Как найти координаты точек треугольной пирамиды

Введение системы координат

30 мая 2011

Метод координат — это, конечно, очень хорошо, но в настоящих задачах C2 никаких координат и векторов нет. Поэтому их придется вводить. Да-да, вот так взять и ввести: указать начало отсчета, единичный отрезок и направление осей x, y и z.

Самое замечательное свойство этого метода заключается в том, что не имеет никакого значения, как именно вводить систему координат. Если все вычисления будут правильными, то и ответ будет правильным.

Тем не менее, приведу некоторые рекомендации, как лучше ввести систему координат для самых часто встречающихся в задаче C2 многогранников. С указанием конкретных точек. Во всех случаях упор делается на минимизацию объема вычислений.

Координаты куба

Куб в системе координат

Если в задаче C2 будет куб — считайте, что вам повезло. Это самый простой многогранник, все двугранные углы которого равны 90°.

Система координат также вводится очень просто:

  1. Начало координат — в точке A;
  2. Чаще всего ребро куба не указано, поэтому принимаем его за единичный отрезок;
  3. Ось x направляем по ребру AB, y — по ребру AD, а ось z — по ребру AA1.

Обратите внимание: ось z направляется вверх! После двумерной системы координат это несколько непривычно, но на самом деле очень логично.

Итак, теперь у каждой вершины куба есть координаты. Соберем их в таблицу — отдельно для нижней плоскости куба:

Точка A B C D
Координаты (0; 0; 0) (1; 0; 0) (1; 1; 0) (0; 1; 0)

И для верхней:

Точка A1 B1 C1 D1
Координаты (0; 0; 1) (1; 0; 1) (1; 1; 1) (0; 1; 1)

Несложно заметить, что точки верхней плоскости отличаются соответствующих точек нижней только координатой z. Например, B = (1; 0; 0), B1 = (1; 0; 1). Главное — не запутаться!

Координаты трехгранной призмы

Призма — это уже намного веселее. При правильном подходе достаточно знать координаты только нижнего основания — верхнее будет считаться автоматически.

В задачах C2 встречаются исключительно правильные трехгранные призмы (прямые призмы, в основании которых лежит правильный треугольник). Для них система координат вводится почти так же, как и для куба. Кстати, если кто не в курсе, куб — это тоже призма, только четырехгранная.

Итак, поехали! Вводим систему координат:

  1. Начало координат — в точке A;
  2. Сторону призмы принимаем за единичный отрезок, если иное не указано в условии задачи;
  3. Ось x направляем по ребру AB, z — по ребру AA1, а ось y расположим так, чтобы плоскость OXY совпадала с плоскостью основания ABC.

Здесь требуются некоторые пояснения. Дело в том, что ось y НЕ совпадает с ребром AC, как многие считают. А почему не совпадает? Подумайте сами: треугольник ABC — равносторонний, в нем все углы по 60°. А углы между осями координат должны быть по 90°, поэтому сверху картинка будет выглядеть так:

Основание призмы в системе координат

Надеюсь, теперь понятно, почему ось y не пойдет вдоль AC. Проведем в этом треугольнике высоту CH. Треугольник ACH — прямоугольный, причем AC = 1, поэтому AH = 1 · cos A = cos 60°; CH = 1 · sin A = sin 60°. Эти факты нужны для вычисления координат точки C.

Теперь взглянем на всю призму вместе с построенной системой координат:

Призма в системе координат

Получаем следующие координаты точек:

Координаты трехгранной призмы

Как видим, точки верхнего основания призмы снова отличаются от соответствующих точек нижнего лишь координатой z. Основная проблема — это точки C и C1. У них есть иррациональные координаты, которые надо просто запомнить. Ну, или понять, откуда они возникают.

Координаты шестигранной призмы

Шестигранная призма — это «клонированная» трехгранная. Можно понять, как это происходит, если взглянуть на нижнее основание — обозначим его ABCDEF. Проведем дополнительные построения: отрезки AD, BE и CF. Получилось шесть треугольников, каждый из которых (например, треугольник ABO) является основанием для трехгранной призмы.

Конструкция основания шестигранной призмы

Теперь введем собственно систему координат. Начало координат — точку O — поместим в центр симметрии шестиугольника ABCDEF. Ось x пойдет вдоль FC, а ось y — через середины отрезков AB и DE. Получим такую картинку:

Основание шестигранной призмы в системе координат

Обратите внимание: начало координат НЕ совпадает с вершиной многогранника! На самом деле, при решении настоящих задач вы обнаружите, что это очень удобно, поскольку позволяет значительно уменьшить объем вычислений.

Осталось добавить ось z. По традиции, проводим ее перпендикулярно плоскости OXY и направляем вертикально вверх. Получим итоговую картинку:

Шестигранная призма в системе координат

Запишем теперь координаты точек. Предположим, что все ребра нашей правильной шестигранной призмы равны 1. Итак, координаты нижнего основания:

Координаты шестигранной призмы - низ

Координаты верхнего основания сдвинуты на единицу по оси z:

Координаты шестигранной призмы - верх

Координаты четырехугольной пирамиды

Пирамида — это вообще очень сурово. Мы разберем только самый простой случай — правильную четырехугольную пирамиду, все ребра которой равны единице. Однако в настоящих задачах C2 длины ребер могут отличаться, поэтому ниже приведена и общая схема вычисления координат.

Итак, правильная четырехугольная пирамида. Это такая же, как у Хеопса, только чуть поменьше. Обозначим ее SABCD, где S — вершина. Введем систему координат: начало в точке A, единичный отрезок AB = 1, ось x направим вдоль AB, ось y — вдоль AD, а ось z — вверх, перпендикулярно плоскости OXY. Для дальнейших вычислений нам потребуется высота SH — вот и построим ее. Получим следующую картинку:

Координаты всей шестигранной призмы

Теперь найдем координаты точек. Для начала рассмотрим плоскость OXY. Здесь все просто: в основании лежит квадрат, его координаты известны. Проблемы возникают с точкой S. Поскольку SH — высота к плоскости OXY, точки S и H отличаются лишь координатой z. Собственно, длина отрезка SH — это и есть координата z для точки S, поскольку H = (0,5; 0,5; 0).

Заметим, что треугольники ABC и ASC равны по трем сторонам (AS = CS = AB = CB = 1, а сторона AC — общая). Следовательно, SH = BH. Но BH — половина диагонали квадрата ABCD, т.е. BH = AB · sin 45°. Получаем координаты всех точек:

Координаты четырехугольной пирамиды

Вот и все с координатами пирамиды. Но не с координатами вообще. Мы рассмотрели лишь самые распространенные многогранники, однако этих примеров достаточно, чтобы самостоятельно вычислить координаты любых других фигур. Поэтому можно приступать, собственно, к методам решения конкретных задач C2.

Смотрите также:

  1. Четырехугольная пирамида в задаче C2
  2. Метод координат в пространстве
  3. Сложение и вычитание дробей
  4. Не пишите единицы измерения в задаче B12
  5. Как решать простейшие логарифмические уравнения
  6. Задача B4: транзит нефти


5.7. Задача с треугольной пирамидой

Концептуально эта задача напоминает задачу с треугольником на плоскости. Только вот треугольников у нас теперь

четыре, и образуют они треугольную пирамиду или тетраэдр:

У треугольной пирамиды есть:

– четыре вершины;

– шесть рёбер (сторон);

– четыре грани.

Чем богаты, тем и рады.

Не буду перечислять геометрические свойства данной фигуры, известные из школьной программы, поскольку аналитическую геометрию интересует совсем

другое, а именно: уравнения рёбер, плоскостей, всевозможные длины, углы и некоторые другие вещи, которые вы увидите прямо сейчас. Типовая задача

формулируется так:

Задача 166

Треугольная пирамида задана координатами своих вершин, пусть это будут вершины . Требуется: … если повезёт, то только 3-4 пункта из перечисленных:

1) найти длину ребра ;

2) составить уравнения стороны ;

3) найти угол между рёбрами ;

4) найти площадь грани ;

5) найти угол между ребром  и плоскостью ;

6) составить уравнение грани ;

7) составить уравнения высоты , опущенной из вершины  на грань ;

8) вычислить длину высоты ;

9) найти основание высоты ;

10) вычислить объем пирамиды;

11) составить уравнения медианы  грани ;

12) составить уравнение плоскости, проходящей через прямую  и вершину ;

13) найти угол между плоскостями  и

14) выполнить чертёж пирамиды  в прямоугольной системе координат.

15) перекреститься левой пяткой.

Во-первых, разберёмся с обозначениями вершин. Самый распространённый вариант, когда они обозначены буквами :

Если бегло просмотреть пункты условия, то легко заметить, что

там часто встречается грань . Чаще всего требуется составить уравнение этой

«особенной» грани, а также найти её площадь. В качестве «особенной» вершины выступает точка , обычно из неё строится перпендикуляр к плоскости .

А всё это я сказал к тому, что в вашей задаче могут быть совершенно другие обозначения вершин. Например, . Здесь «особой» гранью, скорее всего, будет , а «особенной» точкой – вершина .

В этой связи очень важно выполнить схематический рисунок пирамиды, чтобы не запутаться в дальнейшем алгоритме решение. Да, более подготовленные

читатели могут представлять тетраэдр мысленно, но для «чайников» чертёж просто обязателен.

Итак, на предварительном этапе разбираемся с обозначениями вершин, анализируем условие, находим «особенную» плоскость и точку и

выполняем бесхитростный набросок на черновике.

С чего начать решение? Начать лучше всего с того, что загнать координаты вершин в Геометрический

калькулятор (см. приложения), который автоматически рассчитает наиболее популярные пункты. Ибо приятно заранее знать

правильные ответы ;)

Но расписать-то всё нужно подробно. И поэтому оформление решения удобно начать с нахождения векторов. Почти всегда векторы

откладываются от первой вершины, в данном случае – от точки :
Решим эту элементарную задачу:
     

Чтобы комфортнее воспринимать информацию, координаты четырёх точек и трёх полученных вектора рекомендую переписать на отдельный листочек.

Это же сделайте, когда  будете решать свою задачу – чтобы каждый раз не выискивать нужный вектор, нужную точку. Их удобно держать перед

глазами.

Понеслось:

1) Найдём длину ребра . Длина данного ребра равна длине вектора :

Я обычно округляю результаты до двух знаков после запятой, но в условии задачи может быть дополнительное указание проводить округления,

например, до 1 или 3 десятичных знаков.

Полагаю, в случае надобности никого не затруднит аналогичным образом найти длину ребра   или . Как вариант, можно использовать

формулу расстояния между двумя точками: . Но зачем? У нас уже найдены

векторы.

2) Найдём уравнения ребра . Строго говоря, здесь следует

сказать «уравнения прямой, которая содержит ребро», но этим почти всегда пренебрегают. «По умолчанию» обычно подразумевается, что студент запишет канонические уравнения прямой.

Уравнения ребра  составим по точке  (можно взять ) и направляющему

вектору :

Для проверки подставляем координаты точек  в полученное уравнение. Обе

должны «подойти».

3) Найдём угол между сторонами :

Перед вами обычный угол пространственного треугольника,

который рассчитывается как угол между векторами: . И снова при делах задро тривиальная формула:

 – заметьте, что в ходе вычислений можно (и нужно) использовать ранее полученные результаты, в данном случае нам

уже известно, что  (см. пункт 1).

С помощью обратной функции находим сам угол:

4) Найдём площадь грани :

Площадь треугольника вычислим с помощью векторного произведения векторов, используя формулу:


Найдём векторное произведение:


и вычислим его длину:

 …и вынести из-под корня ничего нельзя, поэтому он войдёт в ответ в

неизменном виде.

Таким образом, площадь грани :

Если получаются страшноватые числа, не обращайте внимания, обычная картина. Главное, не допустить ошибку в вычислениях.

5) Найдём угол  между ребром  и плоскостью , прошу прощения за неточность

последующих чертежей, я рисую от руки:

Это стандартная задача, рассмотренная в Задаче 162 (пункт

«д»). Используем формулу:

и с помощью арксинуса рассчитываем сам угол:

6) Составим уравнение грани . А точнее, «уравнение  плоскости,

которая содержит грань». Первая мысль – использовать точки , но есть более выгодное решение. У нас уже найден

вектор нормали  плоскости . Поэтому уравнение грани  составим по точке  (можно взять  либо ) и вектору нормали :

Таким образом:

Для проверки можно подставить координаты точек  в полученное уравнение, все три точки

должны «подойти».

7) Как составить уравнения высоты пирамиды? Звучит грозно, решается просто.

Уравнения высоты , опущенной из вершины  на грань , составим по точке  и направляющему

вектору :

 – по умолчанию записываем канонические уравнения.

Вектор нормали в рассматриваемой задаче работает «на всю катушку», и как только вам предложили найти площадь грани, составить уравнение грани или

уравнения высоты – сразу «пробивайте» векторное произведение.

8) Длину высоты  найдём как расстояние от точки  до плоскости :

Результат громоздкий, поэтому позволим себе вольность не избавляться от иррациональности в знаменателе.

Теперь пунктик потруднее:

9) Найдём основание высоты – точку . Тема пересечения

прямой и плоскости подробно муссировалась в той же в Задаче 162 (пункт «б»). Повторим.

Перепишем уравнения высоты в параметрической форме:

Неизвестным координатам точки  соответствует вполне конкретное значение

параметра :
, или: .

Основание высоты, понятно, лежит в плоскости. Подставим параметрические координаты точки  в уравнение :

Кому-то покажется жестью, но на самом деле шифер :)  Который шуршит.

Полученное значение параметра подставим в координаты нашей точки:
 

Сурово, но идеально точно. Я проверил.

10)  Объём треугольной пирамиды в ангеме традиционно рассчитывается с помощью

смешанного произведения векторов:

Таким образом,

И тут уместно выполнить проверку, вычислив объем тетраэдра по школьной формуле , где  – площадь грани,  – длина высоты, опущенной к этой грани. Уместно ПОТОМУ, что мы знаем и площадь грани , и длину высоты :
, чему мы очень рады.

11) Составим уравнения медианы  грани . Ничего сложного, обычная медиана обычного пространственного треугольника:
По сравнению с треугольником на

плоскости, добавится лишь дополнительная координата. Нам известны вершины , и по формулам координат середины отрезка находим адрес точки :

Уравнения медианы можно составить по двум точкам, но сначала (см. по ссылке, почему) лучше найти

направляющий вектор: . В качестве направляющего можно взять любой

коллинеарный вектор, и сейчас подходящий момент избавиться от дробей:

Уравнения медианы составим по точке  и направляющему вектору :

Заметьте, что уравнения с эстетической точки зрения лучше составить по точке , так как координаты точки «эм» – дробные. Проверка обыденна, нужно подставить координаты точек  в полученные уравнения.

12) Составим уравнение плоскости, проходящей через прямую  и вершину :

Увы, мы не знаем «вкусный» вектор нормали, и поэтому уравнение

плоскости  придётся добывать по точке и двум

неколлинеарным векторам.

В качестве точки обязательно выбираем «одинокую» точку, которая не принадлежит прямой, в данном случае – это вершина . Один из нужных  векторов уже известен: , но, конечно же, удобнее выбрать друга-мажора . Ему в пару подходит вектор , но лучше .
Ибо координаты этого вектора будут целыми:

Уравнение плоскости составим по точке  и двум неколлинеарным векторам :

Непременно проверяем, что координаты точек  удовлетворяют

полученному уравнению.

13) Найдём угол между плоскостями  и .

Это типовая задача.

Обозначим искомый угол через  и используем формулу: , где  – вектор

нормали плоскости . Напоминаю, что вектор  и его длина  уже известны.

Осталось из уравнения  снять вектор нормали:  и аккуратно провести вычисления:

Возиться с такими корнями смысла нет, поэтому сразу находим угол:

От тупизны подальше за ответ таки лучше принять смежного соседа:

14) Выполним точный чертёж пирамиды  прямоугольной системе координат. Да, конечно, существуют программы и онлайн сервисы для построения чертежей, но не

факт, что они под рукой, и не факт, что такой чертёж будет качественным. Поэтому я расскажу вам о ручном способе построения – в тетради с помощью

карандаша и линейки.

С чего начать?

Во-первых, нужно правильно изобразить декартову систему координат на клетчатой бумаге. Во-вторых, необходимо уметь строить точки в трёхмерном пространстве, о чём мы уже вспомнили, когда разбирали канонические уравнения прямой. И сейчас тема получает продолжение.

Построим точку .  Для этого отмеряем 2 единицы в положительном направлении

оси  и 3 единицы в отрицательном направлении оси . В плоскости  прочерчиваем тонкие

пунктирные дорожки, которые параллельны соответствующим  координатным осям. Пересечение этих дорожек отмечено ромбиком (слева

внизу):

Теперь, в соответствии с отрицательной «зетовой» координатой, отмеряем 1 единицу вниз и тоже проводим пунктирную дорожку. Здесь и будет находиться

наша точка , она расположена в нижнем полупространстве.

Для точки  отмеряем 5 единиц «на себя» и 4 единицы вправо, строим параллельные

осям пунктирные дорожки и находим их точку пересечения. В соответствии с «зетовой» координатой, чертим пунктиром «подставку для точки» – 2 единицы

вверх. Данная точка расположена в верхнем полупространстве.

Аналогично строятся две другие точки. Заметьте, что вершина  лежит в самой

плоскости .

Теперь нужно разобраться в удалённости точек, а в этом как раз и помогут пунктирные линии. Немного включаем пространственное воображение и

внимательно смотрим на ось . Очевидно, что самая близкая к нам вершина – , а самая удалённая – .

Строим рёбра. Если есть сомнения, то сначала тонко-тонко прочерчиваем все 6 сторон и начинаем разбираться, какие рёбра видимы, а какие нет. Лучше начать от самой близкой точки . Очевидно, что все

три «исходящих» ребра в поле нашего зрения:

Должен предостеречь, что так бывает далеко не всегда, одно ребро, например, может быть от нас скрыто. Не теряйте визуального восприятия

пространства!

Какие ещё стороны в зоне видимости? ВиднЫ рёбра , а вот сторона  спряталась за пирамидой. Обратите внимание, что она лежит в нижнем

полупространстве и проходит под осями :

Готово.

Следует отметить, что чертеж-«конфетка» получается далеко не всегда. Бывает, что фортуна разворачивается задом. Так, грань пирамиды может полностью

или частично закрывать всё остальное (слева).
       

Но самое скверное, когда перекрываются рёбра (справа). Тут сразу три ребра выстроились на одной прямой (правая верхняя прямая). В

подобной ситуации можно жирно прочертить накладывающиеся стороны разными цветами и ниже чертежа записать дополнительные комментарии о расположении

пирамиды. А можно поступить творчески – поменять оси местами (например,  и ).

Существуют и более мелкие неприятности, например, одна из сторон пирамиды может наложить на координатную ось (а то и вовсе расположиться за ней).
Увы, перечисленные случаи – не редкость на практике.

В конце решения следует выполнить Пункт 15, после чего желательно записать ответ, где по пунктам перечислить

полученные результаты.

6.1. Поверхности второго порядка

5.6.7. Добро пожаловать в «реальные боевые условия»!

| Оглавление |



Автор: Aлeксaндр Eмeлин

Правильная
треугольная пирамида
MABC
,
сторона основания которой
равна
a
,
а высота h
.Обычно
используют один из двух вариантов
расположения системы координат.

4.1
Пусть начало координат находится в
точке A
,
ось x
направлена
вдоль ребра AC
,
ось y
проходит
через точку A
перпендикулярно
AC
,
ось z
проходит
через точку A
перпендикулярно
плоскости ABC
(см.
рис. 6). Тогда вершины пирамиды имеют
координаты: А(0; 0; 0); В(
;
;
0);С(а;0;0), М(
;


;h).

4.2
Пусть начало координат находится в
центре треугольника ABC
в
точке O
,ось
x
проходит
через точку O
параллельно
ребру AC
,
ось y
проходит
через точку O
перпендикулярно
AC
,
ось z
проходит через точку O
перпендикулярно
плоскости ABC
(см.
рис. 7). Тогда вершины пирамиды имеют
координаты: A(-
;

;0),
В(0;
;
0),

С(

;

;0),
М(0;0;h).

4.3
Еще один вариант расположения правильной
треугольной пирамиды относительно
прямоугольной декартовой системы
координат представлен на рисунке №8.

5. Правильная четырехугольная пирамида

Правильная
четырехугольная пирамида
MABC
,
сторона основания которой равна a
,
а высота h
.Обычно
используют один из двух вариантов
расположения системы координат.

5.1
Пусть начало координат находится в
точке A
,
ось x
направлена
вдоль ребра AD
,
ось y

вдоль ребра AB
,
ось z

проходит
через точку A
перпендикулярно
плоскости ABC
(см.
рис. 9). Тогда вершины пирамиды имеют
координаты:
A
(0;
0; 0) , B(0;
a;
0) , C(a;
a;
0) ,Д(а;0;0), М(
;

;
h).

5.2.
Пусть начало координат находится в
центре основания в точке O
,
ось x
проходит через точку O
параллельно
ребру AD
,
ось y
проходит
через точку O
параллельно
ребру AB,
ось z
проходит
через точку O
перпендикулярно
плоскости основания (см. рис. 10). Тогда
вершины пирамиды имеют координаты:

А(-

;

;0),
В (-

;

;0),
С(

;

;0),Д(

;

;0),М(0;0;h)

6. Правильная шестиугольная пирамида

6.1MABCDEF
,
сторона основания
которой
равна a
,
а высота h
.
Пусть начало координат находится в
точке A
,
ось x
направлена
вдоль ребра AC
,
ось y
проходит
через точку A
перпендикулярно
AC
,
ось z
проходит
через точку A,
пер-

пендикулярно
плоскости ABC
(см.
рис.11). Тогда вершины пирамиды имеют
координаты: А(0; 0; 0); В(-

;
;
0); С(0;
;0),
Д (а;
;0),
Е(
;
;
0), F(а;0;0),М(

;
;
h).

6.2
Еще один вариант расположения правильной
шестиугольной пирамиды относительно
прямоугольной декартовой системы
координат показан на рисунке 12.

Рисунок
№1


Рисунок
№2

Р
исунок
№3

Рисунок
№4


Рисунок
№5


Рисунок
№6

Рисунок
№7


Рисунок
№8

Рисунок
№9


Рисунок
№10

Рисунок
№11


рисунок
№12

18

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #



Скачать материал

Векторно-координатный метод решения стереометрических задачВведение системы к...



Скачать материал

  • Сейчас обучается 141 человек из 50 регионов

  • Сейчас обучается 26 человек из 17 регионов

  • Сейчас обучается 81 человек из 38 регионов

Описание презентации по отдельным слайдам:

  • Векторно-координатный метод решения стереометрических задачВведение системы к...

    1 слайд

    Векторно-координатный метод решения стереометрических задач
    Введение системы координат
    в правильных пирамидах

    Учитель математики
    МАОУ «Обдорская гимназия»
    г. Салехард ЯНАО
    Е.И. Гусак

  • Введение системы координатКоординаты четырехугольной пирамиды
Изобразим пирам...

    2 слайд

    Введение системы координат
    Координаты четырехугольной пирамиды
    Изобразим пирамиду и введем систему координат
    𝐴
    𝐵
    𝐶
    𝐷
    𝐻
    𝑆
    𝒙
    𝒚
    𝒛
    Начало в точке A, единичный отрезок AB = 1, ось x направим вдоль AB, ось y — вдоль AD, а ось z — вверх, перпендикулярно плоскости OXY. SH ∥ оси z.
    Можно начало поместить в центр квадрата — точку Н.
    Пусть все ребра пирамиды равны 1.

  • Введение системы координат



















AC =    𝟐    HC =    𝟐  𝟐   
 Ч...

    3 слайд

    Введение системы координат

    AC = 𝟐 HC = 𝟐 𝟐
    Чтобы найти координаты точки S, сначала найдем координаты ее проекции на Оху – точки Н. А затем из △SHC определим координату z, равную длине SH.
    SH = 𝟏− 𝟐 𝟒 = 𝟐 𝟐
    A(0;0;0) B(1;0;0) C(1;1;0) D(0;1;0) H 𝟏 𝟐 ; 𝟏 𝟐 ;𝟎 S 𝟏 𝟐 ; 𝟏 𝟐 ; 𝟐 𝟐
    𝐴
    𝐵
    𝐶
    𝐷
    𝐻
    𝒙
    𝒚
    0
    1
    1 2
    1 2
    1

  • Введение системы координатКоординаты треугольной пирамиды
Изобразим пирамиду...

    4 слайд

    Введение системы координат
    Координаты треугольной пирамиды
    Изобразим пирамиду и введем систему координат

    𝐴
    𝐵
    𝐶
    𝑆
    𝑂
    Начало координат — в точке A. Сторону AB принимаем за единичный отрезок, если иное не указано в условии задачи. Ось x направляем по ребру AB, а ось y расположим так, чтобы плоскость OXY совпадала с плоскостью основания ABC, а ось z  ⊥  (OXY). SO ∥ оси z.
    𝒙
    𝒚
    𝒛

  • Введение системы координат







CH =   𝟏− 𝟏 𝟒   =    𝟑  𝟐...

    5 слайд

    Введение системы координат

    CH = 𝟏− 𝟏 𝟒 = 𝟑 𝟐 OC = 𝟐 𝟑 CH = 𝟐 𝟑 ⋅ 𝟑 𝟐 = 𝟑 𝟑
    Из △SOC: SO = 𝟏− 𝟑 𝟗 = 𝟔 𝟑
    A(0;0;0) B(1;0;0) C 𝟏 𝟐 ; 𝟑 𝟐 ;𝟎 S 𝟏 𝟐 ; 𝟑 𝟔 ; 𝟔 𝟑 O 𝟏 𝟐 ; 𝟑 𝟔 ;𝟎

    𝐴
    𝐵
    𝐶
    0
    1
    1 2
    3 2
    𝒙
    𝒚
    𝐴
    𝐵
    𝐶
    𝑂
    𝑆
    𝒙
    𝒚
    𝒛
    𝐻
    𝑂
    3 6

  • Введение системы координатКоординаты шестиугольной пирамиды
Пусть стороны осн...

    6 слайд

    Введение системы координат
    Координаты шестиугольной пирамиды
    Пусть стороны основания пирамиды равны 1, а боковые ребра – 2. Изобразим пирамиду и введем систему координат.

    Начало в точке A, единичный отрезок AB = 1, ось x направим вдоль AB, ось y — вдоль AЕ, а ось z — вверх, перпендикулярно плоскости OXY. SО ∥ оси z.
    Можно начало поместить в центр шестиугольника — точку О.

    𝐴
    𝐵
    𝐶
    𝐷
    𝐸
    𝐹
    𝑂
    𝑆
    𝒙
    𝒚
    𝒛

  • Введение системы координат









Шестиугольник разбивается большими
диагон...

    7 слайд

    Введение системы координат

    Шестиугольник разбивается большими
    диагоналями на 6 правильных треугольников. ВЕ = 2.
    Из △АВЕ: АЕ = 4−1 = 3 . FL = CN = 3 2 .
    Из △SOC: SO = 4−1 = 3 .
    Таким образом,
    A(0;0;0) B(1;0;0) C 𝟑 𝟐 ; 𝟑 𝟐 ;𝟎 D( 1; 𝟑 ;𝟎)
    Е(0; 𝟑 ; 0) F − 𝟏 𝟐 ; 𝟑 𝟐 ;𝟎 S 𝟏 𝟐 ; 𝟑 𝟐 ; 3

    𝑂
    𝒙
    𝒚
    𝒛
    𝐴
    𝐵
    𝐶
    𝐷
    𝐸
    𝐹
    0
    1
    𝑂
    𝒙
    𝒚
    𝟑
    3 2
    𝐿
    𝑁
    3 2
    − 1 2
    1 2

Краткое описание документа:

Достаточно простой в применении, метод координат является необходимой составляющей решения задач различного уровня. Использование данного метода, позволяет учащимся значительно упростить и сократить процесс решения задач, что помогает им при дальнейшем изучении, как школьного курса математики, так и при изучении математики в высших учебных заведениях. Координатно-векторный метод имеет преимущества перед другими, что не требует сложных построений в проекциях. По той простой причине, что этот метод заключается во введении (привязке к исследуемым фигурам) декартовой системы координат, а затем – исчислении образующихся векторов (их длин и углов между ними).

В презентации рассматривается введение системы координат в правильной четырехугольной пирамиде, правильной треугольной пирамиде и правильной шестиугольной пирамиде. Показывается нахождение координат точек фигуры.

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 265 803 материала в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Материал подходит для УМК

  • «Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.

    «Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.

    Тема

    Глава 5. Метод координат в пространстве. Движения

    Больше материалов по этой теме

Другие материалы

Презентация «Введение системы координат в призмах»

  • Учебник: «Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
  • Тема: Глава 5. Метод координат в пространстве. Движения
  • 10.06.2019
  • 487
  • 3

«Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.

«Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.

Координатный метод в решение задач егэ по математкие

  • Учебник: «Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
  • Тема: Глава 5. Метод координат в пространстве. Движения

Рейтинг:
3 из 5

  • 25.05.2019
  • 949
  • 9

«Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.

Контрольная работа № 1 по теме: «Метод координат» (11 класс)

  • Учебник: «Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
  • Тема: Глава 5. Метод координат в пространстве. Движения

Рейтинг:
3 из 5

  • 04.02.2019
  • 40631
  • 1997

«Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.

Урок геометрии в 11 классе

  • Учебник: «Алгебра», Никольский С.М., Потапов М.К., Решетников Н.Н. и др.
  • Тема: § 13. Комбинаторика
  • 28.01.2019
  • 533
  • 1

«Алгебра», Никольский С.М., Потапов М.К., Решетников Н.Н. и др.

Буклет на тему: Стереометрические задачи

  • Учебник: «Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
  • Тема: Глава 5. Метод координат в пространстве. Движения
  • 13.01.2019
  • 432
  • 2

«Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.

«Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.

Урок по теме «Решение задач методом координат»

  • Учебник: «Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
  • Тема: Глава 5. Метод координат в пространстве. Движения
  • 29.12.2018
  • 617
  • 12

«Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»

  • Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Методика написания учебной и научно-исследовательской работы в школе (доклад, реферат, эссе, статья) в процессе реализации метапредметных задач ФГОС ОО»

  • Курс повышения квалификации «Основы построения коммуникаций в организации»

  • Курс профессиональной переподготовки «Организация деятельности по подбору и оценке персонала (рекрутинг)»

  • Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»

  • Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»

  • Курс профессиональной переподготовки «Организация маркетинга в туризме»

  • Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»

  • Курс профессиональной переподготовки «Организация деятельности помощника-референта руководителя со знанием иностранных языков»

  • Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

  • Курс профессиональной переподготовки «Организация технической поддержки клиентов при установке и эксплуатации информационно-коммуникационных систем»

  • Курс повышения квалификации «Учебная деятельность по предметной области «Черчение»: основы предмета и реализация обучения в условиях ФГОС»

  • Курс профессиональной переподготовки «Осуществление и координация продаж»

Онлайн решение Пирамиды по координатам вершин

Данный онлайн-сервис вычисляет (показываются промежуточные расчёты) следующие параметры треугольной пирамиды (тетраэдра):

1) чертёж пирамиды по координатам её вершин;

2) длины и уравнения рёбер, медиан, апофем, высот;

3) площади и уравнения граней;

4) система линейных неравенств, определяющих пирамиду;

5) основания и точка пересечения медиан (центроид);

6) уравнения плоскостей, проходящих через вершины параллельно противолежащим граням;

7) объём пирамиды;

8) основания, площади и уравнения биссекторов;

9) углы между рёбрами, между рёбрами и гранями, двугранные (внутренние между гранями), телесные;

10) параметры и уравнения вписанной и описанной сфер;

Внимание! Этот сервис может не работать в браузере Internet Explorer.

Запишите координаты вершин пирамиды и нажмите кнопку.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Код ошибки 0100200000 неправильное указание места представления сведений как исправить
  • Подключение к сайту не защищено как исправить opera gx
  • Как найти заказ на фото
  • Как составить основополагающий вопрос к проекту
  • Как будет прибывать день как найти

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии