Как найти корни гиперболы

Гипербола: формулы, примеры решения задач

Определение гиперболы, решаем задачи вместе

Определение гиперболы. Гиперболой называется множество всех точек плоскости, таких, для которых модуль разности расстояний от двух точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы имеет вид:

,

где a и b — длины полуосей, действительной и мнимой.

На чертеже ниже фокусы обозначены как и .

На чертеже ветви гиперболы — бордового цвета.

При a = b гипербола называется равносторонней.

Пример 1. Составить каноническое уравнение гиперболы, если его действительная полуось a = 5 и мнимая = 3.

Решение. Подставляем значения полуосей в формулу канонического уравения гиперболы и получаем:

.

Точки пересечения гиперболы с её действительной осью (т. е. с осью Ox) называются вершинами. Это точки (a, 0) (- a, 0), они обозначены и надписаны на рисунке чёрным.

Точки и , где

,

называются фокусами гиперболы (на чертеже обозначены зелёным, слева и справа от ветвей гиперболы).

называется эксцентриситетом гиперболы.

Гипербола состоит из двух ветвей, лежащих в разных полуплоскостях относительно оси ординат.

Пример 2. Составить каноническое уравнение гиперболы, если расстояние между фокусами равно 10 и действительная ось равна 8.

Если действительная полуось равна 8, то её половина, т. е. полуось a = 4 ,

Если расстояние между фокусами равно 10, то число c из координат фокусов равно 5.

То есть, для того, чтобы составить уравнение гиперболы, потребуется вычислить квадрат мнимой полуоси b.

Подставляем и вычисляем:

Получаем требуемое в условии задачи каноническое уравнение гиперболы:

.

Пример 3. Составить каноническое уравнение гиперболы, если её действительная ось равна 48 и эксцентриситет .

Решение. Как следует из условия, действительная полуось a = 24 . А эксцентриситет — это пропорция и так как a = 24 , то коэффициент пропорциональности отношения с и a равен 2. Следовательно, c = 26 . Из формулы числа c выражаем квадрат мнимой полуоси и вычисляем:

.

Результат — каноническое уравнение гиперболы:

Если — произвольная точка левой ветви гиперболы () и — расстояния до этой точки от фокусов , то формулы для расстояний — следующие:

.

Если — произвольная точка правой ветви гиперболы () и — расстояния до этой точки от фокусов , то формулы для расстояний — следующие:

.

На чертеже расстояния обозначены оранжевыми линиями.

Для каждой точки, находящейся на гиперболе, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

,

называются директрисами гиперболы (на чертеже — прямые ярко-красного цвета).

Из трёх вышеприведённых уравнений следует, что для любой точки гиперболы

,

где — расстояние от левого фокуса до точки любой ветви гиперболы, — расстояние от правого фокуса до точки любой ветви гиперболы и и — расстояния этой точки до директрис и .

Пример 4. Дана гипербола . Составить уравнение её директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет гиперболы, т. е. . Вычисляем:

.

Получаем уравнение директрис гиперболы:

Многие задачи на директрисы гиперболы аналогичны задачам на директрисы эллипса. В уроке «Эллипс» это пример 7.

Характерной особенностью гиперболы является наличие асимптот — прямых, к которым приближаются точки гиперболы при удалении от центра.

Асимптоты гиперболы определяются уравнениями

.

На чертеже асимптоты — прямые серого цвета, проходящие через начало координат O.

Уравнение гиперболы, отнесённой к асимптотам, имеет вид:

, где .

В том случае, когда угол между асимптотами — прямой, гипербола называется равнобочной, и если асимптоты равнобочной гиперболы выбрать за оси координат, то её уравнение запишется в виде y = k/x , то есть в виде уравения обратной пропорциональной зависимости.

Пример 5. Даны уравнения асимптот гиперболы и координаты точки , лежащей на гиперболе. Составить уравнение гиперболы.

Решение. Дробь в уравнении асимптот гиперболы — это пропорция, следовательно, нужно сначала найти коэффициент пропорциональности отношения . Для этого подставляем в формулу канонического уравнения гиперболы координаты точки M x и y и значения числителя и знаменателя из уравнения асимптоты, кроме того, умножаем каждую дробь в левой части на коэффициент пропорциональности k.

.

Теперь имеем все данные, чтобы получить каноническое уравнение гиперболы. Получаем:

Гипербола обладает оптическим свойством, которое описывается следующим образом: луч, исходящий из источника света, находящегося в одном из фокусов гиперболы, после отражения движется так, как будто он исходит из другого фокуса.

Решить задачи на гиперболу самостоятельно, а затем посмотреть решения

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) b = 4 , а один из фокусов в точке (5; 0)

2) действительная ось 6, расстояние между фокусами 8

3) один из фокусов в точке (-10; 0), уравнения асимптот гиперболы

Задача 32226 Написать каноническое уравнение.

Условие

Написать каноническое уравнение гиперболы, имеющий эксцентриситет равно под корнем 2 , и проходящей через точку (2 ;под корнем 3)

Решение

Каноническое уравнение гиперболы:
(x^2/a^2)-(y^2/b^2)=1

Так как ε=с/a, то
с/a=sqrt(2)
c=a*sqrt(2)

и параметры a;b и с
связаны соотношением
b^2=c^2-a^2 ⇒
b^2=2a^2-a^2
b^2=a^2

Подставляем координаты точки в уравнение:
(2^2/a^2)-((sqrt(3))^2/b^2)=1⇒
(4/a^2)-(3/b^2)=1

Гипербола — определение и вычисление с примерами решения

Гипербола:

Определение: Гиперболой называется геометрическое место точек абсолютное значение разности расстояний от которых до двух выделенных точек

Получим каноническое уравнение гиперболы. Выберем декартову систему координат так, чтобы фокусы

Рис. 31. Вывод уравнения гиперболы.

Расстояние между фокусами (фокусное расстояние) равно Согласно определению, для гиперболы имеем Из треугольников по теореме Пифагора найдем соответственно.

Следовательно, согласно определению имеем

Возведем обе части равенства в квадрат, получим

Перенося квадратный корень в левую часть, а все остальное в правую часть равенства, находим Раскроем разность квадратов Подставим найденное выражение в уравнение и сократим обе части равенства на 4, тогда оно перейдет в уравнение Вновь возведем обе части равенства в квадрат Раскрывая все скобки в правой части уравнения, получим Соберем неизвестные в левой части, а все известные величины перенесем в правую часть уравнения, получим Введем обозначение для разности, стоящей в скобках Получим Разделив все члены уравнения на величину получаем каноническое уравнение гиперболы: Для знака “+” фокусы гиперболы расположены на оси Ох, вдоль которой вытянута гипербола. Для знака фокусы гиперболы расположены на оси Оу, вдоль которой вытянута гипербола.

Проанализируем полученное уравнение. Если точка М(х;у) принадлежит гиперболе, то ей принадлежат и симметричные точки и следовательно, гипербола симметрична относительно координатных осей, которые в данном случае будут называться осями симметрии гиперболы (Рис. 32). Найдем координаты точек пересечения гиперболы с координатными осями: т.е. точками пересечения гиперболы с осью абсцисс будут точки т.е. гипербола не пересекает ось ординат.

Рис. 32. Асимптоты и параметры гиперболы

Определение: Найденные точки называются вершинами гиперболы.

Докажем, что при возрастании (убывании) переменной х гипербола неограниченно приближается к прямым не пересекая эти прямые. Из уравнения гиперболы находим, что При неограниченном росте (убывании) переменной х величина следовательно, гипербола будет неограниченно приближаться к прямым

Определение: Прямые, к которым неограниченно приближается график гиперболы называются асимптотами гиперболы.

В данном конкретном случае параметр а называется действительной, а параметр b — мнимой полуосями гиперболы.

Определение: Эксцентриситетом гиперболы называется отношение фокусного расстояния к действительной полуоси гиперболы

Из определения эксцентриситета гиперболы следует, что он удовлетворяет неравенству Кроме того, эта характеристика описывает форму гиперболы. Для демонстрации этого факта рассмотрим квадрат отношения мнимой полуоси гиперболы к действительной полуоси Если эксцентриситет и гипербола становится равнобочной. Если и гипербола вырождается в два полубесконечных отрезка

Пример:

Составить каноническое уравнение гиперболы, если мнимая полуось b = 5 и гипербола проходит через точку М(4; 5).

Решение:

Для решения задачи воспользуемся каноническим уравнением гиперболы, подставив в него все известные величины:

Следовательно, каноническое уравнение гиперболы имеет вид

Пример:

Составить уравнение гиперболы, вершины которой находятся в фокусах, а фокусы — в вершинах эллипса

Решение:

Для определения координат фокусов и вершин эллипса преобразуем его уравнение к каноническому виду. Эллипс: или Следовательно, большая полуось эллипса а малая полуось Итак, вершины эллипса расположены на оси и на оси Так как то эллипс вытянут вдоль оси абсцисс Ох. Определим расположение фокусов данного эллипса Итак, Согласно условию задачи (см. Рис. 33):

Рис. 33. Параметры эллипса и гиперболы

Вычислим длину мнимой полуоси Уравнение гиперболы имеет вид:

Гипербола в высшей математике

Решая его относительно , получим две явные функции

или одну двузначную функцию

Функция имеет действительные значения только в том случае, если . При функция действительных значений не имеет. Следовательно, если , то точек с координатами, удовлетворяющими уравнению (3), не существует.

При получаем.

При каждому значению соответствуют два значения , поэтому кривая симметрична относительно оси . Так же можно убедиться в симметрии относительно оси . Поэтому в рассуждениях можно ограничиться рассмотрением только первой четверти. В этой четверти при увеличении х значение у будет также увеличиваться (рис. 36).

Кривая, все точки которой имеют координаты, удовлетворяющие уравнению (3), называется гиперболой.

Гипербола в силу симметрии имеет вид, указанный на рис. 37.

Точки пересечения гиперболы с осью называются вершинами гиперболы; на рис. 37 они обозначены буквами и .

Часть гиперболы, расположенная в первой и четвертой четвертях, называется правой ветвью, а часть гиперболы, расположенная во второй и третьей четвертях, — левой ветвью.

Рассмотрим прямую, заданную уравнением . Чтобы не смешивать ординату точки, расположенной на этой прямой, с ординатой точки, расположенной на гиперболе, будем обозначать ординату точки на прямой , а ординату точки на гиперболе через . Тогда , (рассматриваем только кусок правой ветви, расположенной в первой четверти). Найдем разность ординат точек, взятых на прямой и на гиперболе при одинаковых абсциссах:

Умножим и разделим правую часть на

Будем придавать все большие и большие значения, тогда правая часть равенства будет становиться все меньше и меньше, приближаясь к нулю. Следовательно, разность будет приближаться к нулю, а это значит, что точки, расположенные на прямой и гиперболе, будут сближаться. Таким образом, можно сказать, что рассматриваемая часть правой ветви гиперболы по мере удаления от начала координат приближается к прямой .

Вследствие симметрии видно, что часть правой ветви, расположенная в четвертой четверти, будет приближаться к прямой, определяемой уравнением . Также кусок левой ветви, расположенный во второй четверти, приближается к прямой , а кусок левой ветви, расположенный в третьей четверти, — к прямой .

Прямая, к которой неограниченно приближается гипербола при удалении от начала координат, называется асимптотой гиперболы.

Таким образом, гипербола имеет две асимптоты, определяемые уравнениями (рис. 37).

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар
  • Правильные многогранники в геометрии
  • Многогранники
  • Окружность
  • Эллипс

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

источники:

http://reshimvse.com/zadacha.php?id=32226

http://www.evkova.org/giperbola

Что такое гипербола? Как построить гиперболу? (Для школьников (7-11 классов)).

Математическая гипербола.

Функция заданная формулой (y=frac{k}{x}), где к неравно 0. Число k называется коэффициентом обратной пропорциональности.
Определение гиперболы.
График функции (y=frac{k}{x}) называют гиперболой. Где х является независимой переменной, а у — зависимой.

Что нужно знать, чтобы построить гиперболу?
Теперь обсудим свойства гиперболы:

1. Ветви гиперболы. Если k>o, то ветви гиперболы находятся в 1 и 3 четверти. Если k<0, то ветви гиперболы находятся во 2 и 4 четверти.
гипербола, где k>0 ветви гиперболы находятся в 1 и 3 четверти. гипербола, где k>0 ветви гиперболы находятся в 1 и 3 четверти

гипербола, где k<0 ветви гиперболы находятся во 2 и 4 четверти гипербола, где k<0 ветви гиперболы находятся во 2 и 4 четверти

2.Асимптоты гиперболы. Чтобы найти асимптоты гиперболы необходимо,иногда, уравнение гиперболы упростить. Рассмотрим на примере:
Пример №1:
$$y=frac{1}{x}$$
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х не равен 0.
$$yneqcolor{red} {frac{1}{x}}+0$$
(frac{1}{x}) дробь отбрасываем, для того чтобы найти вторую асимптоту.
Остается простое число
y≠0 это вторая асимптота.
И так, асимптоты x≠0 и y≠0 в данном примере совпадают с осями координат OX и OY.
k=1, значит гипербола будет находится в первой и третьей четверти. k всегда находится в числители.
Построим примерный график гиперболы.
гипербола y=1/x

Пример №2:
$$y=frac{1}{x+2}-1$$
Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х+2 неравен 0.
х+2≠0
х≠-2 это первая асимптота

Находим вторую асимптоту.

$$y=color{red} {frac{1}{x+2}}-1$$

Дробь (color{red} {frac{1}{x+2}}) отбрасываем
Остается y≠ -1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-2 и y≠-1):
построим гиперболу

построить гиперболу

Пример №3:

$$begin{align*}
&y=frac{2+x}{1+x} \\
&y=frac{color{red} {1+1}+x}{1+x} \\
&y=frac{1}{1+x}+frac{1+x}{1+x}\\
&y=frac{1}{1+x}+1\\
&y=frac{1}{color{red} {1+x}}+1
end{align*}$$

Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому 1+х неравен 0.
1+х≠0
х≠-1 это первая асимптота.

Находим вторую асимптоту.

$$y=color{red}{frac{1}{1+x}}+1$$

(color{red}{frac{1}{1+x}}) Дробь убираем.

Остается y≠1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-1 и y≠1):
построить гиперболу

построить гиперболу

3. У гиперболы есть центр симметрии относительно начала координат. Рассмотрим на примере:

$$y=frac{1}{x}$$

Возьмем точку А(1;1) с координатами, которая находится на графике у=1/х. На этом же графике лежит точка B(-1;-1). Видно, что точка А симметрична точке В относительна начала координат.
гипербола 1/х

4. Оси симметрии гиперболы. У гиперболы две оси симметрии. Рассмотрим пример:

$$y=frac{1}{x}$$

Первой осью симметрии является прямая y=x. Посмотрим точки (0,5;2) и (2;0,5) и еще точки (-0,5;-2) и (-2;-0,5). Эти точки расположены по разные стороны данной прямой, но на равных расстояниях от нее, они симметричны относительно этой прямой.

Вторая ось симметрии это прямая y=-x.

оси симметрии гиперболы

5. Гипербола нечетная функция.

$$f(-x)=frac{1}{-x}=-frac{1}{x}=-f(x)$$

6. Область определения гиперболы и область значения гиперболы. Область определения смотрим по оси х. Область значения смотрим по оси у. Рассмотрим на примере:

$$y=frac{-1}{x-1}-1$$

а) Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому x-1 неравен 0.
x-1≠0
х≠1 это первая асимптота.

Находим вторую асимптоту.

$$y=color{red} {frac{-1}{x-1}}-1$$

Дробь (color{red} {frac{-1}{x-1}}) удаляем.

Остается y≠ -1 это вторая асимптота.

б) k=-1, значит ветви гиперболы будут находится во второй и четвертой четверти.

в) Возьмем несколько дополнительных точек и отметим их на графике.
х=0 y=0
x=-1 y=-0,5
x=2 y=-2
x=3 y=-1,5

г) Область определения смотрим по оси х. Графика гиперболы не существует по асимптоте х≠1, поэтому область определения будет находится
х ∈ (-∞;1)U(1;+∞).

д) Область значения смотрим по оси y. График гиперболы не существует по асимптоте y≠ -1, поэтому область значения будет находится
y ∈ (-∞;-1)U(-1;+∞).

е) функция возрастает на промежутке x ∈ (-∞;1)U(1;+∞).
график гиперболы

построить гиперболу

7. Убывание и возрастание функции гиперболы. Если k>0, функция убывающая. Если k<0 функция возрастающая.

8. Для более точного построения взять несколько дополнительных точек. Пример смотреть в пункте №6.

Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.
реклама

Автор статьи

Елена Борисовна Калюжная

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Каноническое уравнение гиперболы имеет следующий вид:
$frac{x^2}{a^2} — frac{y^2}{b^2} = 1$, где $a, b$ — положительные действительные числа.

Для того чтобы составить каноническое уравнение гиперболы, нужно привести квадратное уравнение к каноническому виду.

Вывод канонического уравнения гиперболы

Рис. 1.Вывод канонического <a href=уравнения гиперболы» />

Рисунок 1. Рис. 1.Вывод канонического уравнения гиперболы

Рассмотрим гиперболу с фокусами $F_1$ и $F_2$, находящимися на оси $OX$, причём точка $O$ лежит в центе между фокусами.

Следовательно координаты $F_1(-c; 0)$, а $F_2(c; 0)$, где $c$ — расстояние до фокуса гиперболы.

Рассмотрим произвольную точку $M$, принадлежащую гиперболе.

Отрезки $r_1 =|F_1M|$ и $r_2 =|F_2M|$ называются фокальными радиусами точки $M$ гиперболы.

Из определения гиперболы следует, что $|r_1 -r_2| =2a$, следовательно $r_1 – r_2=±2a$, причём $r_1 = sqrt{(x + c)^2 + y^2}$, а $r_2 = sqrt{(x — c)^2 + y^2}$.

Соответственно, уравнение $r_1 – r_2=±2a$ иначе можно записать как $sqrt{(x + c)^2 + y^2} — sqrt{(x — c)^2 + y^2} = ±2a$ (1).

Умножим выражение (1) на $frac{$sqrt{(x + c)^2 + y^2} + sqrt{(x — c)^2 + y^2}}{±2a}$, получается:, получается:

$frac{(x + c)^2 + y^2 — (x — c)^2 – y^2}{±2a} = sqrt{(x + c)^2 + y^2} + sqrt{(x — c)^2 + y^2}$

Упростим: $frac{2cx}{±a} = sqrt{(x + c)^2 + y^2} + sqrt{(x — c)^2 + y^2}$ (2)

Сложим уравнения (1) и (2), получим:

$±(frac{cx}{a}) + a = sqrt{(x + c)^2 + y^2}$ (3)

Возведём (3) в квадрат:

$frac{c^2 x^2}{a^2} + 2xc + a^2 = (x^2 +2x c + c^2 + y^2)$

$frac{c^2 – a^2}{a^2} cdot x^2 – y^2 = c^2 – a^2$

Пусть $b^2 = c^2 – a^2$, так как $c > 0$ и, следовательно $frac{b^2}{a^2}x^2 – y^2 = b^2$

«Каноническое уравнение гиперболы» 👇

Получаем уравнение:
$frac{x^2}{a^2} — frac{y^2}{b^2} = 1$ (4), являющееся каноническим уравнением гиперболы с центром в начале координат.

Каноническое уравнение параболы и гиперболы немного похожи между собой.

Уравнение параболы выглядит следующим образом:

$y^2 = px$, где число $p$ должно быть больше нуля; это число называется фокальным параметром.

Каноническое уравнение гиперболы примеры решения

Пример 1

Ниже небольшая инструкция о том, как найти каноническое уравнение гиперболы.

Приведём уравнение $5x^2 — 4y^2 = 20$ к каноническому виду гиперболического уравнения, для этого разделим всё уравнение на $20$:

$frac{5x^2}{4} — frac{y^2}{5} = 1$

Запишем знаменатели в виде степеней:

$frac{x^2}{2^2} — frac{y^2}{sqrt{5}^2} = 1$

Теперь вы знаете, как написать каноническое уравнение гиперболы. Дальше мы расскажем о том, как строить гиперболу по каноническому уравнению.

Построение гиперболы по каноническому уравнению

Теперь давайте рассмотрим, как построить гиперболу по каноническому уравнению.

Рис. 2. Построение гиперболы по каноническому уравнению

Рисунок 2. Рис. 2. Построение гиперболы по каноническому уравнению

  1. Для начала необходимо построить асимптоты для данной гиперболы, их формулы определяются из уравнения $y = ±frac{bcdot x}{a}$.
    Для нашего канонического уравнения гиперболы они будут выглядеть так: $y = ±frac{sqrt{5}} {2}cdot x$

  2. Теперь найдём вершины гиперболы, они расположены на оси абсисс в точках $(0; a)$ и $(0; -a)$, назовём их точками $A_1, A_2$.
    Вершины нашей гиперболы находятся в точках $(2; 0)$ и $(-2; 0)$.

Далее необходимо найти две-три точки, принадлежащие любой из двух ветвей гиперболы, если гипербола без смещения – точки на второй ветви будут симметричны им относительно осей гиперболы.
Выразим $y$ из канонического уравнения нашей гиперболы:

$y = ±frac{1}{2} sqrt{5 x^2 — 4}$

Найдём точки для положительной части гиперболы:

при $x = 3, y =2.5$,
а при $x = 3, y ≈3,87$.

Теперь можно отложить все эти точки и построить график гиперболы.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Гипербола и ее каноническое уравнение

Определение.
Гиперболой называется геометрическое
место точек, разность от каждой из
которых до двух данных точек, называемых
фокусами есть величина постоянная

Возьмем
систему координат, так чтобы фокусы
лежали на оси абсцисс, а начало координат
делило отрезок F1
F2
пополам (рис. 30). Обозначим F1
F2
= 2c.
Тогда F1
(с; 0); F2
(-c;
0)

MF2
= r2,
MF1
= r1
– фокальные радиусы гиперболы.

Согласно
определения гиперболы r1
– r2
= const.

Обозначим
ее через 2а

Тогда
r2
r1
= ±2a
итак:

=>
каноническое
уравнение гиперболы

Так
как уравнение гиперболы х и у в четных
степенях, то если точка М0
0;
у0)
лежит на гиперболе, то на ней лежат также
точки М1
0;
0)
М2
(-х0;
0)
М3
(-х0;
0).

Следовательно,
гипербола симметрична относительно
обеих координатных осей.

При
у = 0 х2
= а2
х = ± а. Вершинами гиперболы будут точки
А1
(а; 0); А2
(-а; 0).

.
В силу симметрии исследование ведем в
I
четверти

1)
при

у имеет мнимое значение, следовательно,
точек гиперболы с абсциссами

не существует

2)
при х = а; у = 0 А1
(а; 0) принадлежит гиперболе

3)
при x
> a;
y
> 0. Причем при неограниченном возрастании
х ветвь гиперболы уходит в бесконечность.

Отсюда
следует, что гипербола представляет
собой кривую, состоящую из двух бесконечных
ветвей.

П 6. Асимптоты гиперболы

Рассмотрим
вместе с уравнением

уравнение прямой

Кривая
будет лежать ниже прямой (рис. 31).
Рассмотрим точкиN
(x,
Y)
и М (х, у) у которой абсциссы одинаковы,
а У — у = MN.
Рассмотрим
длину отрезка MN

Найдем

Итак,
если точка М, двигаясь по гиперболе в
первой четверти удаляется в бесконечность,
то ее расстояние от прямой

уменьшается и стремится к нулю.

В
силу симметрии таким же свойством
обладает прямая
.

Определение.
Прямые к которым при


кривая неограниченно приближается
называются асимптотами.

Итак,
уравнение асимптот гиперболы
.

Асимптоты
гиперболы располагаются по диагоналям
прямоугольника, одна сторона которого
параллельна оси ох и равна 2а, а другая
параллельна оси оу и равна 2в, а центр
лежит в начале координат (рис. 32).

П 7. Эксцентриситет и директрисы гиперболы

r2
– r1
= ± 2a
знак + относится к правой ветви
гиперболы

знак
– относится к левой ветви гиперболы

Определение.
Эксцентриситетом
гиперболы называется отношение расстояния
между фокусами этой гиперболы к расстоянию
между ее вершинами.

.
Так как c
> a,
ε
> 1

Выразим
фокальные радиусы гиперболы через
эксцентриситет:

Определение.
Назовем прямые

,
перпендикулярные фокальной оси гиперболы
и расположенными на расстоянии


от ее центра директрисами гиперболы,
соответствующие правому и левому
фокусам.

Так
как для гиперболы

следовательно, директрисы гиперболы,
располагаются между ее вершинами (рис.
33). Покажем, что отношение расстояний
любой точки гиперболы до фокуса и
соответствующей директрисы есть величина
постоянная и равная ε.

П. 8 Парабола и ее уравнение

Определение.Парабола
есть геометрическое место точек
равностоящих от данной точки, называемой
фокусом и от данной прямой называемой
директрисой.

Чтобы
составить уравнение параболы примем
за ось х прямую, проходящую через фокус
F1
перпендикулярную к директрисе и будем
считать ось х направленной от директрисы
к фокусу. За начало координат возьмем
середину О отрезка от точки F
до данной прямой, длину которого обозначим
через р (рис. 34). Величину р назовем
параметром параболы. Точка координат
фокуса
.

Пусть
М (х, у) – произвольная точка параболы.

Согласно
определению

у2
= 2рх – каноническое уравнение параболы

Для
определения вида параболы преобразуем
ее уравнение

отсюда следует
.
Следовательно, вершина параболы находится
в начале координат и осью симметрии
параболы является ох. Уравнение у2
= -2рх при положительном р сводится к
уравнению у2
= 2рх путем замены х на –х и ее график
имеет вид (рис. 35).

Уравнение
х2
= 2ру является уравнением параболы с
вершиной в точке О (0; 0) ветви которой
направлены вверх.

х2
= -2ру – уравнение параболы с центром в
начале координат симметричная относительно
оси у, ветви которой направлены вниз
(рис. 36).

У
параболы одна ось симметрии
.

Если
х в первой степени, а у во второй, то ось
симметрии есть х.

Если
х во второй степени, а у в первой, то ось
симметрии есть ось оу.

Замечание
1.

Уравнение
директрисы параболы имеет вид

.

Замечание
2.
Так
как для параболы

,
то
ε
параболы равен 1.
ε
= 1
.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти прибыль если известна цена
  • Скайрим как найти дайнаса валена
  • Как найти объем емкости газа
  • Как найти объем тела многоугольника
  • Как найти площадь живого сечения отверстия

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии