Как найти корни трехчлена кубического


Загрузить PDF


Загрузить PDF

В кубическом уравнении наивысшим показателем степени является 3, у такого уравнения 3 корня (решения) и оно имеет вид ax^{3}+bx^{2}+cx+d=0. Некоторые кубические уравнения не так просто решить, но если применить правильный метод (при хорошей теоретической подготовке), можно найти корни даже самого сложного кубического уравнения — для этого воспользуйтесь формулой для решения квадратного уравнения, найдите целые корни или вычислите дискриминант.

  1. Изображение с названием Solve a Cubic Equation Step 1

    1

  2. Изображение с названием Solve a Cubic Equation Step 2

    2

  3. Изображение с названием Solve a Cubic Equation Step 3

    3

    Разложите на множители (на произведение двух биномов) квадратное уравнение (если возможно). Многие квадратные уравнения вида ax^{2}+bx+c=0 можно разложить на множители. Такое уравнение получится, если вынести x за скобки. В нашем примере:[4]

  4. Изображение с названием Solve a Cubic Equation Step 4

    4

  5. Изображение с названием Solve a Cubic Equation Step 5

    5

    Используйте ноль и корни квадратного уравнения в качестве решений кубического уравнения. У квадратных уравнений два корня, а у кубических — три. Два решения вы уже нашли — это корни квадратного уравнения. Если же вы вынесли «х» за скобки, третьим решением будет {displaystyle 0}.[6]

    Реклама

  1. Изображение с названием Solve a Cubic Equation Step 6

    1

  2. Изображение с названием Solve a Cubic Equation Step 7

    2

  3. Изображение с названием Solve a Cubic Equation Step 8

    3

    Разделите каждый множитель a на каждый множитель d. В итоге получится множество дробей и несколько целых чисел; корнями кубического уравнения будет одно из целых чисел или отрицательное значение одного из целых чисел.[9]

    • В нашем примере разделите множители a (1 и 2) на множители d (1, 2, 3 и 6). Вы получите: 1, {frac  {1}{2}}, {frac  {1}{3}}, {frac  {1}{6}}, 2 и {frac  {2}{3}}. Теперь в этот список добавьте отрицательные значения полученных дробей и чисел: 1, -1, {frac  {1}{2}}, -{frac  {1}{2}}, {frac  {1}{3}}, -{frac  {1}{3}}, {frac  {1}{6}}, -{frac  {1}{6}}, 2, -2, {frac  {2}{3}} и -{frac  {2}{3}}. Целыми корнями кубического уравнения являются какие-то числа из этого списка.
  4. Изображение с названием Solve a Cubic Equation Step 9

    4

    Подставьте целые числа в кубическое уравнение. Если при этом равенство соблюдается, подставленное число является корнем уравнения. Например, подставьте в уравнение 1:[10]

  5. Изображение с названием Solve a Cubic Equation Step 10

    5

    Реклама

  1. Изображение с названием Solve a Cubic Equation Step 11

    1

  2. Изображение с названием Solve a Cubic Equation Step 12

    2

    Вычислите нулевой дискриминант по специальной формуле. Чтобы решить кубическое уравнение с помощью дискриминанта, нужно произвести ряд непростых вычислений, но если правильно выполнять все действия, этот метод станет незаменимым для решения наиболее сложных кубических уравнений. Сначала вычислите Delta _{0} (нулевой дискриминант) — это первая необходимая нам величина; для этого подставьте соответствующие значения в формулу Delta _{0}=b^{2}-3ac.[13]

  3. Изображение с названием Solve a Cubic Equation Step 13

    3

    Вычислите первый дискриминант по формуле Delta _{1}=2b^{3}-9abc+27a^{2}d. Первый дискриминант Delta _{1} — это вторая важная величина; чтобы ее вычислить, подставьте соответствующие значения в указанную формулу.[14]

  4. Изображение с названием Solve a Cubic Equation Step 14

    4

  5. Изображение с названием Solve a Cubic Equation Step 15

    5

  6. Изображение с названием Solve a Cubic Equation Step 16

    6

    Реклама

Об этой статье

Эту страницу просматривали 409 893 раза.

Была ли эта статья полезной?

Кубическим называют уравнение, в котором только одна переменная представлена в третьей степени. Такие выражения в любом случае имеют от одного до трех корней. Значения, которые получаются при решении таких уравнений, могут быть равными друг другу или комплексными, если их не более двух.

Решение кубических уравнений – это решение уравнений, имеющих вид: [boldsymbol{a y^{3}+b y^{2}+c y+d=0}].

В уравнении такого типа a не равно 0, вместо b,c,d могут быть любые однозначные числа.

Данный вид уравнения имеет как минимум один корень – y1.

Решение таких равнений может осуществляться разными способами. Оно может преобразовываться в стандартное квадратное уравнение. В таком случае предстоит выбрать один из трех вариантов решения квадратного уравнения:

  • разложение на множители;
  • применение формул для квадратных уравнений;
  • метод дополнения.

Решение кубических уравнений может осуществляться посредством формулы Кардано, а также теоремы Виета. Теорема Виета применяется для решения последней, четвертой степени.

Решение кубических уравнений с двумя членами

Уравнение будет иметь вид: [boldsymbol{a y^{3}+b=0}]

Для решения необходимо преобразовать его: [y^{3}=b / a=0]

Деление на a предполагает вместо нее любую цифру, кроме 0. После преобразования можно применить формулы для решения кубических уравнений, например, сокращенного умножения суммы кубов:

y3=b/a=0

(y+3√b/a)(y23√b/a*y+3√(b/a)2)=0

В результате из первой скобки выводим:

y=-3√b/a

во второй скобке получаем выражение – трехчлен:

y2-3√b/a*y+3√(b/a)2

Методы решения кубических уравнений возвратного вида

Алгоритм решения кубического уравнения возвратного вида отличается от предыдущего, так как оно выглядит следующим образом:

[boldsymbol{a y^{3}+b y^{2}+b y+a=0}]

В этом уравнении переменные a и b – это коэффициенты.

Первым делом при решении таких уравнений в математике выполняется группировка:

ay3+by2+by+a=a(y3+1)+b(y2+y)=a(y+1)(y2-y+1)+by(y+1)=(y+1)(ay2+y(b-a)+a)

В полученном выражении корень равен y=-1. Исходя из этого, чтобы получить корень квадратного трехчлена ay2+y(b-a)+a, потребуется найти дискриминант.

Определение

Дискриминант – произведение квадратов разностей корней в различных вариаций.

Решение кубических уравнений в составе которых рациональные корни

Предположим, что y=0. В этом случае он будет корнем уравнения, которое выглядит следующим образом:

ay3+by2+cy+d=0

При условии, что в уравнении свободные члены, d=0. Преобразуем уравнение и получим:

ay3+by2+cy=0

Решение кубических уравнений такого вида предполагает вынесение y за скобку. В итоге получается уравнение вида:

y(ay2+by+c)=0

Рассмотрим на конкретном примере, как решить кубическое уравнение с подробным решением:

5y3+2y2+4y=0

Решение:

Первым делом стоит упростить уравнение.

5y3+2y2+4y=0

Получим уравнение вида:

y(5y2+2y+4)=0

y=0, так как является корнем выражения.

Следующий шаг – поиск корней квадратного трехчлена 5y2+2y+4, который мы получили после упрощения. Для поиска приравняем к нулю и будем использовать дискриминант.

В ходе решения кубического уравнения с дискриминантом получим:

D=22-2*5*4=-38

Так как в ответе мы получили отрицательное значение, корней у данного трехчлена нет, значит x=0.

Если в уравнениях вида ay3+by2+cy+d=0 коэффициентами являются целые числовые значения, то при решении таких уравнений и нахождении его значения мы может получить иррациональные корни.

В случае, когда a не равно 0, при умножении на a2 каждой составляющей уравнения происходит замещение переменных, и получается: x=ay

ay3+by2+cy+d=0

Каждую составляющую выражения умножаем на a2:

a3*y3+b*a2*y2+c*a*a*y+d*a2=0

Учитывая, что решение кубических уравнений с подробным решением предполагает замещение переменных x=ay, то:

x2+b*x2+c*a*x+d*a2

Полученное уравнение является кубическим. В таких уравнениях корни могут быть разными – и целыми, и рациональными. Чтобы привести такое уравнение к тождественному равенству, потребуется подставить делители в полученное равенство. В этом случае полученный x1 будет корнем, и в то же время корнем начального уравнения:

x1=y1/a

Чтобы найти значение корней квадратного трехчлена, потребуется многочлен ay3+by2+cy+d разделить на y-y1.

Рассмотрим решение кубических уравнений такого вида на примере.

Пример:

Решить уравнение [x 3-3 x 2-13 x+15=0].

Решение:

Ищем первый корень перебором чисел: [0, pm1, pm2, pm3, pm5, pm15] и подстановкой в уравнение. В результате находим, что 1 является корнем. Тогда делим левую часть этого уравнения на двухчлен x-1 и получаем:

Теперь, решая квадратное уравнение: [x 2-2 x-15=0], находим оставшиеся два корня: x1=-3 и x2=5.

Ответ: 1; -3; 5.

Такой способ решения кубических уравнений используется для преобразования и решения возвратных уравнений. Из приведенного примера видно, что корнем является -1, значит, левую часть можно разделить на x+1. После того, как эти действия выполнены, можно находить корни квадратного трехчлена. Если рациональные корни отсутствуют, необходимо находить иные методы решения и разложения многочлена на множители.

Решение кубического уравнения с помощью формулы Кардано

Есть еще один способ — формула Кардано для решения кубических уравнений.

Если взять уравнение вида B0y3+B1y2+B2y+B3=0, то A1=B1/B0, A2=B2/B0, A3=B3/B0.

Z=-A21/3+A2

P=2A31/27-A1A2/3+A3.

Выведенные значение Z и P подставим в формулу Кардано.

X=3√-P/2+√P2/4+Z3/27+3√-P/2-+√P2/4+Z3/27

В итоге подбор кубических корней должен соответствовать значению –Z/3. В этом случае корни исходного уравнения будут выглядеть следующим образом:

y=x-A1/3

Применить формулу Кордано можно на примере для наглядности.

Пример

Решить уравнение [x^{3}+6 x^{2}+3 x-10=0]

Решение

Данное уравнение легко решается и без применения формулы Кардано. Легко подобрать корень [x=1]. Делением
[x=1] левой части уравнения по схеме Горнера получаем:

[begin{array}{r}+begin{array}{r}1&6&3&-10\0&1*1=1&7*1=7&10*1=10\end{array}
\hlinebegin{array}{r}1quadquadquad&7quadquadquad&10quadquadquadquad&0end{array}end{array}]

Следовательно, [x^{2}+7 x+10=0]. Решая это квадратное уравнение, получаем

[x=frac{-7 pm sqrt{7^{2}-4 * 1 * 10}}{2} Leftrightarrow x_{1}=-2, quad x_{2}=-5]

А теперь найдем корни исходного уравнения по формуле Кардано. Для данного уравнения [a=1, b=6, c=3, d=-10].
Замена переменной [x=y-frac{b}{3 a}=y-frac{6}{3}=y-2] приводит исходное уравнение к виду [y^{3}+p
y+q=0], где:

[p=frac{3 a c-b^{2}}{3 a^{2}}=frac{3 * 1 * 3-6^{2}}{3 * 1^{2}}=-9, quad q=\frac{2 b^{3}-9 a b c+27 a^{2}
d}{27 a^{3}}=frac{2 * 6^{3}-9 * 1 * 6 * 3+27 * 1^{2} *(-10)}{27 * 1^{3}}=0]

Вычислим дискриминант этого уравнения:

[Delta=left(frac{q}{2}right)^{2}+left(frac{p}{3}right)^{3}=left(frac{0}{2}right)^{2}+left(-frac{9}{3}right)^{3}=-27]

Так [Delta] каноническое уравнение имеет 3 действительных корня. Поскольку [q=0 Rightarrow
varphi=frac{pi}{2}=>]

[y_{1}=2 sqrt{-frac{p}{3}} * cos left(frac{varphi}{3}right)=2 sqrt{-frac{-9}{3}} * cos
left(frac{frac{pi}{2}}{3}right)=2 sqrt{3} * cos left(frac{pi}{6}right)=2 sqrt{3} *
frac{sqrt{3}}{2}=3,\y_{2}=2 sqrt{-frac{p}{3}} * cos left(frac{varphi}{3}+frac{2 pi}{3}right)=2
sqrt{3} * cos left(frac{frac{pi}{2}}{3}+frac{2 pi}{3}right)=2 sqrt{3} * cos left(frac{5
pi}{6}right)=-2 sqrt{3} * frac{sqrt{3}}{2}=-3,\y_{3}=2 sqrt{-frac{p}{3}} * cos
left(frac{varphi}{3}+frac{4 pi}{3}right)=2 sqrt{3} * cos left(frac{frac{pi}{2}}{3}+frac{4
pi}{3}right)=2 sqrt{3} * cos left(frac{3 pi}{2}right)=0.]

В данном случае для корней начального уравнения мы получим:

x1=y1-2=3-2=1;

x2=y2-2=-3-2=-5;

x3=y3-2=0-2=-2.

Получаем ответы: 1, -5, -2.

Нет времени решать самому?

Наши эксперты помогут!

Общее решение кубического уравнения, если известен один из корней

За исходное уравнение возьмем следующее:

y3+ay2+by+c=0

Предположим, что a,b,c являются действительными цифровыми значениями. Известный корень пометим, как y1. В таком случае, если произвести деление начального уравнения y3+ay2+by+c=0 на y-y1 получим квадратное уравнение. При решении такого уравнения удастся найти еще два корня – y2 и y3.

Чтобы доказать это, преобразуем кубический многочлен следующим образом:

y3+ay2+by+c=(y-y1)(y-y2)(y-y3)

При решении таких уравнений часто допускаются ошибки. Их решение – это сложное, многократное преобразование, которое требует точного знания формул и математических законов. Чтобы избежать ошибок и погрешностей, потребуется применить не только практические навыки, но и теоретические знания. Для решения кубических уравнений можно использовать специальный онлайн калькулятор. Принцип его действия основан на формуле Кардано. В том случае, если один или несколько коэффициентов такого уравнения равны нулю, или между ними присутствует определенная зависимость, решение будет более простым.

Чтобы научиться решать подобные уравнения, необходимо рассматривать примеры и тренироваться на их решении разными способами.

Решения кубических уравнений с вещественными коэффициентами. Универсальные методы. Дискриминант кубического уравнения. Формула Виета для кубического уравнения.

Решения кубических уравнений с вещественными коэффициентами. Универсальные методы. Дискриминант кубического уравнения. Формула Виета для кубического уравнения.

Кубическим уравнением называется уравнение вида

  • ax 3 + bx 2 + cx +d = 0 , (1)
  • где a, b,c ,d — постоянные коэффициенты, а х — переменная.

Мы рассмотрим случай, когда коэффициенты являются веществеными числами.

Корни кубического уравнения. Нахождение корней (решение) кубического уравнения.

Число х называется корнем кубического уравнения (1), если при его подстановке уравнение (1) обращается в верное равенство.

Кубическое уравнение имеет не более трех корней (над комплексным полем всегда три корня, с учетом кратности) . И всегда имеет хотя бы 1 (вещественный) корень. Все возможные случаи состава корней легко определить с помощью знака дискриминанта кубического уравнения, т.е.:

Δ= -4b 3 d + b 2 c 2 — 4ac 3 + 18abcd — 27a 2 d 2 (Да, это дискриминант кубического уравнения)

Итак, возможны только 3 следующих случая:

  • Δ > 0 — тогда уравнение имеет 3 различных корня. (Для продвинутых — три различных вещественных корня)
  • Δ 3 + py + q = 0 (2)

К такому виду можно привести любое кубическое уравнение вида (1) с помощью следующей замены:

  • x= y — b/3a (3)
  • p= — b 2 /3a 2 + c/a
  • q= 2b 3 /27a 3 — bc/3a 2 + d/a

Итак, приступим к вычислению корней. Найдем следующие величины:

Дискриминант уравнения (2) в этом случае равен

Дискриминант исходного уравнения (1) будет иметь тот же знак , что и вышеуказанный дискриминант. Корни уравнения (2) выражаются следующим образом:

Соответственно, если Q>0, то уравнения (2) и (1) будут иметь лишь 1 (вещественный) корень, y1. Подставим его в (3) и найдем х для уравнения (1). (если вас интересуют также мнимые корни, то просто вычислите еще и y2, y3 и подставьте их в (3).

Если Q 3 + ax 2 + bx +c = 0 (4)

Очевидно, любое уравнение вида (1) можно привести к виду (4), просто поделив его на коэффициент а.

Итак, алгоритм применения этой формулы:

3. a) Если S>0, то вычисляем

И наше уравнение имеет 3 корня (вещественных):

Тогда единственный корень (вещественный): x1= -2sgn(R)*|Q| 1/2 *ch(φ) — a/3

Для тех, кого интересуют также и мнимые корни:

  • ch(x)=(e x +e -x )/2
  • Arch(x) = ln(x + (x 2 -1) 1/2 )
  • sh(x)=(e x -e -x )/2
  • sgn(x) — знак х

в) Если S=0,то уравнение имеет меньше трех различных решений:

Консультации и техническая
поддержка сайта: Zavarka Team

Решение кубических уравнений

Кубическое уравнение, содержащее коэффициенты с действительным корнем, остальные два считаются комплексно-сопряженной парой. Будут рассмотрены уравнения с двучленами и возвратные, а также с поиском рациональных корней. Вся информация будет подкреплена примерами.

Решение двучленного кубического уравнения вида A x 3 + B = 0

Кубическое уравнение, содержащее двучлен, имеет вид A x 3 + B = 0 . Его необходимо приводить к x 3 + B A = 0 с помощью деления на А , отличного от нуля. После чего можно применять формулу сокращенного умножения суммы кубов. Получаем, что

x 3 + B A = 0 x + B A 3 x 2 — B A 3 x + B A 2 3 = 0

Результат первой скобки примет вид x = — B A 3 , а квадратный трехчлен — x 2 — B A 3 x + B A 2 3 , причем только с комплексными корнями.

Найти корни кубического уравнения 2 x 3 — 3 = 0 .

Решение

Необходимо найти х из уравнения. Запишем:

2 x 3 — 3 = 0 x 3 — 3 2 = 0

Необходимо применить формулу сокращенного умножения. Тогда получим, что

x 3 — 3 2 = 0 x — 3 3 2 6 x 2 + 3 3 2 6 x + 9 2 3 = 0

Раскроем первую скобку и получим x = 3 3 2 6 . Вторая скобка не имеет действительных корней, потому как дискриминант меньше нуля.

Ответ: x = 3 3 2 6 .

Решение возвратного кубического уравнения вида A x 3 + B x 2 + B x + A = 0

Вид квадратного уравнения — A x 3 + B x 2 + B x + A = 0 , где значения А и В являются коэффициентами. Необходимо произвести группировку. Получим, что

A x 3 + B x 2 + B x + A = A x 3 + 1 + B x 2 + x = = A x + 1 x 2 — x + 1 + B x x + 1 = x + 1 A x 2 + x B — A + A

Корень уравнения равен х = — 1 , тогда для получения корней квадратного трехчлена A x 2 + x B — A + A необходимо задействовать через нахождение дискриминанта.

Решить уравнение вида 5 x 3 — 8 x 2 — 8 x + 5 = 0 .

Решение

Уравнение является возвратным. Необходимо произвести группировку. Получим, что

5 x 3 — 8 x 2 — 8 x + 5 = 5 x 3 + 1 — 8 x 2 + x = = 5 x + 1 x 2 — x + 1 — 8 x x + 1 = x + 1 5 x 2 — 5 x + 5 — 8 x = = x + 1 5 x 2 — 13 x + 5 = 0

Если х = — 1 является корнем уравнения, тогда необходимо найти корни заданного трехчлена 5 x 2 — 13 x + 5 :

5 x 2 — 13 x + 5 = 0 D = ( — 13 ) 2 — 4 · 5 · 5 = 69 x 1 = 13 + 69 2 · 5 = 13 10 + 69 10 x 2 = 13 — 69 2 · 5 = 13 10 — 69 10

Ответ:

x 1 = 13 10 + 69 10 x 2 = 13 10 — 69 10 x 3 = — 1

Решение кубических уравнений с рациональными корнями

Если х = 0 , то он является корнем уравнения вида A x 3 + B x 2 + C x + D = 0 . При свободном члене D = 0 уравнение принимает вид A x 3 + B x 2 + C x = 0 . При вынесении х за скобки получим, что уравнение изменится. При решении через дискриминант или Виета оно примет вид x A x 2 + B x + C = 0 .

Найти корни заданного уравнения 3 x 3 + 4 x 2 + 2 x = 0 .

Решение

3 x 3 + 4 x 2 + 2 x = 0 x 3 x 2 + 4 x + 2 = 0

Х = 0 – это корень уравнения. Следует найти корни квадратного трехчлена вида 3 x 2 + 4 x + 2 . Для этого необходимо приравнять к нулю и продолжить решение при помощи дискриминанта. Получим, что

D = 4 2 — 4 · 3 · 2 = — 8 . Так как его значение отрицательное, то корней трехчлена нет.

Ответ: х = 0 .

Когда коэффициенты уравнения A x 3 + B x 2 + C x + D = 0 целые, то в ответе можно получить иррациональные корни. Если A ≠ 1 , тогда при умножении на A 2 обеих частей уравнения проводится замена переменных, то есть у = А х :

A x 3 + B x 2 + C x + D = 0 A 3 · x 3 + B · A 2 · x 2 + C · A · A · x + D · A 2 = 0 y = A · x ⇒ y 3 + B · y 2 + C · A · y + D · A 2

Приходим к виду кубического уравнения. Корни могут быть целыми или рациональными. Чтобы получить тождественное равенство, необходимо произвести подстановку делителей в полученное уравнение. Тогда полученный y 1 будет являться корнем. Значит и корнем исходного уравнения вида x 1 = y 1 A . Необходимо произвести деление многочлена A x 3 + B x 2 + C x + D на x — x 1 . Тогда сможем найти корни квадратного трехчлена.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Необходимо произвести преобразование с помощью умножения на 2 2 обеих частей, причем с заменой переменной типа у = 2 х . Получаем, что

2 x 3 — 11 x 2 + 12 x + 9 = 0 2 3 x 3 — 11 · 2 2 x 2 + 24 · 2 x + 36 = 0 y = 2 x ⇒ y 3 — 11 y 2 + 24 y + 36 = 0

Свободный член равняется 36 , тогда необходимо зафиксировать все его делители:

± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 9 , ± 12 , ± 36

Необходимо произвести подстановку y 3 — 11 y 2 + 24 y + 36 = 0 , чтобы получить тождество вида

1 3 — 11 · 1 2 + 24 · 1 + 36 = 50 ≠ 0 ( — 1 ) 3 — 11 · ( — 1 ) 2 + 24 · ( — 1 ) + 36 = 0

Отсюда видим, что у = — 1 – это корень. Значит, x = y 2 = — 1 2 .

Далее следует деление 2 x 3 — 11 x 2 + 12 x + 9 на x + 1 2 при помощи схемы Горнера:

x i Коэффициенты многочлена
2 — 11 12 9
— 0 . 5 2 — 11 + 2 · ( — 0 . 5 ) = — 12 12 — 12 · ( — 0 . 5 ) = 18 9 + 18 · ( — 0 . 5 ) = 0

2 x 3 — 11 x 2 + 12 x + 9 = x + 1 2 2 x 2 — 12 x + 18 = = 2 x + 1 2 x 2 — 6 x + 9

После чего необходимо найти корни квадратного уравнения вида x 2 — 6 x + 9 . Имеем, что уравнение следует привести к виду x 2 — 6 x + 9 = x — 3 2 , где х = 3 будет его корнем.

Ответ: x 1 = — 1 2 , x 2 , 3 = 3 .

Алгоритм можно применять для возвратных уравнений. Видно, что — 1 – это его корень, значит, левая часть может быть поделена на х + 1 . Только тогда можно будет найти корни квадратного трехчлена. При отсутствии рациональных корней применяются другие способы решения для разложения многочлена на множители.

Решение кубических уравнений по формуле Кардано

Нахождение кубических корней возможно при помощи формулы Кардано. При A 0 x 3 + A 1 x 2 + A 2 x + A 3 = 0 необходимо найти B 1 = A 1 A 0 , B 2 = A 2 A 0 , B 3 = A 3 A 0 .

После чего p = — B 1 2 3 + B 2 и q = 2 B 1 3 27 — B 1 B 2 3 + B 3 .

Полученные p и q в формулу Кардано. Получим, что

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — q 2 4 + p 3 27 3

Подбор кубических корней должен удовлетворять на выходе значению — p 3 . Тогда корни исходного уравнения x = y — B 1 3 . Рассмотрим решение предыдущего примера, используя формулу Кардано.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Видно, что A 0 = 2 , A 1 = — 11 , A 2 = 12 , A 3 = 9 .

Необходимо найти B 1 = A 1 A 0 = — 11 2 , B 2 = A 2 A 0 = 12 2 = 6 , B 3 = A 3 A 0 = 9 2 .

Отсюда следует, что

p = — B 1 2 3 + B 2 = — — 11 2 2 3 + 6 = — 121 12 + 6 = — 49 12 q = 2 B 1 3 27 — B 1 B 2 3 + B 3 = 2 · — 11 2 3 27 — — 11 2 · 6 3 + 9 2 = 343 108

Производим подстановку в формулу Кордано и получим

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — — q 2 4 + p 3 27 3 = = — 343 216 + 343 2 4 · 108 2 — 49 3 27 · 12 3 3 + — 343 216 — 343 2 4 · 108 2 — 49 3 27 · 12 3 3 = = — 343 216 3 + — 343 216 3

— 343 216 3 имеет три значения. Рассмотрим их ниже.

— 343 216 3 = 7 6 cos π + 2 π · k 3 + i · sin π + 2 π · k 3 , k = 0 , 1 , 2

Если k = 0 , тогда — 343 216 3 = 7 6 cos π 3 + i · sin π 3 = 7 6 1 2 + i · 3 2

Если k = 1 , тогда — 343 216 3 = 7 6 cosπ + i · sinπ = — 7 6

Если k = 2 , тогда — 343 216 3 = 7 6 cos 5 π 3 + i · sin 5 π 3 = 7 6 1 2 — i · 3 2

Необходимо произвести разбиение по парам, тогда получим — p 3 = 49 36 .

Тогда получим пары: 7 6 1 2 + i · 3 2 и 7 6 1 2 — i · 3 2 , — 7 6 и — 7 6 , 7 6 1 2 — i · 3 2 и 7 6 1 2 + i · 3 2 .

Преобразуем при помощи формулы Кордано:

y 1 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 + i · 3 2 + 7 6 1 2 — i · 3 2 = 7 6 1 4 + 3 4 = 7 6 y 2 = — 343 216 3 + — 343 216 3 = — 7 6 + — 7 6 = — 14 6 y 3 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 — i · 3 2 + 7 6 1 2 + i · 3 2 = 7 6 1 4 + 3 4 = 7 6

x 1 = y 1 — B 1 3 = 7 6 + 11 6 = 3 x 2 = y 2 — B 1 3 = — 14 6 + 11 6 = — 1 2 x 3 = y 3 — B 1 3 = 7 6 + 11 6 = 3

Ответ: x 1 = — 1 2 , x 2 , 3 = 3

При решении кубических уравнений можно встретить сведение к решению уравнений 4 степени методом Феррари.

Применение производной для решения нелинейных уравнений и неравенств

п.1. Количество корней кубического уравнения

Кубическое уравнение $$ ax^3+bx^2+cx+d=0 $$ на множестве действительных чисел может иметь один, два или три корня.
С помощью производной можно быстро ответить на вопрос, сколько корней имеет данное уравнение. begin f(x)=ax^3+bx^2+cx+d\ f'(x)=3ax^2+bx+c end Если в уравнении (f'(x)=0) дискриминант (D=4b^2-12ac=4(b^2-3ac)gt 0), кубическая парабола имеет две точки экстремума: (x_<1,2>=frac<-2bpmsqrt><6a>). Если при этом значения функции в точках экстремума (f(x_1)cdot f(x_2)lt 0), т.е. расположены по разные стороны от оси OX, парабола имеет три точки пересечения с этой осью. Исходное уравнение имеет три корня.
Если две точки экстремума найдены, но (f(x_1)cdot f(x_2)=0), уравнение имеет два корня.
Во всех остальных случаях – у исходного уравнения 1 корень.

Пример 1. Сколько корней имеют уравнения:

п.2. Количество корней произвольного уравнения

Задачи на подсчет количества корней решаются с помощью построения графиков при полном или частичном исследовании функций.

Пример 2. а) Найдите число корней уравнения (frac 1x+frac<1>+frac<1>)
б) Найдите число корней уравнения (frac 1x+frac<1>+frac<1>=k)

Построим график функции слева, а затем найдем для него количество точек пересечения с горизонталью (y=1). Это и будет ответом на вопрос задачи (а).
Исследуем функцию: $$ f(x)=frac1x+frac<1>+frac<1> $$ Алгоритм исследования и построения графика – см. §49 данного справочника.
1) ОДЗ: (xneleft<0;1;3right>)
Все три точки – точки разрыва 2-го рода. begin lim_left(frac1x+frac<1>+frac<1>right)=-infty-1-frac13=-infty\ lim_left(frac1x+frac<1>+frac<1>right)=+infty-1-frac13=+infty\ lim_left(frac1x+frac<1>+frac<1>right)=1-infty-frac12=-infty\ lim_left(frac1x+frac<1>+frac<1>right)=1+infty-frac12=+infty\ lim_left(frac1x+frac<1>+frac<1>right)=frac13+frac12-infty=-infty\ lim_left(frac1x+frac<1>+frac<1>right)=frac13+frac12+infty=+infty end 2) Функция ни четная, ни нечетная.
Функция непериодическая.
3) Асимптоты
1. Вертикальные (x=0, x=1, x=3) – точки разрыва 2-го рода
2. Горизонтальные: begin lim_left(frac1x+frac<1>+frac<1>right)=-0-0-0=-0\ lim_left(frac1x+frac<1>+frac<1>right)=+0+0+0=+0\ end Горизонтальная асимптота (y=0)
На минус бесконечности функция стремится к 0 снизу, на плюс бесконечности – сверху.
3. Наклонные: (k=0), нет.
4) Первая производная $$ f'(x)=-frac<1>-frac<1><(x-1)^2>-frac<1><(x-3)^2>lt 0 $$ Производная отрицательная на всей ОДЗ.
Функция убывает.

5) Вторую производную не исследуем, т.к. перегибы не влияют на количество точек пересечения с горизонталью.

6) Точки пересечения с OY – нет, т.к. (x=0) – асимптота
Точки пересечения с OX – две, (0lt x_1lt 1,1lt x_2lt 3)

7) График

Получаем ответ для задачи (а) 3 корня.

Решаем более общую задачу (б). Передвигаем горизонталь (y=k) снизу вверх и считаем количество точек пересечения с графиком функции. Последовательно, получаем:
При (klt 0) — три корня
При (k=0) — два корня
При (kgt 0) — три корня

Ответ: а) 3 корня; б) при (k=0) два корня, при (kne 0) три корня.

Пример 3. Найдите все значения параметра a, при каждом из которых уравнение $$ sqrt+sqrt<10-2x>=a $$ имеет по крайней мере одно решение.

Исследуем функцию (f(x)=sqrt+sqrt<10-2x>)
ОДЗ: ( begin x-1geq 0\ 10-2xgeq 0 end Rightarrow begin xgeq 1\ xleq 5 end Rightarrow 1leq xleq 5 )
Функция определена на конечном интервале.
Поэтому используем сокращенный алгоритм для построения графика.
Значения функции на концах интервала: (f(1)=0+sqrt<8>=2sqrt<2>, f(5)=sqrt<4>+0=2)
Первая производная: begin f'(x)=frac<1><2sqrt>+frac<-2><2sqrt<10-2x>>=frac<1><2sqrt>-frac<1><sqrt<10-2x>>\ f'(x)=0 text<при> 2sqrt=sqrt<10-2x>Rightarrow 4(x-1)=10-2xRightarrow 6x=14Rightarrow x=frac73\ fleft(frac73right)=sqrt<frac73-1>+sqrt<10-2cdot frac73>=sqrt<frac43>+sqrt<frac<16><3>>=frac<6><sqrt<3>>=2sqrt <3>end Промежутки монотонности:

(x) 1 (1; 7/3) 7/3 (7/3; 5) 5
(f'(x)) + 0
(f(x)) (2sqrt<2>) (nearrow ) max
(2sqrt<3>)
(searrow ) 2

Можем строить график:

(y=a) — горизонтальная прямая.
Количество точек пересечения (f(x)) и (y) равно количеству решений.
Получаем:

$$ alt 2 $$ нет решений
$$ 2leq alt 2sqrt <2>$$ 1 решение
$$ 2sqrt<2>leq alt 2sqrt <3>$$ 2 решения
$$ a=2sqrt <3>$$ 1 решение
$$ agt 2sqrt <3>$$ нет решений

По крайней мере одно решение будет в интервале (2leq aleq 2sqrt<3>).

п.3. Решение неравенств с построением графиков

Пример 4. Решите неравенство (frac<2+log_3 x>gt frac<6><2x-1>)

Разобьем неравенство на совокупность двух систем.
Если (xgt 1), то (x-1gt 0), на него можно умножить слева и справа и не менять знак.
Если (xlt 1), то (x-1lt 0), умножить также можно, только знак нужно поменять.
Сразу учтем требование ОДЗ для логарифма: (xgt 0)

Получаем совокупность: begin left[ begin begin xgt 1\ 2+log_3 xgtfrac<6(x-1)> <2x-1>end \ begin 0lt xlt 1\ 2+log_3 xltfrac<6(x-1)> <2x-1>end end right. \ 2+log_3 xgt frac<6(x-1)><2x-1>Rightarrow log_3 xgt frac<6(x-1)-2(2x-1)><2x-1>Rightarrow log_3 xgt frac<2x-4><2x-1>\ left[ begin begin xgt 1\ log_3 xgtfrac<2x-4> <2x-1>end \ begin 0lt xlt 1\ log_3 xltfrac<2x-4> <2x-1>end end right. end Исследуем функцию (f(x)=frac<2x-4><2x-1>=frac<2x-1-3><2x-1>=1-frac<3><2x-1>)
Точка разрыва: (x=frac12) – вертикальная асимптота
Односторонние пределы: begin lim_left(1-frac<3><2x-1>right)=1-frac<3><-0>=+infty\ lim_left(1-frac<3><2x-1>right)=1-frac<3><+0>=-infty end Второе слагаемое стремится к 0 на бесконечности, и это дает горизонтальную асимптоту: (y=1) begin lim_left(1-frac<3><2x-1>right)=1-frac<3><-infty>=1+0\ lim_left(1-frac<3><2x-1>right)=1-frac<3><+infty>=1-0 end На минус бесконечности кривая стремится к (y=1) сверху, а на плюс бесконечности – снизу.
Первая производная: $$ f'(x)=left(1-frac<3><2x-1>right)’=frac<3><(2x-1)^2>gt 0 $$ Производная положительная на всей ОДЗ, функция возрастает.
Вторая производная: $$ f»(x)=-frac<6> <(2x-1)^3>$$ Одна критическая точка 2-го порядка (x=frac12)

источники:

http://zaochnik.com/spravochnik/matematika/systems/reshenie-kubicheskih-uravnenij/

http://reshator.com/sprav/algebra/10-11-klass/primenenie-proizvodnoj-dlya-resheniya-nelinejnyh-uravnenij-i-neravenstv/


Download Article


Download Article

In a cubic equation, the highest exponent is 3, the equation has 3 solutions/roots, and the equation itself takes the form ax^{3}+bx^{2}+cx+d=0. While cubics look intimidating and unlike quadratic equation is quite difficult to solve, using the right approach (and a good amount of foundational knowledge) can tame even the trickiest cubics. You can try, among other options, using the quadratic formula, finding integer solutions, or identifying discriminants.

  1. Image titled Solve a Cubic Equation Step 1

    1

  2. Image titled Solve a Cubic Equation Step 2

    2

    Advertisement

  3. Image titled Solve a Cubic Equation Step 3

    3

  4. Image titled Solve a Cubic Equation Step 4

    4

  5. Image titled Solve a Cubic Equation Step 5

    5

    Use zero and the quadratic answers as your cubic’s answers. While quadratic equations have two solutions, cubics have three. You already have two of these — they’re the answers you found for the «quadratic» portion of the problem in parentheses. In cases where your equation is eligible for this «factoring» method of solving, your third answer will always be {displaystyle 0}.[6]

  6. Advertisement

  1. Image titled Solve a Cubic Equation Step 6

    1

  2. Image titled Solve a Cubic Equation Step 7

    2

  3. Image titled Solve a Cubic Equation Step 8

    3

  4. Image titled Solve a Cubic Equation Step 9

    4

    Plug in the integers manually for a simpler but possibly time-consuming approach. Once you have your list of values, you can find the integer answers to your cubic equation by quickly plugging each integer in manually and finding which ones equal {displaystyle 0}. For instance, if you plug in 1, you get:[10]

  5. Image titled Solve a Cubic Equation Step 10

    5

  6. Advertisement

  1. Image titled Solve a Cubic Equation Step 11

    1

  2. Image titled Solve a Cubic Equation Step 12

    2

    Calculate the discriminant of zero using the proper formula. The discriminant approach to finding a cubic equation’s solution requires some complicated math, but if you follow the process carefully, you’ll find that it’s an invaluable tool for figuring out those cubic equations that are hard to crack any other way. To start, find Delta _{0} (the discriminant of zero), the first of several important quantities we’ll need, by plugging the appropriate values into the formula Delta _{0}=b^{2}-3ac.[13]

  3. Image titled Solve a Cubic Equation Step 13

    3

  4. Image titled Solve a Cubic Equation Step 14

    4

  5. Image titled Solve a Cubic Equation Step 15

    5

  6. Image titled Solve a Cubic Equation Step 16

    6

  7. Advertisement

Practice Problems and Answers

Add New Question

  • Question

    How do you solve a simple cubic equation?

    David Jia

    David Jia is an Academic Tutor and the Founder of LA Math Tutoring, a private tutoring company based in Los Angeles, California. With over 10 years of teaching experience, David works with students of all ages and grades in various subjects, as well as college admissions counseling and test preparation for the SAT, ACT, ISEE, and more. After attaining a perfect 800 math score and a 690 English score on the SAT, David was awarded the Dickinson Scholarship from the University of Miami, where he graduated with a Bachelor’s degree in Business Administration. Additionally, David has worked as an instructor for online videos for textbook companies such as Larson Texts, Big Ideas Learning, and Big Ideas Math.

    David Jia

    Academic Tutor

    Expert Answer

    If you only have x³ in an equation, you can isolate it and find the cube root of both sides. This only works with really simple equations, though—factoring is the best way to solve more complex equations.

  • Question

    How would I solve xy+z+z^3=1?

    Community Answer

    That equation has numerous answers because you’ve got three variables. To get one answer for three variables you need three equations. One possible answer would be x=1, y=-1, z=1 => (1)(-1)+1+1^3=1.

  • Question

    The question is: if 3 consecutive even numbers are multiplied and the result would be 960. What are those numbers and how did you did with the step?

    Elvis Kiprotich

    Elvis Kiprotich

    Community Answer

    Solve the equation using the discriminant approach you will get three values of x. X=8, X=-7+(-1i)√71, X=-7+i√71. Easy from here, you pick the real value of x, that’s 8 and your three numbers were 8, 10 and 12.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

References

About This Article

Article SummaryX

To solve a cubic equation, start by determining if your equation has a constant. If it doesn’t, factor an x out and use the quadratic formula to solve the remaining quadratic equation. If it does have a constant, you won’t be able to use the quadratic formula. Instead, find all of the factors of a and d in the equation and then divide the factors of a by the factors of d. Then, plug each answer into the equation to see which one equals 0. Whichever integer equals 0 is your answer. Read on to learn how to solve a cubic equation using a discriminant approach!

Did this summary help you?

Thanks to all authors for creating a page that has been read 925,638 times.

Reader Success Stories

  • Anonymous

    «The content has been written in a very easy way so that any one can understand what is told.»

Did this article help you?

Кубическое уравнение – уравнение вида [{large{ax^3+bx^2+cx+d=0}},]

где (ane 0, b, c, d) – некоторые числа.

Кубическое уравнение всегда имеет как минимум один корень (x_1).
Значит, всегда выполнено: (ax^3+bx^2+cx+d=a(x-x_1)(x^2+mx+n)), где (m, n) – некоторые числа.

({color{red}{I.}}) Кубические уравнения вида [x^3=a]

для любого числа (a) имеют единственный корень

[x=sqrt[3]a]

Пример.

Решением уравнения (x^3=-8) является (x=sqrt[3]{-8}=-2).

({color{red}{II.}}) Кубические уравнения вида (ax^3+bx^2+cx+d=0) в некоторых случаях можно решить, разложив на множители левую часть.

Пример.

Решить уравнение (5x^3-x^2-20x+4=0).

Сгруппируем слагаемые в левой части и разложим ее на множители: [(5x^3-20x)-(x^2-4)=0 quad Leftrightarrow quad 5x(x^2-4)-(x^2-4)=0 quad
Leftrightarrow quad (x^2-4)(5x-1)=0]

Тогда корнями данного уравнения являются (x_1=-2, x_2=2,
x_3=frac15)
.

В некоторых задачах полезными могут оказаться формулы сокращенного умножения:

[begin{aligned}
&(xpm y)^3=x^3pm3x^2y+3xy^2pm y^3\
&x^3pm y^3=(xpm y)(x^2mp xy+y^2) end{aligned}]

({color{red}{III.}}) Кубические уравнения вида (ax^3+bx^2+cx+d=0), в которых не удается разложить левую часть на множители, можно решить другим способом: подобрать рациональный корень, если таковой имеется.

Для этого можно использовать следующие утверждения:

(blacktriangleright) Если сумма (a+b+c+d=0), то корнем уравнения является число (1).

(blacktriangleright) Если (b+d=a+c), то корнем уравнения является число (-1).

(blacktriangleright) Пусть (a,b,c,d)({color{blue}{text{целые}}}) числа. Тогда если уравнение имеет рациональный корень (large{dfrac{p}{q}}), то для него будет выполнено:

(d) делится нацело на (p);  (a) делится нацело на (q).

Пример.

1. У уравнения (7x^3+3x^2-x-9=0) сумма коэффициентов равна (7+3-1-9=0), значит, (x=1) является корнем (не обязательно единственным) этого уравнения.

2. У уравнения (4,5x^3-3x^2-0,5x+7=0) выполнено: (4,5-0,5=-3+7), значит, (x=-1) является корнем этого уравнения.

3. У уравнения (2x^3+5x^2+3x-3=0) коэффициенты — целые числа, поэтому можно подбирать корень: делители свободного члена (-3) : (pm 1, pm 3); делители старшего коэффициента (2): (pm1, pm2). Значит, возможные комбинации рациональных корней: [pm 1, pmdfrac12, pm 3, pm dfrac32]

Подставляя по очереди каждое число в уравнение, убеждаемся, что (x=frac12) является корнем (т.к. после подстановки этого числа в уравнение оно превращается в верное равенство):

[2cdot left(frac12right)^3+5cdot left(frac12right)^2+3cdot
frac12-3=0 quad Leftrightarrow quad 0=0]

Заметим, что если у уравнения коэффициенты — рациональные числа, то домножением уравнения на их общих знаменатель можно получить равносильное ему уравнение с целыми коэффициентами. Например, уравнение (frac12x^3+frac16x+2=0) после умножения на (6) сводится к уравнению с целыми коэффициентами: (3x^3+x+12=0).

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Сочинение рассуждение как найти свое призвание
  • Как найти человека в чатах ватсап
  • Intel hd graphics как найти
  • Как найти золотую середину в питании
  • Как составить кроссворд в столбик

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии