злобова Людмила Викторовна,
учитель математики

ВВЕДЕНИЕ

Слово «тригонометрия» греческое, оно переводится как «измерение треугольников» (τρίγονον — «тригон» — треугольник и μετρειν — «метрео» — измеряю).

Тригонометрия, как и всякая другая наука, выросла из практической деятельности человека. Потребности развивающегося мореплавания, для которого требовалось умение правильно определять курс корабля в открытом море по положению небесных светил, оказали большое влияние на развитие астрономии и тесно связанной с ней тригонометрией. Предполагают, что основополагающее значение для развития тригонометрии в эпоху ее зарождения, имели работы древнегреческого астронома Гиппарха Никейского (180-125 лет до н. э.) (прил. №3). Систематическое использование полной окружности в 360° установилось в основном благодаря Гиппарху и его таблице хорд (прил. №2). Т.е. таблицы, которые выражают длину хорды для различных центральных углов в круге постоянного радиуса, что является аналогом современных таблиц тригонометрических функций. Впрочем, до нас не дошли оригинальные таблицы Гиппарха, как и почти все, что им написано. И мы, можем составить себе о них представление главным образом по сочинению «Великое построение» или «Альмагесту» знаменитого астронома Клавдия Птолемея, жившего в середине II века н.э.

Несмотря на то, что в работах ученых древности нет «тригонометрии» в строгом смысле этого слова, но по существу они, пользуясь известными им средствами элементарной геометрии, решали те задачи, которыми занимается тригонометрия. Например, задачи на решение треугольников (определение всех сторон и углов треугольника по трем его известным элементам), теоремы Евклида и Архимеда представленные в геометрическом виде, эквивалентны специфическим тригонометрическим формулам. Главным достижением средневековой Индии стала замена хорд синусами. Это позволило вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом, в Индии было положено начало тригонометрии, как учению о тригонометрических величинах.

Учёные стран Ближнего и Среднего Востока с VIII века развили тригонометрию своих предшественников. Уже в середине IX века среднеазиатский учёный аль-Хорезми написал сочинение «Об индийском счёте». После того, как трактаты мусульманских ученых были переведены на латынь, многие идеи греческих, индийских и мусульманских математиков стали достоянием европейской, а затем и мировой науки. В дальнейшем потребности географии, геодезии, военного дела, способствовали развитию тригонометрии. Особенно усиленно шло ее развитие в средневековое время. Большая заслуга в формировании тригонометрии как отдельной науки принадлежит азербайджанскому ученому Насир ад-Дину ат-Туси (1201-1274), написавшему «Трактат о полном четырехстороннике». Творения ученых этого периода привели к выделению тригонометрии как нового самостоятельного раздела науки. Однако в их трудах еще не была введена необходимая символика. Современный вид тригонометрия получила в трудах Леонарда Эйлера (1707-1783). На основании трудов Эйлера были составлены учебники тригонометрии, излагавшие ее в строгой научной последовательности (прил. №4). Тригонометрические вычисления применяются во многих областях человеческой деятельности: в геометрии, в физике, в астрономии, в архитектуре, в геодезии, инженерном деле, в акустике, в электронике и т.д.

I РАЗДЕЛ (теоретический)

Тема проекта и её актуальность: почему я выбрала тему «Способы отбора корней в тригонометрических уравнениях»?

  • Расширить и углубить свои знания, полученные в курсе геометрии 8-9 класса.
  • Тригонометрические уравнения рассматриваются в курсе алгебры и начал математического анализа 10-11 класса.
  • Тригонометрические уравнения включены в КИМы ЕГЭ по математике.

Решение тригонометрических уравнений и отбор корней, принадлежащих заданному промежутку — это одна из сложнейших тем математики, которая выносится на Единый Государственный Экзамен. По результатам анкетирования многие учащиеся затрудняются или вообще не умеют решать тригонометрические уравнения и особенно затрудняются в отборе корней, принадлежащих промежутку. Немаловажно также знать, тригонометрические формулы, табличные значения тригонометрических функций для решения целого ряда заданий Единого Государственного Экзамена по математике.

Цель проекта: изучить способы отбора корней в тригонометрических уравнениях и выбрать для себя наиболее рациональные подходы для качественной подготовки к ЕГЭ.

Задачи:

  • познакомиться с историческими сведениями о возникновении тригонометрии, как науки;
  • изучить соответствующую литературу;
  • научиться решать тригонометрические уравнения;
  • найти теоретический материал и изучить методы отбора корней в тригонометрических уравнениях;
  • научиться отбирать корни в тригонометрических уравнениях, принадлежащим заданному промежутку;
  • подготовиться к ЕГЭ по математике.

Приёмы отбора корней тригонометрического уравнения на заданном промежутке.

При решении тригонометрических уравнений предлагается провести отбор корней из множества значений неизвестного. В тригонометрическом уравнении отбор корней можно осуществлять следующими способами: арифметическим, алгебраическим, геометрическим и функционально-графическим.

Арифметический способ отбора корней состоит в непосредственной подстановке полученных корней в уравнение, учитывая имеющиеся ограничения, при переборе значений целочисленного параметра.

Алгебраический способ предполагает составление неравенств, соответствующих дополнительным условиям, и их решение относительно целочисленного параметра.

Геометрический способ предполагает использование при отборе корней двух вариантов: тригонометрической окружности или числовой прямой. Тригонометрическая окружность более удобна, когда речь идет об отборе корней на промежутке или в случае, когда значение обратных тригонометрических функций, входящих в решения, не являются табличными. В остальных случаях предпочтительнее модель числовой прямой. Числовую прямую удобно использовать при отборе корней на промежутке, длина которого не превосходит 2 или требуется найти наибольший отрицательный или наименьший положительный корень уравнения.

Функционально-графический способ предполагает отбор корней осуществлять с использование графиков тригонометрических функций. Чтобы использовать данный способ отбора корней, требуется умение схематичного построения графиков тригонометрических функций.

II РАЗДЕЛ (практический)

Покажу практически три наиболее эффективных и рациональных, с моей точки зрения, метода отбора корней на примере решения следующего тригонометрического уравнения:

sinx−cos2x=0; [применили формулу двойного угла: cos2x = cos 2 x−sin 2 x]

sinx−(cos 2 x−sin 2 x)=0;

sinx−(1−sin 2 x−sin 2 x)=0;

Введем новую переменную: sinx = t, -1 ≤ t ≤1, получим

Вернемся к замене:

б) Рассмотрим три способа отбора корней, попадающих в отрезок .

1 способ: обратимся к единичной окружности. Отметим на ней дугу, соответствующую указанному отрезку, т.е. выполним отбор корней арифметическим способом и с помощью тригонометрической окружности:

2 способ: указанный отрезок соответствует неравенству: Подставим в него полученные корни:

3 способ: разместим корни уравнения на числовой прямой. Сначала отметим корни, подставив вместо n, и нуль (0), а потом добавим к каждому корню периоды.

Нам останется только выбрать корни, которые попали в нужный нам отрезок.

ЗАКЛЮЧЕНИЕ

При работе над моим проектом я изучила методы решения тригонометрических уравнений и способы отбора корней тригонометрических уравнений. Выяснила для себя положительные и отрицательные моменты. При апробации этих подходов в отборе корней тригонометрического уравнения, понимаешь, что каждый из этих способов удобен по-своему в том или ином случае. Например, алгебраический способ (решение неравенством) наиболее эффективен, когда промежуток для отбора корней достаточно большой, в тоже время он дает практически стопроцентное нахождение целочисленного параметра для вычисления корней, а применение арифметического способа приводит к громоздким вычислениям. При отборе корней уравнения, удовлетворяющих дополнительным условиям, т.е. когда корни уравнения принадлежат заданному промежутку, мне проще и нагляднее получить корни с помощью тригонометрической окружности, а проверить себя можно арифметическим способом. Замечу, что при решении тригонометрических уравнений трудности, связанные с отбором корней, возрастают, если в уравнении приходится учитывать ОДЗ. Как показывает практика и анкетирование моих одноклассников, из четырёх возможных методов отбора корней тригонометрического уравнения по дополнительным условиям, наиболее предпочтительным является отбор корней по окружности. Анкетирование проходили 12 респондентов, изучающих тригонометрию (прил. №5). Большинство из них отвечали, что этот раздел математики достаточно сложный: большой объем информации, очень много формул, табличных значений, которые нужно знать и уметь применять на практике. Еще как одна из проблем — небольшое количество времени, отведенное на изучение этого сложного раздела математики. И я разделяю их мнение. При такой сложности, многие считают, что тригонометрия важный раздел математики, который находит применение в других науках и практической деятельности человека.

СПИСОК ЛИТЕРАТУРЫ

  1. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10 класс: учеб для общеобразоват. организаций: базовый и углубленный уровни/ [С.М.Никольский, М.К.Потапов, Н.Н.Решетников и др.]-3 -е изд.- М.: Просвещение, 2016.
  2. Алгебра и начала математического анализа: Учеб для 10-11 кл.общеобразоват. организаций / А.Н.Колмогоров, А.М.Абрамов, Ю.П.Дудницин и др. под редакцией А.Н.Колмогорова — М. Просвещение, 2017.
  3. С.В Кравцев и др. Методы решения задач по алгебре: от простых до самых сложных — М: Издательство: «Экзамен», 2005.
  4. Корянов А.Г., Прокофьев А.А. — Тригонометрические уравнения: методы решения и отбор корней. — М.: Математика ЕГЭ, 2012.

Тригонометрические уравнения

Решение простейших тригонометрических уравнений

Градусы и радианы

Знакомство с тригонометрической окружностью

Повороты на тригонометрической окружности

Как много боли связано со словом тригонометрия. Эта тема появляется в 9 классе и уже никуда не исчезает. Тяжело приходится тем, кто чего-то не понял сразу. Попробуем это исправить, чтобы осветить ваше лицо улыбкой при слове тригонометрия или хотя бы добиться «poker face».

Начнем с того, что как длину можно выразить в метрах или милях, так и угол можно выразить в радианах или градусах .

1 радиан = 180/π ≈ 57,3 градусов

Но проще запомнить целые числа: 3,14 радиан = 180 градусов. Это все одно и то же значение числа π.

Вспомним, что если нас просят развернуться, то нам нужно повернуться на 180 градусов, а теперь можно так же сказать: Повернись на π!

О графиках синуса, косинуса и тангеса поговорим в другой статье.

А сейчас начем с декартовой (прямоугольной) системы координат.

Раньше она помогала строить графики, а теперь поможет с синусом и косинусом.

На пересечении оси Х и оси Y построим единичную (радиус равен 1) окружность:

Тогда ось косинусов будет совпадать с х, ось синусов с y. Оси тангенсов и котангенсов также показаны на рисунке.

А теперь отметим основные значения градусов и радиан на окружности.

Давай договоримся с тобой, как взрослые люди: на окружности мы будем отмечать угол в радианах, то есть через Пи.

Достаточно запомнить, что π = 180° (тогда π/6 = 180/6 = 30°; π/3 = 180/3 = 60°; π/4 = 180/4 = 45°).

А теперь давай покрутимся на окружности! За начало отчета принято брать крайнюю правую точку окружности (где 0°):

От нее задаем дальнейший поворот. Вращаться можем как в положительную сторону (против часовой), так и в отрицательную сторону (по часовой стрелке).

Повернуться на 45° можно двумя спобами: через левое плечо на 45° в (+) сторону, либо через правое плечо на 315° в (-).

Главное — направление, куда мы будем смотреть, а не угол!

Нужно направить пунктир на 100 баллов, а сколько оборотов и в какую сторону вокруг себя мы сделаем — без разницы!

Получить 100 баллов можно поворотом на 135° или 360°+135°, или -225°, или -225°-360°.

А теперь у тебя есть два пути:

Выучить всю окружность (тригонометр). Неплохой вариант, если с памятью у тебя все отлично, и ничего не вылетит из головы в ответственный момент:

А можно запомнить несколько табличных углов и соответствующие им значения, а потом использовать их.

Находите равные углы (вертикальные, соответственные) на тригонометрической окружности. Попасть в любую точку можно с помощью суммы или разности двух табличных значений.

Сразу попробуем разобрать на примере:

1) Помним, что ось cos(x) — это горизонтальная ось. На ней отмечаем значение ½ и проводим перпендикулярную (фиолетовую) прямую до пересечений с окружностью.

2) Получили две точки пересечения с окружностью, значение этих углов и будет решением уравнения.

Дело за малым — найти эти углы.

Лучше обойтись «малой кровью» и выучить значение синуса и косинуса для углов от 30° до 60°.

Или запомнить такой прием:

Пронумеруй пальцы от 0 до 4 от мизинца до большого. Угол задается между мизинцем и любым другим пальцем (от 0 до 90).

Например, требуется найти sin(π/2) : π/2 — это большой палец, n = 4 подставляем в формулу для синуса: sin(π/2) = √4/2 = 1 => sin(π/2) = 1.

cos(π/4) — ? π/4 соответсвует среднему пальцу (n = 2) => cos(π/4) = √2/2.

При значении cos(x) = ½ из таблицы или с помощью мнемонического правила находим x = 60° (первая точка x = +π/3 из-за того, что поворот происходил против часовой стерелки (+), угол показан черной дугой).

Вторая же точка соответствует точно такому же углу, только поворот будет по часовой стрелке (−). x = −π/3 (угол показан нижней черной дугой).

И последнее, прежде чем тебе, наконец, откроются тайные знания тригонометрии:

Когда требуется попасть в «100 баллов», мы можем в них попасть с помощью поворота на . =-225°=135°=495°=.

То же самое и здесь! Разные углы могут отражать одно и то же направление.

Абсолютно точно можно сказать, что нужно повернуться на требуемый угол, а дальше можно поворачиваться на 360° = 2π (синим цветом) сколько угодно раз и в любом направлении.

Таким образом, попасть в первое направление 60° можно: . 60°-360°, 60°, 60°+360°.

И как записать остальные углы, не записывать же бесконечное количество точек? (Хотел бы я на это посмотреть☻)

Поэтому правильно записать ответ: x = 60 + 360n, где n — целое число (n∈Ζ) (поворачиваемся на 60 градусов, а после кружимся сколько угодно раз, главное, чтобы направление осталось тем же). Аналогично x = −60 + 360n.

Но мы же договорились, что на окружности все записывают через π, поэтому cos(x) = ½ при x = π/3 + 2πn, n∈Ζ и x = −π/3 + 2πk, k∈Ζ.

Ответ: x = π/3 + 2πn, x= − π/3 + 2πk, (n, k) ∈Ζ.

Пример №2. 2sinx = √2

Первое, что следует сделать, это перенести 2-ку вправо => sinx=√2/2

1) sin(x) совпадает с осью Y. На оси sin(x) отмечаем √2/2 и проводим ⊥ фиолетовую прямую до пересечений с окружностью.

2) Из таблицы sinx = √2/2 при х = π/4, а вторую точку будем искать с помощью поворота до π, а затем нужно вернуться обратно на π/4.

Поэтому вторая точка будет x = π − π/4 = 3π/4, в нее также можно попасть и с помощью красных стрелочек или как-то по-другому.

И еще не забудем добавить +2πn, n∈Ζ.

Ответ: 3π/4 + 2πn и π/4 + 2πk, k и n − любые целые числа.

Пример №3. tg(x + π/4) = √3

Вроде все верно, тангенс равняется числу, но смущает π/4 в тангенсе. Тогда сделаем замену: y = x + π/4.

tg(y) = √3 выглядит уже не так страшно. Вспомним, где ось тангенсов.

1) А теперь на оси тангенсов отметим значение √3, это выше чем 1.

2) Проведем фиолетовую прямую через значение √3 и начало координат. Опять на пересечении с окружностью получается 2 точки.

По мнемоническому правилу при тангенсе √3 первое значение — это π/3.

3) Чтобы попасть во вторую точку, можно к первой точке (π/3) прибавить π => y = π/3 + π = 4π/3.

4) Но мы нашли только y , вернемся к х. y = π/3 + 2πn и y = x + π/4, тогда x + π/4 = π/3 + 2πn => x = π/12 + 2πn, n∈Ζ.

Второй корень: y = 4π/3 + 2πk и y = x + π/4, тогда x + π/4 = 4π/3 + 2πk => x = 13π/12 + 2πk, k∈Ζ.

Теперь корни на окружности будут здесь:

Ответ: π/12 + 2πn и 13π/12 + 2πk, k и n — любые целые числа.

Конечно, эти два ответа можно объединить в один. От 0 поворот на π/12, а дальше каждый корень будет повторяться через каждый π (180°).

Ответ можно записать и так: π/12 + πn, n∈Ζ.

Пример №4: −10ctg(x) = 10

Перенесем (−10) в другую часть: ctg(x) = −1. Отметим значение -1 на оси котангенсов.

1) Проведем прямую через эту точку и начало координат.

2) Придется опять вспомнить, когда деление косинуса на синус даст еденицу (это получается при π/4). Но здесь −1, поэтому одна точка будет −π/4. А вторую найдем поворотом до π, а потом назад на π/4 (π − π/4).

Можно это сделать по-другому (красным цветом), но мой вам совет: всегда отсчитывайте от целых значений пи (π, 2π, 3π. ) так намного меньше шансов запутаться.

Не забываем добавить к каждой точке 2πk.

Ответ: 3π/4 + 2πn и −π/4 + 2πk, k и n — любые целые числа.

Алгоритм решения тригонометрических уравнений (на примере cos(x) = − √ 3/2) :

  1. Отмечаем значение (−√3/2) на оси тригонометрической функции (косинусов, это ось Х).
  2. Проводим перпендикулярную прямую оси (косинусов) до пересечений с окружностью.
  3. Точки пересечения с окружностью и будут являться корнями уравнения.
  4. Значение одной точки (без разницы, как в нее попадете) +2πk.

Азов достаточно, прежде чем идти дальше закрепите полученные знания.

источники:

http://urok.1sept.ru/articles/687140

http://ik-study.ru/ege_math/trighonomietrichieskiie_uravnieniia

Автор статьи

Ирина Алексеевна Антоненко

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Извлечение корня из некоторого комплексного числа выполняется для чисел, которые представлены в тригонометрической форме.

Определение 1

Выражение вида $z=a+bi$, где $a$ и $b$ — вещественные числа, а $i$ — «мнимая единица», называется комплексным числом $z$. Мнимая единица определяется равенством $i=sqrt{-1} $ или $i^{2} =-1$.

Определение 2

Запись некоторого комплексного числа $z$ в следующем виде $z=rcdot (cos varphi +isin varphi )$ называется тригонометрической формой записи, где число $r$ — модуль комплексного числа $z$, который определяется по формуле $r=|z|=|a+bi|=sqrt{a^{2} +b^{2} } $, $varphi $ — аргумент комплексного числа $z$, который определяется по формуле $varphi =arctgfrac{b}{a} $.

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Определение 3

Корень $n$-ой степени из некоторого комплексного числа $z$ — это такое комплексное число $w$, $n$-я степень которого равна $z$, то есть [w^{n} =z.]

Примечание 1

Корень $n$-ой степени из некоторого комплексного числа $z$ обозначают как $sqrt[{n}]{z} $; на множестве всех комплексных чисел корень $n$-ой степени из этого комплексного числа $z$ имеет в точности $n$ значений.

Примечание 2

Однозначно извлечь корень из некоторого комплексного числа невозможно, так как он имеет количество значений, равное его степени.

Примечание 3

С геометрической точки зрения все значения корня $n$-ой степени из некоторого комплексного числа $z$ лежат на некоторой окружности радиуса $sqrt[{n}]{z} $, центр которой находится в начале координат О(0;0), и образуют правильный $n$-угольник (рис. 1).

«Извлечение корня из комплексного числа» 👇

Извлечение корня из комплексного числа

Рис. 1

Все комплексные числа, представленные в тригонометрической форме, можно возвести в некоторую степень по формуле Муавра:

[z^{n} =r^{n} cdot (cos nvarphi +isin nvarphi ),, , , , , forall nin N.]

Аналогично применяя формулу Муавра для вычисления корня $n$-ой степени из некоторого комплексного числа $z$ (не равного нулю) получаем:

[sqrt[{n}]{z} =sqrt[{n}]{r} cdot (cos frac{varphi +2pi k}{n} +isin frac{varphi +2pi k}{n} ),, , , k=0..n-1.]

Определение 4

Корнем $n$-й степени из некоторого комплексного числа $z=rcdot (cos varphi +isin varphi )$ является комплексное число, которое определяется равенством

[sqrt[{n}]{z} =sqrt[{n}]{r} cdot (cos frac{varphi +2pi k}{n} +isin frac{varphi +2pi k}{n} ),, , , k=0..n-1.]

Примечание 4

Если некоторое комплексное число $z$ отлично от нуля, то корень $n$-й степени существует всегда.

Пример 1

Выполнить действие $sqrt[{3}]{z} $, где $z=2cdot (cos pi +icdot sin pi )$.

Решение:

Воспользуемся формулой из определения 4.

Для $k=0$ получаем: $w_{1} =sqrt[{3}]{z} =sqrt[{3}]{2} cdot left(cos frac{pi }{3} +icdot sin frac{pi }{3} right)$.

Для $k=1$ получаем: $w_{2} =sqrt[{3}]{z} =sqrt[{3}]{2} cdot left(cos frac{pi +2pi }{3} +icdot sin frac{pi +2pi }{3} right)=sqrt[{3}]{2} cdot left(cos pi +icdot sin pi right)$.

Для $k=2$ получаем: $w_{3} =sqrt[{3}]{z} =sqrt[{3}]{2} cdot left(cos frac{pi +4pi }{3} +icdot sin frac{pi +4pi }{3} right)=sqrt[{3}]{2} cdot left(cos frac{5pi }{3} +icdot sin frac{5pi }{3} right)$.

Определение 5

Запись некоторого комплексного числа $z$ в следующем виде $z=a+bi$ называется алгебраической формой записи (или алгебраической записью) комплексного числа. При этом:

  • $a$ — вещественная (действительная) часть, обозначение $Rez=a$;
  • $b$ — мнимая часть, обозначение $Imz=b$.

Алгоритм 1

Чтобы извлечь корень $n$-ой степени из некоторого комплексного числа $z$, представленного в алгебраической форме, необходимо выполнить следующие действия:

  • записать данное число в тригонометрической форме;
  • извлечь корни, используя определение.

Алгоритм 2

Чтобы комплексное число $z$, записанное в алгебраической форме, привести к тригонометрической форме записи, необходимо выполнить следующее:

  • вычислить модуль и аргумент;
  • подставить полученные значения в выражение $z=r(cos varphi +icdot sin varphi )$.

Пример 2

Выполнить операцию извлечения корня $sqrt[{3}]{z} $ для заданных комплексных чисел в алгебраической форме представления:

[z=frac{1}{2} +frac{1}{2} cdot i.]

Решение:

Тригонометрическая форма записи некоторого комплексного числа имеет вид $z=r(cos varphi +icdot sin varphi )$.

По условию $a=frac{1}{2} ,b=frac{1}{2} $.

Вычислим модуль исходного комплексного числа:

[r=sqrt{left(frac{1}{2} right)^{2} +left(frac{1}{2} right)^{2} } =sqrt{frac{1}{4} +frac{1}{4} } =sqrt{frac{1}{2} } =frac{sqrt{2} }{2} ]

Вычислим аргумент исходного комплексного числа, используя формулу (*):

[varphi =arg z=arctgfrac{1/2}{1/2} =arctg1=frac{pi }{4} .]

Подставим полученные значения и получим:

[z=frac{sqrt{2} }{2} cdot (cos frac{pi }{4} +isin frac{pi }{4} ).]

Воспользуемся формулой из определения 4.

Для $k=0$ получаем: $w_{1} =sqrt[{3}]{z} =sqrt[{3}]{frac{sqrt{2} }{2} } cdot left(cos frac{pi }{12} +icdot sin frac{pi }{12} right)$.

Для $k=1$ получаем:

[w_{2} =sqrt[{3}]{z} =sqrt[{3}]{frac{sqrt{2} }{2} } cdot left(cos frac{pi /4+2pi }{3} +icdot sin frac{pi /4+2pi }{3} right)=sqrt[{3}]{frac{sqrt{2} }{2} } cdot left(cos frac{3pi }{4} +icdot sin frac{3pi }{4} right).]

Для $k=2$ получаем:

[w_{3} =sqrt[{3}]{z} =sqrt[{3}]{frac{sqrt{2} }{2} } cdot left(cos frac{pi /4+4pi }{3} +icdot sin frac{pi /4+4pi }{3} right)=sqrt[{3}]{frac{sqrt{2} }{2} } cdot left(cos frac{17pi }{12} +icdot sin frac{17pi }{12} right).]

Определение 6

Запись комплексного числа $z$ в следующем виде $z=rcdot e^{ivarphi } $ называется показательной формой записи, где число $r$ — модуль комплексного числа $z$, который определяется по формуле $r=|z|=|a+bi|=sqrt{a^{2} +b^{2} } $, $varphi $ — аргумент комплексного числа $z$, который определяется по формуле $varphi =arctgfrac{b}{a} $.

Алгоритм 3

Чтобы извлечь корень $n$-ой степени из некоторого комплексного числа $z$, представленного в показательной форме, необходимо выполнить следующие действия:

  • записать число в тригонометрической форме;
  • извлечь корни, используя определение.

Алгоритм 4

Чтобы комплексное число $z$, записанное в показательной форме, привести к тригонометрической форме записи, необходимо выполнить следующее:

  • определить из показательной записи числа значения модуля и аргумента;
  • подставить полученные значения в выражение $z=r(cos varphi +icdot sin varphi )$.

Пример 3

Выполнить операцию извлечения корня $sqrt{z} $ для заданных комплексных чисел в показательной форме представления:

[z=3cdot e^{frac{pi }{3} cdot i} .]

Решение:

Тригонометрическая форма записи некоторого комплексного числа имеет вид $z=r(cos varphi +icdot sin varphi )$.

Определим значения модуля и аргумента: $r=3,, , varphi =frac{pi }{3} $.

Запись числа в тригонометрической форме имеет вид: $z=3cdot (cos frac{pi }{3} +isin frac{pi }{3} )$.

Воспользуемся формулой из определения 4.

Для $k=0$ получаем: $w_{1} =sqrt{z} =sqrt{3} cdot left(cos frac{pi }{6} +icdot sin frac{pi }{6} right)$.

Для $k=1$ получаем:

[w_{2} =sqrt{z} =sqrt{3} cdot left(cos frac{pi /3+2pi }{2} +icdot sin frac{pi /3+2pi }{2} right)=sqrt{3} cdot left(cos frac{7pi }{6} +icdot sin frac{7pi }{6} right).]

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти московское море
  • Как составить соглашение на детей при разводе
  • Как составить акт приема передачи на автотранспортное средство
  • Почему один наушник разряжается быстрее второго airpods как исправить
  • Слайм ранчо как найти всех слаймов

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии