Координаты на прямой:
Если на прямой задано направление, то такую прямую называют направленной, а выбранное направление—положительным. Например, на горизонтальной прямой можно отметить направление вправо, тогда будем говорить, что направленная прямая имеет положительное направление вправо. Можно с таким же правом считать положительным и направление влево. Направление прямой будем указывать стрелкой (рис. 1).
Выберем на направленной прямой точку, которую назовем началом отсчета или началом координат, и будем обозначать ее буквой О. Кроме того, выберем отрезок, длину которого будем считать единицей длины. Этот отрезок назовем единицей масштаба.
Определение: Прямая линия, на которой указаны: начало отсчета, единица масштаба и направление отсчета, называется осью координат.
Рассмотрим отрезок, расположенный на оси координат. Если одну из точек, ограничивающих отрезок, назовем началом отрезка, а другую—его концом, то отрезок будем называть направленным отрезком. Направленный отрезок обозначают двумя буквами, например: АВ, СМ, КР, причем на первом месте ставят букву, обозначающую начало, на втором— букву, обозначающую конец. Таким образом, запись АВ показывает, что начало отрезка есть точка А, а конец — точка В. Направление отрезка считается от начала к концу.
Если направление отрезка совпадает с направлением оси, то отрезок называют положительно направленным: если же его направление противоположно направлению оси, то—отрицательно направленным. Таким образом, отрезки АВ и ВА имеют противоположные направления. Это записывают так:
Отметим, что положительный отрезок может находиться в любом месте координатной оси, только его направление должно совпадать с направлением оси.
Сложение направленных отрезков производится по следующему правилу: Для того чтобы сложить два направленных отрезка, нужно к концу первого приложить начало второго; тогда отрезок, имеющий началом начало первого отрезка и концом конец второго, называют суммой двух направленных отрезков.
Из этого определения вытекает, что сумма отрезков АВ и ВС равна отрезку АС при любом расположении точек А, В, С, т. е. всегда:
(рис. 2 и 3).
Координатным отрезком точки А называется направленный отрезок, имеющий начало в точке О (т. е. в начале координат), а концом — рассматриваемую точку А.
Всякий направленный отрезок, лежащий на оси, можно выразить через координатные отрезки его начала и конца. В самом деле, рассмотрим направленный отрезок АВ. На основании равенства (2) можно написать
(здесь вместо точки В поставлена точка О, а вместо точки С точка В) или
Отрезок ОВ есть координатный отрезок (его начало есть точка О), но отрезок АО не является координатным, посколькуего начало не является началом координат. Но в силу равенства (1)
поэтому можно написать
Получен следующий результат:
Направленный отрезок равен разности координатного отрезка его конца и координатного отрезка его начала.
Это верно для любого отрезка, лежащего на координатной оси. Теперь дадим одно из самых важных определений:
Координатой точки на координатной оси называется число, равное по абсолютной величине длине координатного отрезка этой точки и по знаку совпадающее со знаком координатного отрезка.
Точку А, имеющую координатной число , будем обозначать
.
Указанные на рис. 4 точки имеют следующие координаты: Будем также писать
Если даны точки и
, то на основании формул (3) и (4) получим
т. е. направленный отрезок равен разности координат его конца и начала. Отсюда сразу получаем, что длина отрезка равна абсолютной величине разности координат его конца и начала.
Длину отрезка будем обозначать, пользуясь знаком | |, т. е. знаком абсолютной величины. Таким образом, длина отрезка АВ будет записываться так:
- Заказать решение задач по высшей математике
Пример:
Если даны точки ,
, то отрезок
, а его длина
. Если даны точки
и
, то отрезок
, а его длина
. Даны две точки:
. Длина отрезка
. Даны две точки
и
; отрезок
, а его длина |
.
Пример:
Начало отрезка АВ находится в точке , а конец—в точке
; найти его направление и длину. Отрезок
. Так как он получился отрицательным, то его направление противоположно направлению оси. Его длина равна
.
Пример:
На координатной оси даны две точки: и
. Найти точку С, лежащую между ними и делящую отрезок АВ в отношении
. Чтобы найти точку, надо найти ее координату. По условию задачи должно быть
Обозначая координату искомой точки С через и выражая отрезки через координаты, т. е. применяя формулу (5), получим, что
. Подставляя эти выражения в равенство (6), будем иметь
Решая последнее уравнение относительно , найдем:
Это и есть координата искомой точки.
Пример:
Найти точку С, делящую отрезок АВ в отношении 1:2, если даны начало отрезка и конец
(рис. 5).
Решение:
Здесь Применяя формулу (7), получим
Пример:
Найти точку , делящую расстояние между точками
и
в отношении 3:4 (рис. 5). Здесь
. По формуле (7) находим
Решение:
Если , т. е. точка
делит отрезок
пополам, тогда формула (7) перепишется так:
Таким образом, координата точки, делящей отрезок пополам, равна средней арифметической координат его начала и конца.
Пример:
Найдем середину отрезка, заключенного между точками и
(рис.6).
Решение:
Применяя формулу (8), получим,
- Координаты на плоскости
- Линейная функция
- Квадратичная функция
- Тригонометрические функции
- Элементы матричного анализа
- Уравнение линии
- Функции нескольких переменных
- Комплексные числ
Деление отрезка в заданном соотношении: координаты точки
Когда существуют условия деления отрезка в определенном отношении, необходимо уметь определять координаты точки, служащей разделителем. Выведем формулу для нахождения этих координат, поставив задачу на плоскости.
Определение координат точки, делящей отрезок в заданном отношении, на плоскости
Исходные данные: задана прямоугольная система координат O x y и две лежащие на ней, несовпадающие точки с заданными координатами A ( x A , y A ) и B ( x B , y B ) . А также задана точка С , делящая отрезок А В в отношении λ (некоторое положительное действительное число). Необходимо определить координаты точки С : x C и y C .
Перед тем, как приступить к решению поставленной задачи, немного раскроем смысл заданного условия: «точка С , делящая отрезок А В в отношении λ ». Во-первых, это выражение свидетельствует о том, что точка С лежит на отрезке А В (т.е. между точками А и В ). Во-вторых, понятно, что согласно заданному условию отношение длин отрезков А С и С В равно λ . Т.е. верно равенство:
В этом случае точка А – начало отрезка, точка В – конец отрезка. Если бы было задано, что точка С делит в заданном отношении отрезок В А , тогда верным было бы равенство: .
Ну и совсем очевидный факт, что если λ = 1 , то точка С является серединой отрезка А В .
Решим поставленную задачу при помощи векторов. Отобразим произвольно в некой прямоугольной системе координат точки А , В и точку С на отрезке А В . Построим радиус-векторы указанных точек, а также векторы A C → и C B → . Согласно условиям задачи, точка С делит отрезок А В в отношении λ .
Координаты радиус-вектора точки равны координатам точки, тогда верны равенства: O A → = ( x A , y A ) и O B → = ( x B , y B ) .
Определим координаты вектора : они будут равны координатам точки С , которые и требуется найти по условию задачи.
Используя операцию сложения векторов, запишем равенства: O C → = O A → + A C → O B → = O C → + C B → ⇔ C B → = O B → — O C →
По условию задачи точка С делит отрезок А В в отношении λ , т.е. верно равенство A C = λ · C B .
Векторы A C → и C B → лежат на одной прямой и являются сонаправленными. λ > 0 по условию задачи, тогда, согласно операции умножения вектора на число, получим: A C → = λ · C B → .
Преобразуем выражение, подставив в него : C B → = O B → — O C → .
A C → = λ · ( O B → — O C → ) .
Равенство O C → = O A → + A C → перепишем как O C → = O A → + λ · ( O B → — O C → ) .
Используя свойства операций над векторами, из последнего равенства следует: O C → = 1 1 + λ · ( O A → + λ · O B → ) .
Теперь нам остается непосредственно вычислить координаты вектора O C → = 1 1 + λ · O A → + λ · O B → .
Выполним необходимые действия над векторами O A → и O B → .
O A → = ( x A , y A ) и O B → = ( x B , y B ) , тогда O A → + λ · O B → = ( x A + λ · x B , y A + λ · y B ) .
Таким образом, O C → = 1 1 + λ · ( O A → + λ · O B → ) = ( x A + λ · x B 1 + λ , y A + λ · y B 1 + λ ) .
Резюмируя: координаты точки С , делящей отрезок А В в заданном отношении λ определяются по формулам : x C = x A + λ · x B 1 + λ и y C = у A + λ · y B 1 + λ .
Определение координат точки, делящей отрезок в заданном отношении, в пространстве
Исходные данные: прямоугольная система координат O x y z , точки с заданными координатами A ( x A , y A , z A ) и B ( x B , y B , z B ) .
Точка С делит отрезок А В в отношении λ . Необходимо определить координаты точки С .
Используем ту же схему рассуждений, что и в случае выше на плоскости, придем к равенству:
O C → = 1 1 + λ · ( O A → + λ · O B → )
Векторы и являются радиус-векторами точек А и В , а значит:
O A → = ( x A , y A , z A ) и O B → = ( x B , y B , z B ) , следовательно
O C → = 1 1 + λ · ( O A → + λ · O B → ) = ( x A + λ · x B 1 + λ , y A + λ · y B 1 + λ , z A + λ · z B 1 + λ )
Таким образом, точка С , делящая отрезок А В в пространстве в заданном отношении λ , имеет координаты: ( x A + λ · x B 1 + λ , y A + λ · y B 1 + λ , z A + λ · z B 1 + λ )
Рассмотрим теорию на конкретных примерах.
Исходные данные: точка С делит отрезок А В в отношении пять к трем. Координаты точек А и В заданы A ( 11 , 1 , 0 ) , B ( — 9 , 2 , — 4 ) .
Решение
По условию задачи λ = 5 3 . Применим полученные выше формулы и получим:
x A + λ · x B 1 + λ = 11 + 5 3 · ( — 9 ) 1 + 5 3 = — 3 2
y A + λ · y B 1 + λ = 1 + 5 3 · 2 1 + 5 3 = 13 8
z A + λ · z B 1 + λ = 0 + 5 3 · ( — 4 ) 1 + 5 3 = — 5 2
Ответ: C ( — 3 2 , 13 8 , — 5 2 )
Исходные данные: необходимо определить координаты центра тяжести треугольника А В С .
Заданы координаты его вершин: A ( 2 , 3 , 1 ) , B ( 4 , 1 , — 2 ) , C ( — 5 , — 4 , 8 )
Решение
Известно, что центром тяжести любого треугольника является точка пересечения его медиан (пусть это будет точка М ). Каждая из медиан делится точкой М в отношении 2 к 1 , считая от вершины. Исходя из этого, найдем ответ на поставленный вопрос.
Допустим, что А D – медиана треугольника А В С . Точка М – точка пересечения медиан, имеет координаты M ( x M , y M , z M ) и является центром тяжести треугольника. М , как точка пересечения медиан, делит отрезок А D в отношении 2 к 1 , т.е. λ = 2 .
Найдем координаты точки D . Так как A D – медиана, то точка D – середина отрезка В С . Тогда, используя формулу нахождения координат середины отрезка, получим:
x D = x B + x C 2 = 4 + ( — 5 ) 2 = — 1 2 y D = y B + y C 2 = 1 + ( — 4 ) 2 = — 3 2 z D = z B + z C 2 = — 2 + 8 2 = 3
Вычислим координаты точки М :
x M = x A + λ · x D 1 + λ = 2 + 2 · ( — 1 2 ) 1 + 2 = 1 3
y M = y A + λ · y D 1 + λ = 3 + 2 · ( — 3 2 ) 1 + 2 = 0
z M = z A + λ · z D 1 + λ = 1 + 2 · 3 1 + 2 = 7 3
Деление вектора данном отношении
Деление векторов в данном соотношении
Пусть вектор задан координатами своего начала A(ax; ay; az) и конца B(bx; by; bz) и пусть точка C(cx; cy; cz) расположена между точка A и B
пусть при этом известно соотношение длин векторов
тогда координаты точки C(cx; cy; cz) находятся по формулам
Примеры решения заданий по делению векторов и отрезков
Отрезок AB точками C(3, 4) и D(5, 6) разделён на три равные части. Найти координаты точек A и B.
Р е ш е н и е. Обозначим координаты точек A и B так: А(x1, y1), B(x1, y1). Для отрезка AD точка C является серединой, потому λ = AC / CD = 1 и по формулам деления отрезка в данном соотношении
Подставим в последнее равенство координаты xc, yc, xd, yd:
3 = (x1 + 5)/2, 4 = (y1 + 6)/2,
откуда находим, x1 = 1, y1 = 2. Точка A имеет координаты A(1, 2).
Поскольку точка D есть середина отрезка CB, то xd = (xc + x2)/2, или 5 = (3 + x2)/2, отсюда x2 = 7.
отсюда y2 = 8. Получили B(7, 8).
О т в е т: A(1, 2), B(7, 8).
Даны вершины треугольника A(2, -4), B(4, -5) и C(-4, 7). Определить середины его сторон.
Р е ш е н и е. Воспользуемся формулой для определения середин сторон отрезка, при известных двух точках:
Поскольку отрезки делятся на равные части, то
Тогда формула приобретает вид:
Координата x для отрезка AB равна (2+4)/2 = 3, координата y для отрезка AB равна (-4-5)/2 = -4,5.
Координата x для отрезка AC равна (2-4)/2 = -1, координата y для отрезка AC равна (-4+7)/2 = 1,5.
Координата x для отрезка BC равна (4-4)/2 = 0, координата y для отрезка BC равна (-5+7)/2 = 1.
О т в е т: искомые точки имеют координаты (3; -4,5), (-1; 1,5) и (0; 1).
Даны три вершины параллелограмма A(2, -4), B(4, -2), C(-2, 4). Определить четвёртую вершину D, противоположную B.
Р е ш е н и е. Найдём точку, в которой пересекаются диагонали параллелограмма.
Назовём точку пересечения диагоналей точкой E.
Поскольку этой точкой диагонали делятся на два равных отрезка
то формула приобретает вид:
Найдём середину отрезка AC:
Итак, точка E имеет координаты (0, 0).
Данная точка также является серединой отрезка BD, поскольку это вторая диагональ параллелограмма. Тогда
подставим известные значения:
Теперь найдём вторую координату:
подставим известные значения:
Даны вершины треугольника A(2, 3); B(4, -10); C(-4, 1), определить длину его медианы, проведённой из вершины B.
Р е ш е н и е. Назовём точку пересечения медианы и стороны AC точкой D. Поскольку медиана делит сторону треугольника пополам, то воспользуемся формулой нахождения координат точки посередине отрезка:
Точка D имеет координаты (-1, 2).
Воспользуемся формулой нахождения длины отрезка, когда известны координаты его крайних точек:
О т в е т: Длина медианы, проведённой из вершины B, равна 13.
Деление отрезка в заданном соотношении: координаты точки
Когда существуют условия деления отрезка в определенном отношении, необходимо уметь определять координаты точки, служащей разделителем. Выведем формулу для нахождения этих координат, поставив задачу на плоскости.
Определение координат точки, делящей отрезок в заданном отношении, на плоскости
Исходные данные: задана прямоугольная система координат O x y и две лежащие на ней, несовпадающие точки с заданными координатами A ( x A , y A ) и B ( x B , y B ) . А также задана точка С , делящая отрезок А В в отношении λ (некоторое положительное действительное число). Необходимо определить координаты точки С : x C и y C .
Перед тем, как приступить к решению поставленной задачи, немного раскроем смысл заданного условия: «точка С , делящая отрезок А В в отношении λ ». Во-первых, это выражение свидетельствует о том, что точка С лежит на отрезке А В (т.е. между точками А и В ). Во-вторых, понятно, что согласно заданному условию отношение длин отрезков А С и С В равно λ . Т.е. верно равенство:
В этом случае точка А – начало отрезка, точка В – конец отрезка. Если бы было задано, что точка С делит в заданном отношении отрезок В А , тогда верным было бы равенство: .
Ну и совсем очевидный факт, что если λ = 1 , то точка С является серединой отрезка А В .
Решим поставленную задачу при помощи векторов. Отобразим произвольно в некой прямоугольной системе координат точки А , В и точку С на отрезке А В . Построим радиус-векторы указанных точек, а также векторы A C → и C B → . Согласно условиям задачи, точка С делит отрезок А В в отношении λ .
Координаты радиус-вектора точки равны координатам точки, тогда верны равенства: O A → = ( x A , y A ) и O B → = ( x B , y B ) .
Определим координаты вектора : они будут равны координатам точки С , которые и требуется найти по условию задачи.
Используя операцию сложения векторов, запишем равенства: O C → = O A → + A C → O B → = O C → + C B → ⇔ C B → = O B → — O C →
По условию задачи точка С делит отрезок А В в отношении λ , т.е. верно равенство A C = λ · C B .
Векторы A C → и C B → лежат на одной прямой и являются сонаправленными. λ > 0 по условию задачи, тогда, согласно операции умножения вектора на число, получим: A C → = λ · C B → .
Преобразуем выражение, подставив в него : C B → = O B → — O C → .
A C → = λ · ( O B → — O C → ) .
Равенство O C → = O A → + A C → перепишем как O C → = O A → + λ · ( O B → — O C → ) .
Используя свойства операций над векторами, из последнего равенства следует: O C → = 1 1 + λ · ( O A → + λ · O B → ) .
Теперь нам остается непосредственно вычислить координаты вектора O C → = 1 1 + λ · O A → + λ · O B → .
Выполним необходимые действия над векторами O A → и O B → .
O A → = ( x A , y A ) и O B → = ( x B , y B ) , тогда O A → + λ · O B → = ( x A + λ · x B , y A + λ · y B ) .
Таким образом, O C → = 1 1 + λ · ( O A → + λ · O B → ) = ( x A + λ · x B 1 + λ , y A + λ · y B 1 + λ ) .
Резюмируя: координаты точки С , делящей отрезок А В в заданном отношении λ определяются по формулам : x C = x A + λ · x B 1 + λ и y C = у A + λ · y B 1 + λ .
Определение координат точки, делящей отрезок в заданном отношении, в пространстве
Исходные данные: прямоугольная система координат O x y z , точки с заданными координатами A ( x A , y A , z A ) и B ( x B , y B , z B ) .
Точка С делит отрезок А В в отношении λ . Необходимо определить координаты точки С .
Используем ту же схему рассуждений, что и в случае выше на плоскости, придем к равенству:
O C → = 1 1 + λ · ( O A → + λ · O B → )
Векторы и являются радиус-векторами точек А и В , а значит:
O A → = ( x A , y A , z A ) и O B → = ( x B , y B , z B ) , следовательно
O C → = 1 1 + λ · ( O A → + λ · O B → ) = ( x A + λ · x B 1 + λ , y A + λ · y B 1 + λ , z A + λ · z B 1 + λ )
Таким образом, точка С , делящая отрезок А В в пространстве в заданном отношении λ , имеет координаты: ( x A + λ · x B 1 + λ , y A + λ · y B 1 + λ , z A + λ · z B 1 + λ )
Рассмотрим теорию на конкретных примерах.
Исходные данные: точка С делит отрезок А В в отношении пять к трем. Координаты точек А и В заданы A ( 11 , 1 , 0 ) , B ( — 9 , 2 , — 4 ) .
Решение
По условию задачи λ = 5 3 . Применим полученные выше формулы и получим:
x A + λ · x B 1 + λ = 11 + 5 3 · ( — 9 ) 1 + 5 3 = — 3 2
y A + λ · y B 1 + λ = 1 + 5 3 · 2 1 + 5 3 = 13 8
z A + λ · z B 1 + λ = 0 + 5 3 · ( — 4 ) 1 + 5 3 = — 5 2
Ответ: C ( — 3 2 , 13 8 , — 5 2 )
Исходные данные: необходимо определить координаты центра тяжести треугольника А В С .
Заданы координаты его вершин: A ( 2 , 3 , 1 ) , B ( 4 , 1 , — 2 ) , C ( — 5 , — 4 , 8 )
Решение
Известно, что центром тяжести любого треугольника является точка пересечения его медиан (пусть это будет точка М ). Каждая из медиан делится точкой М в отношении 2 к 1 , считая от вершины. Исходя из этого, найдем ответ на поставленный вопрос.
Допустим, что А D – медиана треугольника А В С . Точка М – точка пересечения медиан, имеет координаты M ( x M , y M , z M ) и является центром тяжести треугольника. М , как точка пересечения медиан, делит отрезок А D в отношении 2 к 1 , т.е. λ = 2 .
Найдем координаты точки D . Так как A D – медиана, то точка D – середина отрезка В С . Тогда, используя формулу нахождения координат середины отрезка, получим:
x D = x B + x C 2 = 4 + ( — 5 ) 2 = — 1 2 y D = y B + y C 2 = 1 + ( — 4 ) 2 = — 3 2 z D = z B + z C 2 = — 2 + 8 2 = 3
Вычислим координаты точки М :
x M = x A + λ · x D 1 + λ = 2 + 2 · ( — 1 2 ) 1 + 2 = 1 3
y M = y A + λ · y D 1 + λ = 3 + 2 · ( — 3 2 ) 1 + 2 = 0
z M = z A + λ · z D 1 + λ = 1 + 2 · 3 1 + 2 = 7 3
Лекция Способы задания векторов. Деление отрезка в заданном отношении. Скалярное произведение двух векторов и его основные свойства.
1.4. Способы задания векторов
Вектор может быть задан следующими способами:
1. Координатами вектора
2 . Координатами начальной
z
и конечной точек.
3. Модулем вектора и углами
, M
которые он образует с координатными осями.
При этом значения
называются направляющими косинусами . O y
Между этими способами задания a z
векторов существует определённая связь. a x
Например, переход от (2) к (1) x a y
осуществляется следующим образом :
т ак как
, то z A
.
Переход от (3) к (1) и наоборот
осуществляется по формулам: B
x O y
1.5. Деление отрезка в заданном отношении
Р ассмотрим следующую задачу : даны две точки
и
. Требуется найти точку
такую, что отно-шение
z А
Построим векторы : М
Из условия коллинеарности векторов
и
имеем
В
Полученное равенство представим в
координатной форме х Оу
(1)
Замечание 1. Из формул (1) следует частный случай деления отрезка пополам
П ример 1. Треугольник задан координатами своих вершин
Найти его центр тяжести . z В
Известно, что центр тяжести треугольника
лежит на пересечении его медиан и, если
точка К середина стороны ВС , то по А М К
свойству медиан у
Определим вначале координаты х С
точки К :
далее по формулам (1) получим координаты точки М :
Тема 2: Скалярное произведение
2.1. Скалярное произведение двух векторов и его основные свойства
Определение. Скалярным произведением двух векторов и
называется число, равное произведению модулей этих векторов на косинус угла между ними и обозначается
(2)
Замечание 2. Формулу (2) можно представить в другой форме
(3)
Рассмотрим механический смысл скалярного произведения. Если постоянная сила, а
вектор перемещения, то
работа силы
на перемещении
Из определения скалярного произведения следуют его свойства:
1. скалярное произведение коммутативно.
2. , если векторы
и
перпендикулярны (ортогональны), или хотя бы один из них является нулевым вектором.
3.
Если воспользоваться замечанием 1 из лекции 4 и формулами (3), то легко доказать следующее свойство:
4.
Таким образом, операции со скалярным произведением аналогичны операциям с многочленами.
2.2. Скалярное произведение векторов, заданных координатами
Из определения и свойства (1) скалярного произведения следуют формулы : .
Аналогично получаем :
(4)
2.3. Длина вектора. Угол между двумя векторами.
По формулам (2) и (4) получаем
(5)
Из определения скалярного произведения и формул (4), (5) следует
(6)
(7)
Если в формуле (7) положить , то найдем
.
Аналогично можно получить выражения для оставшихся двух направ-ляющих косинусов
;
. (8)
Замечание 3. Формулу (5) для модуля вектора можно было получить, исходя из геометрического смысла координат вектора, используя теоре-му Пифагора.
Замечание 4. Из выражений (8) для направляющих косинусов следует их основное свойство
Пример 2. Даны два вектора Найти их скалярное произведение и угол между ними.
По формулам (5) и (7) получаем
Пример 3*. Найти координаты единичного вектора, который перпенди-кулярен вектору и образует угол
с вектором
Из свойства направляющих косинусов следует, что координаты еди-ничного вектора равны значениям соответствующих направляющих косинусов и поэтому из условия задачи получаем следующую систему уравнений
Из второго уравнения системы получаем Тогда из первого уравнения имеем
. Если полученные выражения подставить в третье уравнение системы, то приходим к квадратному уравнению
Из этого уравнения и
. Тогда окончательно нахо-дим два единичных вектора
, удовлетворяющих условию задачи.
Деление отрезка в данном отношении в пространстве
Данные уравнения получаются следующим образом
Требуется найти координаты точки A0(x0, y0,z0), делящей отрезок в отношении λ, т.е.
Отсюда получаем исходные уравнения, т.е.
Деление отрезка в данном отношении на плоскости см. здесь
Рассмотрим ещё один из способов деления отрезка в данном отношении в пространстве.
где r1 и r2 — радиус-вектор точек А1 и А2
Координаты точки A0 находятся по формулам
Координаты середины отрезка в пространстве
В частности координаты середины отрезка А1А2 в пространстве определяются уравнениями:
Найти координаты точки А, делящей отрезок А1А2 в отношении А1А:АА2=2:3, если A1 <3; 4; -2>и A2
http://b4.cooksy.ru/articles/delenie-vektora-dannom-otnoshenii
Деление отрезка в данном отношении
Пусть даны точки
и
.
Требу-ется
найти координаты точки
,
делящей отрезок прямой, заключенный
между М1
и М2,
в отношении
,
(рис. 7.6).
Рис. 7.6
Рассмотрим
векторы
и
.
Они коллинеарны и одинаково направлены,
то есть могут отли-чаться только длиной.
По условию
,
поэтому
или
в координатной форме
.
Из
равенства этих двух векторов следует
равенство их соот-ветствующих координат:
,
,
Отсюда
,
,
,
В частности, если
точка М
делит отрезок М1М2
пополам, то
и
,
,
,
то есть координаты
точки, делящей отрезок пополам, равны
полусуммам соответствующих координат
концов отрезка.
Пример 7.12.
Найти
координаты точки М,
делящей по-полам отрезок прямой
,
заключенный между плоскостями
Oxz
и Оxу.
Решение.
Найдем точку пересечения прямой с
плоскостью
Oxz,
полагая в
уравнениях прямой
.
Тогда получим
или
Из
последней системы находим
,
.
Эти коор-динаты вместе с
определяют точку
Анало-гично, полагая в уравнениях прямой
,
имеем:
или
откуда
,
.
Получим
точку
пересечения прямой с плоскостью Оxу.
Зная
координаты концов
и
отрезка АВ,
по формулам деления отрезка пополам
определим координаты
точки М
– середины отрезка АВ:
;
;
Итак,
–
искомая
точка.
Пример
7.13.
Даны координаты вершин пирамиды
,
,
,
.
Найти: 1) длины ребер АВ
и AC;
2) угол между ребрами АВ
и АС;
3) площадь грани АВС;
4) объем пирамиды ABCD;
5) уравнение прямой АВ;
6) уравнение плоскости АВС;
7) уравнение высоты пирамиды, опущенной
на грань АВС.
Сделать чертеж.
Решение
-
Длина
ребра AB
совпадает с длиной вектора
,
поэтому определим координаты векторов
и
,
.
Длина
вектора равна корню квадратному из
суммы квадратов его координат, то есть
-
Угол
между ребрами AB
и AC
совпадает с углом между векторами
и
,
который можно определить по формуле:
,
.
-
Грань
ABC
представляет собой треугольник, его
пло-щадь найдем через векторное
произведение:
так
как
.
-
Объем
пирамиды вычислим по формуле:
.
Здесь
-
Уравнение
прямой, проходящей через точки А,
В,
имеет вид:
,
то есть
.
-
Уравнение
плоскости ABC
определим из равенства
,
или
.
-
Так
как высота – это прямая, перпендикулярная
плос-кости ABC,
ее направляющим вектором будет
вектор-нормаль
плоскости
ABC,
тогда уравнение высоты имеет вид:
.
Выполним
чертеж (рис. 7.5).
Рис. 7.5
Тема 8. Функции. Теория пределов Понятие функции
В теме 5 мы уже
встречались с понятием функции, информация
о которой основывалась на материале из
школьного курса математики. Здесь это
понятие получит свое дальнейшее развитие.
Пусть на действительной
оси R
заданы два числовых множества
и
.
Определение.
Будем говорить, что на множестве X
задана функция
f
действительной переменной x,
если известен закон (отображение), по
которому каждому значению
по закону f
ставится в соответствие единственное
значение
и обозначается
.
Переменная x
называется аргументом функции f,
множество X
– областью определения функции,
переменная y
– значением функции или зависимой
переменной, а множество Y
– областью значений функции.
Замечание.
Область Y
значений функции обычно не указыва-ется,
так как множество принимаемых значений
функции определяет сам закон.
Допускаются
многозначные функции (то есть одному x
соответствует более одного значения
y).
Обычно эти случаи оговариваются особо.
Замечание.
Для обозначения функциональной
зависимос-ти вместо символа функции f
можно использовать любую дру-гую букву
(но не число) любого алфавита.
Определение.
Совокупность всех значений независимой
переменной х,
для которых функция
определена, назы-вается областью
определения,
или областью существования функции, и
обозначается
.
Определение.
Пусть задана функция
.
Тогда
называется значением
этой функции при
Пример 8.1.
Найти значения
функции
.
Решение.
Вычислим значения функции при заданных
значениях аргумента
;
.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
1.5.6. Деление отрезка в данном отношении
Рассмотрим пару точек (плоскости или
пространства) и отрезок :
Что будем с ним делать? На это раз пилить. Точкой :
В данном примере точка делит отрезок
ТАКИМ образом, что отрезок
в два раза короче отрезка
. ЕЩЁ можно сказать, что точка
делит отрезок
в отношении
(«один к двум»), считая от вершины
.
На сухом математическом языке этот факт записывают пропорцией или чаще в виде привычной дроби:
. Отношение отрезков принято стандартно обозначать греческой буквой «лямбда», в данном
случае: .
Пропорцию можно составить и в другом порядке: –
сия запись означает, что отрезок в два раза
длиннее отрезка , но какого-то принципиального
значения для решения задач это не имеет. Можно так, а можно так.
Разумеется, отрезок легко разделить в каком-нибудь другом отношении, и в качестве закрепления понятия второй пример:
Здесь справедливо соотношение: . Если составить
пропорцию наоборот, тогда получаем: .
Формулы деления отрезка в данном отношении:
Если известны две точки плоскости , то
координаты точки , которая делит отрезок
в отношении
, выражаются формулами:
В пространственном случае и
добавляется дополнительная координата:
.
Откуда взялись данные формулы? В курсе аналитической геометрии эти формулы выводятся с помощью векторов (куда ж теперь
без них? =)).
Задача 11
Найти координаты точки , делящей отрезок
в отношении
, если известны точки
Решение: по умолчанию, отсчёт начинается от первого конца отрезка: . По формулам деления отрезка в данном отношении, найдём точку
:
Ответ:
Обратите внимание на технику вычислений: сначала нужно отдельно вычислить числитель и отдельно знаменатель. В результате
чего часто (но далеко не всегда) получается трёх- или четырёхэтажная дробь. После этого избавляемся от
многоэтажности дроби (см. Приложение Школьные материалы) и проводим окончательные
упрощения.
В задаче не требуется строить чертежа, но его полезно выполнить на черновике:
– чтобы убедиться в том, что соотношение действительно выполнено, то есть отрезок
в три раза короче отрезка
. Если длины не очевидны, то отрезки всегда можно тупо измерить обычной
линейкой.
Существует и второй способ решения: в нём отсчёт начинается с точки и справедливым является отношение:
(иными словами, отрезок
в три раза длиннее отрезка
). По формулам деления отрезка в данном отношении:
Ответ:
Заметьте, что в формулах необходимо переместить координаты точки на первое место, поскольку маленький триллер начинался именно с неё. Также видно, что
второй способ рациональнее ввиду более простых вычислений. Но всё-таки данную задачу чаще решают в «традиционном» порядке.
Так, если по условию дан отрезок , то
предполагается, что вы составите пропорцию ,
если дан отрезок , то «негласно» подразумевается
пропорция , и так далее.
Задача 12
а) Точка принадлежит отрезку
. Известно, что отрезок
в два раза длиннее отрезка
. Найти точку
,
если . Выполнить проверку.
б) Даны точки . Найти точку
, делящую отрезок
в отношении
.
Удачного распила!
1.5.7. Формулы координат середины отрезка
1.5.5. Как найти единичный вектор?
| Оглавление |
Автор: Aлeксaндр Eмeлин