Как найти координату вершины тетраэдра

Координаты вершин правильного тетраэдра

20 июня 2013

Пирамиды традиционно считаются сложными фигурами в задаче C2. А уж если в основании пирамиды лежит треугольник (т.е. пирамида становится тетраэдром), то все становится совсем грустно. В общем, если в ЕГЭ по математике вам попадется правильный тетраэдр, примите мои поздравления: это самая мерзкая и сложная фигура, которая встречается на настоящем экзамене.

Тем не менее, после небольшой тренировки все становится вполне решаемо. И в этом уроке мы пошагово разберем каждую вершину тетраэдра и найдем каждую координату. Вы убедитесь: все, что нам действительно надо знать — это две теоремы:

  1. Теорема Пифагора — без нее не решается вообще ни одна задача C2, потому что на этой теореме построена сама идея декартовой системы координат;
  2. Теорема о медианах. А именно: медианы треугольника пересекаются в одно точке и делятся ею в отношении 2 : 1, считая от вершины.

Вот и весь список! Вы знаете эти теоремы? Тогда поехали!

Задача. В правильном тетраэдре SABC, все ребра которого равны 1, введите систему координат и найдите координаты вершин.

Правильный тетраэдр SABC и высота SH

[Подпись к рисунку]

Смотрите также:

  1. Четырехугольная пирамида: как найти координаты вершин
  2. Уравнение плоскости в задаче C2. Часть 1: матрицы и определители
  3. Решение ЕГЭ-2011: вариант 1, часть B
  4. Не пишите единицы измерения в задаче B12
  5. Быстрое возведение чисел в квадрат без калькулятора
  6. Задача B4: тарифы на сотовую связь

Possible Duplicate:
What are the vertices of a regular tetrahedron embeded in a sphere of radius R

I was wondering if anyone could provide a ‘clear’ way of establishing the vertices of a tetrahedron. This is a regular/standard/all faces are congruent tetrahedron.

To make it more generalized, let’s say that the center of the object sits at $(0,0,0)$ and the first known vertex sits at $(0,-1, 0)$ giving the sphere that contains the tetrahedron a radius of $1$ unit. A second vertex must sit at $(0, y > 0, z < 0)$.

Furthermore, $(x < 0, y > 0, z > 0)$ and $(x > 0, y > 0, z > 0)$.

The desired end result is that I could provide any initial coordinate for the vertex and receive the other three vertices in relation to the first.

I figured this was the best route get a solution… —

Correction, in my grasping for straws here, I mentioned 3-Simplex which appears to not be conducive to what I’m trying to learn here. I simply want a clear cut way to represent a REGULAR tetrahedron when one of the vertices is very specific to the sphere that encompasses said tetrahedron. By clear cut I mean… break the tetrahedron into it’s separate triangles and multiply by the sin of 180/pi.

This is a personal problem that I’m sure is beneath the initial design of this Stack but it is keeping me up at night and scouring wikipedia and an old Trig book is not helping

Тетраэдр.

Тетраэдр — это частный случай правильной треугольной пирамиды.

Тетраэдр — правильный многогранник (четырёхгранный), имеющий 4 грани, они, в свою очередь, оказываются правильными треугольниками. У тетраэдра 4 вершины, к каждой из них сходится 3 ребра. Общее количество ребер у тетраэдра 6.

Медиана тетраэдра — это отрезок, который соединяет вершину тетраэдра и точку пересечения медиан противоположной грани (медиан равностороннего треугольника, который противолежит вершине).

Бимедиана тетраэдра — это отрезок, который соединяет середины рёбер, что скрещиваются (соединяет середины сторон треугольника, который есть одной из граней тетраэдра).

Высота тетраэдра — это отрезок, который соединяет вершину и точку противоположной грани и перпендикулярен этой грани (т.е. это высота, проведенная от всякой грани, кроме того, совпадает с центром описанной окружности).

Свойства тетраэдра.

Параллельные плоскости, которые проходят через пары рёбер тетраэдра, что скрещиваются, и определяют описанный параллелепипед около тетраэдра.

Плоскость, которая проходит сквозь середины 2-х рёбер тетраэдра, что скрещиваются, и делит его на 2 части, одинаковые по объему.

Все медианы и бимедианы тетраэдра пересекаются в одной точке. Эта точка делит медианы в отношении 3:1, если считать от вершины. Она же делит бимедианы на две равные части.

Типы тетраэдров.

Правильный тетраэдр — это такая правильная треугольная пирамида, каждая из граней которой оказывается равносторонним треугольником.

У правильного тетраэдра каждый двугранный угол при рёбрах и каждый трёхгранный угол при вершинах имеют одинаковую величину.

Тетраэдр состоит из 4 граней, 4 вершин и 6 ребер.

Правильный тетраэдр — это один из 5-ти правильных многогранников.

Кроме правильного тетраэдра, заслуживают внимания такие типы тетраэдров:

Равногранный тетраэдр, у него каждая грань представляет собой треугольник. Все грани-треугольники такого тетраэдра равны.

Ортоцентрический тетраэдр, у него каждая высота, опущенная из вершин на противоположную грань, пересекается с остальными в одной точке.

Прямоугольный тетраэдр, у него каждое ребро, прилежащее к одной из вершин, перпендикулярно другим ребрам, прилежащим к этой же вершине.

Каркасный тетраэдр — тетраэдр, который таким условиям:

  • есть сфера, которая касается каждого ребра,
  • суммы длин ребер, что скрещиваются равны,
  • суммы двугранных углов при противоположных ребрах равны,
  • окружности, которые вписаны в грани, попарно касаются,
  • каждый четырехугольник, образующийся на развертке тетраэдра, — описанный,
  • перпендикуляры, поставленные к граням из центров окружностей, в них вписанных, пересекаются в одной точке.

Соразмерный тетраэдр, бивысоты у него одинаковы.

Инцентрический тетраэдр, у него отрезки, которые соединяют вершины тетраэдра с центрами окружностей, которые вписаны в противоположные грани, пересекаются в одной точке.

Формулы для определения элементов тетраэдра.

Высота тетраэдра:

где h — высота тетраэдра, a — ребро тетраэдра.

Объем тетраэдра рассчитывается по классической формуле объема пирамиды. В нее нужно подставить высоту тетраэдра и площадь правильного (равностороннего) треугольника.

где V — объем тетраэдра, a — ребро тетраэдра.

Основные формулы для правильного тетраэдра:

Где S — Площадь поверхности правильного тетраэдра;

h — высота, опущенная на основание;

r — радиус вписанной в тетраэдр окружности;

Как найти высоту тетраэдра формула

Высота тетраэдра — равна корню квадратному из двух третих, помноженному на длину ребра тетраэдра

(h – высота тетраэдра, a – ребро тетраэдра)

Вывод формулы высоты тетраэдра

Чтобы получить формулу высоты тетраэдра необходимо произвести дополнительные геометрические построения. На рисунке красные линии CF и FS — это высоты соответствующих правильных треугольников ABC и ABS:

Теперь в треугольнике CFS известны все стороны. Высота тетраэдра, как видно из геометрических построений — это высота треугольника CFS. Подставив стороны треугольника в формулу и произведя простые сокращения (используем формулу разность квадратов) получим формулу (1).

Рассмотрим произвольный треугольник ABC и точку D , не лежащую в плоскости этого треугольника. Соединим отрезками эту точку с вершинами треугольника ABC . В результате получим треугольники ADC , CDB , ABD . Поверхность ограниченная четырьмя треугольниками ABC , ADC , CDB и ABD называется тетраэдром и обозначается DABC .
Треугольники, из которых состоит тетраэдр, называются его гранями.
Стороны данных треугольников называют ребрами тетраэдра. А их вершины – вершинами тетраэдра

Тетраэдр имеет 4 грани, 6 ребер и 4 вершины.
Два ребра, которые не имеют общей вершины, называются противоположными.
Зачастую для удобства, одну из граней тетраэдра называют основанием, а оставшиеся три грани боковыми гранями.

Но также верно и утверждение, что любая произвольная треугольная пирамида является тетраэдром. Тогда также верно, что тетраэдром называют пирамиду, в основании которой лежит треугольник.

Высотой тетраэдра называется отрезок, который соединяет вершину с точкой, расположенной на противоположной грани и перпендикулярный к ней.
Медианой тетраэдра называется отрезок, который соединяет вершину с точкой пересечения медиан противоположной грани.
Бимедианой тетраэдра называется отрезок, который соединяет середины скрещивающихся ребер тетраэдра.

Так как тетраэдр – это пирамида с треугольным основанием, то объем любого тетраэдра можно рассчитать по формуле

  • S – площадь любой грани,
  • H – высота, опущенная на эту грань

Правильный тетраэдр – частный вид тетраэдра

Тетраэдр, у которого все грани равносторонние треугольник называется правильным.
Свойства правильного тетраэдра:

  • Все грани равны.
  • Все плоские углы правильного тетраэдра равны 60°
  • Так как каждая его вершина является вершиной трех правильных треугольников, то сумма плоских углов при каждой вершине равна 180°
  • Любая вершина правильного тетраэдра проектируется в ортоцентр противоположной грани (в точку пересечения высот треугольника).

Пусть нам дан правильный тетраэдр ABCD с ребрами равными a . DH – его высота.
Произведем дополнительные построения BM – высоту треугольника ABC и DM – высоту треугольника ACD .
Высота BM равна BM и равна
Рассмотрим треугольник BDM , где DH , являющаяся высотой тетраэдра также и высота данного треугольника.
Высоту треугольника, опущенную на сторону MB можно найти, воспользовавшись формулой

, где
BM=, DM=, BD=a,
p=1/2 (BM+BD+DM)=
Подставим эти значения в формулу высоты. Получим

Вынесем 1/2a. Получим



Применим формулу разность квадратов

После небольших преобразований получим


Объем любого тетраэдра можно рассчитать по формуле
,
где ,

Подставив эти значения, получим

Таким образом формула объема для правильного тетраэдра

где a –ребро тетраэдра

Вычисление объема тетраэдра, если известны координаты его вершин

Пусть нам даны координаты вершин тетраэдра

Из вершины проведем векторы , , .
Для нахождения координат каждого из этих векторов вычтем из координаты конца соответствующую координату начала. Получим


Геометрических смысл смешенного произведения трех векторов заключается в следующем – смешенное произведение трех векторов равно объему параллелепипеда, построенного на этих векторах.
Так как тетраэдр есть пирамида с треугольным основанием, а объем пирамиды в шесть раз меньше объема параллелепипеда, то тогда имеет смысл следующая формула

Свойства

Зная высоту тетраэдра, можно вычислить его ребро, перевернув формулу так, чтобы ребро было равно корню из трех вторых, умноженному на высоту. a=√(3/2) h

Выразив таким образом ребро тетраэдра через его высоту, можно найти периметр тетраэдра, то есть длину всех его ребер, площадь одной грани и площадь полной поверхности тетраэдра. Периметр тетраэдра будет равен шести длинам его ребер, площадь одной грани – ребру в квадрате, умноженному на корень из трех, деленный на четыре, а площадь полной поверхности – четырем площадям одной грани. P=6a=6√(3/2) h S_1=(√3 a^2)/4=(3√3 h^2)/8 S_(п.п.)=4S_1=(3√3 h^2)/2

Через высоту, подставленную вместо ребра в определенном соотношении можно найти соответственно и радиусы вписанной и описанной окружностей в основание тетраэдра. r=h/(2√2) R=h/√2

Апофема тетраэдра проходит из вершины к противоположной стороне грани под прямым углом и рассчитать ее можно как из прямоугольного треугольника с боковым ребром по той же грани, так и из прямоугольного треугольника во внутреннем пространстве тетраэдра с высотой. l=3h/(2√2)

Чтобы вычислить объем тетраэдра, необходимо возвести в куб ребро и разделить полученное значение на шесть корней из двух, либо подставить вместо ребра корень из трех вторых, умноженный на высоту и преобразовать формулу объема для высоты. V=(√3 h^3)/8

В тетраэдр можно вписать сферу или описать сферу около него, тогда, зная высоту, чтобы вычислить радиусы вписанной и описанной сфер, необходимо воспользоваться следующими, уже готовыми формулами. (рис.60.2, 60.3) r_1=h/4 R_1=3h/4

Геометрия

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Понятие вектора в пространстве

Напомним, что в курсе планиметрии мы уже подробно изучали вектора и действия с ними. При этом предполагалось, что все вектора располагаются в одной плоскости. Однако можно расширить понятие вектора так, чтобы они использовались и в стереометрии. В таком случае вектора уже могут располагаться в различных плоскостях.

Начнем с определения вектора:

Конец вектора обозначают с помощью стрелки. Посмотрим на рисунок:

Здесь показаны сразу три вектора:

У вектора АВ начало находится в точке А, а конец – в точке В. Аналогично у вектора С D точка С – это начало, а D – это конец. В обоих случаях начало и конец – это различные точки, поэтому АВ и CD именуют ненулевыми векторами. Если же начало и конец находятся в одной точке, например в Т, то получается нулевой вектор ТТ. Всякую точку в пространстве можно рассматривать как нулевой вектор:

Длина вектора АВ – это длина соответствующего ему отрезка АВ. Для обозначения длины используют квадратные скобки:

Естественно, что нулевой вектор имеет нулевую длину.

Далее напомним понятие коллинеарных векторов:

Коллинеарные вектора могут быть либо сонаправленными, либо противоположно направленными. Сонаправленные вектора находятся на сонаправленных лучах. Рассмотрим пример с кубом:

Здесь показаны вектора AD и ВС. Они сонаправленные, этот факт записывается так:

Вектора AD и FE располагаются на скрещивающихся прямых, поэтому они не коллинеарны. Их нельзя считать ни сонаправленными, ни противоположно направленными.

Сонаправленные вектора, имеющие одинаковую длину, именуются равными.

Рассмотрим несколько простейших задач.

Задание. В прямоугольном параллелепипеде АВС DA 1 B 1 C 1 D 1 известны три его измерения:

Решение. Для нахождения длин этих векторов достаточно вычислить длину отрезков СВ, DB и DB 1. Проще всего вычислить СВ, ведь отрезки СВ и AD одинаковы как стороны прямоугольника АВ CD :

Задание. На рисунке показан правильный тетраэдр АВС D . Точки M , N , P и Q являются серединами тех сторон, на которых они располагаются. Какие вектора из отмеченных на рисунке равны между собой?

Решение. Легко заметить, что вектора DP и PC находятся на одной прямой DC и сонаправлены, при этом их длина одинакова, ведь Р – середина DC . Тогда эти вектора по определению равны:

Вектора АМ и МВ также коллинеарны и имеют одинаковую длину, но они противоположно направлены, а потому равными не являются.

Теперь заметим, что отрезки MN , MQ , PQ и NP – это средние линии в ∆ ABD , ∆ АВС, ∆ BCD и ∆ ACD соответственно. По свойству средней линии получаем, что MN || BD , PQ || BD , MQ ||АС и NP ||АС. Отсюда по свойству транзитивности параллельности получаем, что MN || PQ и MQ || NP . Это значит, что четырехугольник MQPN – это параллелограмм, а у него противоположные стороны одинаковы:

Операции над векторами

Правила сложения векторов в стереометрии не отличаются от правил в планиметрии. Пусть надо сложить два вектора, а и b . Для этого отложим вектор а от какой-нибудь точки А, тогда его конец окажется в некоторой точке В. Далее от В отложим вектор b , его конец попадет в какую-то точку С. Тогда вектор АС как раз и будет суммой a и b :

Такой метод сложения векторов именуется правилом треугольника. Если нужно сложить больше двух векторов, то используют правило многоугольника. В этом случае необходимо каждый следующий вектор откладывать от конца предыдущего. При этом в стереометрии вектора могут располагаться в различных плоскостях, то есть они на самом деле многоугольник не образуют:

Напомним, что в планиметрии существовали так называемые противоположные вектора. Есть они и в стереометрии:

Главное свойство противоположных векторов заключается в том, что в сумме они дают нулевой вектор:

Заметим, что для получения противоположного вектора достаточно поменять его начало и конец, то есть в записи вектора обозначающие его буквы надо просто записать в обратном порядке:

C помощью противоположного вектора легко определить операцию вычитания векторов. Чтобы из вектора а вычесть вектор b , надо всего лишь прибавить к a вектор, противоположный b :

Далее рассмотрим умножение вектора на число. Пусть вектор а умножается на число k . В результате получается новый вектор b , причем

1) b и a будут коллинеарными векторами;

2) b будет в k раз длиннее, чем вектор a .

Если k – положительное число, то вектора a и b будут сонаправленными. Если же k a и b будут направлены противоположно.

Уточним, что если | k | b будет не длиннее, а короче вектора a . Наконец, если k = 0, то и b будет иметь нулевую длину, то есть b окажется нулевым вектором.

Задание. Дан параллелепипед АВС D А1В1С1 D 1. Постройте вектор, который будет являться суммой векторов:

Решение. В каждом случае необходимо заменить один из векторов в сумме на другой равный ему вектор так, чтобы можно было применить правило треугольника.

В задании а) вектор А1 D 1 заменить равным ему вектором ВС. В итоге получится вектор АС.

В задании б) заменяем А D 1 на вектор ВС1. Также можно было бы заменить АВ на D 1 C 1. В обоих случаях сумма окажется равной АС1.

В задании в) удобно DA заменить на C 1В1, тогда искомой суммой будет вектор С1В.

В задании г) производим замену DD 1 на равный ему вектор BB 1. Тогда сумма DB и BB 1– это вектор DB 1.

В задании д) необходимо заменить ВС на В1С1. В итоге получаем вектор DC :

Задание. В пространстве отмечены точки А, В, С и D . Выразите вектор АВ через вектора:

Решение. В случае а) сначала запишем очевидное равенство векторов, вытекающее из правило многоугольника:

Обратите внимание, что здесь у каждого следующего слагаемого начальная точка совпадает с конечной точкой предыдущего слагаемого, поэтому равенство и справедливо:

Однако по условию а) нам надо использовать другие вектора для выражения АВ. Мы можем просто заменить вектора CD и DB на противоположные:

Теперь можно составить и выражение для АВ:

Аналогично решаем и задания б) и в):

Задание. Р – вершина правильной шестиугольной пирамиды. Докажите, что сумма векторов, совпадающих с ребрами этой пирамиды и начинающихся в точке Р, в точности равна сумме векторов, которые совпадают с апофемами пирамиды и при этом также начинаются в точке Р.

Решение. Обозначим вершины буквами А1, А2, … А6, а середины сторон шестиугольника, лежащего в основании, буквами Н1, Н2, … Н6, как это показано на рисунке:

Нам надо показать, что сумма красных векторов равна сумме черных векторов:

Теперь отдельно построим правильный шестиугольник, лежащий, в основании пирамиды:

Ясно, что вектора, образованные сторонами этого шестиугольника, в сумме дают нулевой вектор (по правилу многоугольника):

Так как точки Н1, Н2, … Н6 – середины сторона, то вектора Н6А6, Н5А5,…Н1А1 будут вдвое короче векторов А1А6, А6А5, … А2А1. При этом они находятся на одних прямых, поэтому справедливы равенства:

Таким образом нам удалось из верного равенства (3) доказать (2), из которого в свою очередь следует справедливость и (1), ч. т. д.

Задание. Упростите выражения:

Решение. Здесь надо просто применить законы сложения и умножения векторов, как это делалось и в курсе планиметрии. Сначала раскрываем скобки, а потом приводим подобные слагаемые:

Компланарные векторы

Если мы отложим несколько векторов от одной точки, то они либо будут находиться в одной плос-ти, либо располагаться в различных плос-тях. В первом случае их именуют компланарными векторами, а во втором – некомпланарными.

Любые два вектора будут компланарны, ведь при их откладывании от одной точки мы получаем две пересекающихся прямых, а через них всегда можно провести плос-ть. Однако если векторов более двух, то они могут быть как компланарны, так и некомпланарны.

Рассмотрим для примера параллелепипед:

Здесь вектора АС, АВ и АD компланарны, так как все они принадлежат одной грани (то есть плос-ти) АВСD. А вектора АВ, АD и АА1 некомпланарны, ведь через них нельзя провести одну плос-ть.

Очевидно, что если из трех векторов любые два коллинеарны, то вся тройка векторов компланарна, ведь при откладывании векторов от одной точки коллинеарные вектора окажутся на одной прямой.

Существует признак компланарности векторов:

Напомним, что подразумевается под разложением вектора. Пусть есть вектора а, b и c. Если существуют такие числах и y, при которых выполняется равенство

то говорят, что вектор с разложен по векторам а и b, причем числа xи y называются коэффициентами разложения.

Докажем сформулированный признак. Пусть есть три вектора а, b и c, а также числа xи y, такие, что

Эти вектора находятся в одной плос-ти ОАВ. Теперь от той же точки О отложим вектора ха и уb, концы которых окажутся в точках А1 и В1:

Естественно, что вектора ОА1 и ОВ1 также окажутся в плос-ти ОАВ. Тогда и их сумма будет принадлежать этой плос-ти, а эта сумма как раз и есть вектор с:

В итоге получили, что а, b и с располагаются в одной плос-ти, то есть они компланарны.

Справедливо и обратное утверждение. Если вектора а, b и с компланарны, но а и b неколлинеарны, то вектор с можно разложить на вектора a и b. Это утверждение прямо следует из изученной в 9 классе теоремы о разложении векторов. Важно отметить, что коэффициенты такого разложения определяются однозначно.

Для сложения тройки некомпланарных векторов можно применить так называемое правило параллелепипеда. Если есть три некомпланарных вектора, то можно отложить их от одной точки О и далее построить параллелепипед, в котором эти вектора будут ребрами. Тогда диагональ этого параллелепипеда, выходящая из точки О, и будет суммой этих трех векторов:

Разложение вектора на некомпланарные вектора

Иногда вектор можно разложить не на два, а на три вектора. Выглядит такое разложение так:

Для доказательства рассмотрим три некомпланарных вектора а, bи c, а также произвольный вектор р. Отложим их от одной точки О. Обозначим концы этих векторов большими буквами А, В, С и Р:

Через ОВ и ОА можно провести некоторую плос-ть α. Точка С ей принадлежать не может, ведь ОА, ОВ и ОС – некомпланарные вектора. Проведем через Р прямую, параллельную ОС. Так как ОС пересекает α, то и параллельная ей прямая также пересечет α в некоторой точке Р1. (Примечание. Если Р принадлежит α, то точки Р и Р1 совпадут, то есть вектор Р1Р будет нулевым).

Далее через точку Р1 в плос-ти α проведем прямую, параллельную ОВ, которая пересечет ОА в точке Р2. Заметим, что вектор ОР2 находится на той же прямой, что и вектор ОА, то есть они коллинеарны, поэтому существует такое число х, что

Итак, мы показали, что у произвольного вектора p есть разложение на заранее заданные некомпланарные вектора. Осталось показать, что существует только одно такое разложение. Докажем это методом от противного. Пусть есть второе разложение с другими коэффициентами х1, у1 и z1:

В правой части находятся три вектора, которые в сумме нулевой вектор. По правилу сложения векторов это означает, что эти вектора образуют треугольник, то есть находятся в одной плос-ти:

Значит, они компланарны. Тогда компланарны и вектора a, b и с, что противоречит условию теоремы. Значит, второго разложения р на заданные некомпланарные векторы не существует, ч. т. д.

Задание. АВСD и А1В1С1D1 – параллелограммы, располагающиеся в разных плос-тях. Докажите, что тройка векторов ВВ1, СС1 и DD1 компланарна.

Решение. Сначала построим рисунок по условию задачи:

Для доказательства используем признак компланарности векторов. Для этого надо один из векторов, отмеченных на рисунке красным, разложить на два других вектора.

В результате нам удалось разложить СС1 на вектора BB1 и CC1. Значит, эти три вектора коллинеарны.

Задание. В параллелепипеде АВСDA1B1C1D1 запишите разложение вектора BD1 по векторам ВА, ВС и ВВ1.

Решение. Сначала представим вектор BD1 как сумму трех векторов:

Теперь заметим, что вектора С1D1 и ВА соответствуют ребрам параллелепипеда. Эти ребра одинаковы по длине и параллельны, поэтому и вектора будут равными. Аналогично равны вектора СС1 и ВВ1:

Задание. АВСD – тетраэдр, а точка К делит его ребро ВС пополам. Разложите вектор DK по векторам DA, AB и AC.

Решение. Сначала запишем очевидное выражение для вектора DK:

Задание. В точке М пересекаются медианы треугольника АВС, а О – произвольная точка в пространстве. Разложите вектор ОМ по векторам ОА, ОВ и ОС.

Решение. Медиану, проходящую через точку А, мы обозначим как АА1, то есть А1 – это середина отрезка ВС. Также буквой К обозначим середину ОВ:

Сначала разложим вектор ОА1 на ОВ и ОС. Это можно сделать, ведь они компланарны. КА1 – это средняя линия ∆ОСВ, поэтому КА1||ОС и КА1 вдвое короче ОС. Это значит, что

Так как АА1 – медиана, то точка М делит ее в отношении 2:1. Отсюда вытекает следующее соотношение:

Только что решенная задача может быть использована и при решении другого, более сложного задания.

Задание. Докажите, что в параллелепипеде АВС1В1С1D1 плос-ти А1ВD и СB1D1 делят диагональ АС1 на три равных отрезка.

Решение. Обозначим точкой K точку пересечения медиан ∆А1ВD. Тогда по формуле, выведенной в предыдущей задаче, мы получаем, что

Это соотношение означает, что вектора АК и АС1 коллинеарны, поэтому они располагаются на одной прямой (они не могут находиться на параллельных прямых, ведь у них есть общая точка А). Значит, точка K принадлежит диагонали АС1, и отрезок АК втрое короче диагонали.

Аналогично можно показать, что и

Из этого также вытекает, что М принадлежит диагонали АС1, и МС1 втрое короче АС1. Значит, точки М и К делят диагональ на три равных отрезка, ч. т. д.

Сегодня мы расширили понятие векторов и научились их применять не только в планиметрических, но и в стереометрических задачах. При сохраняются все правила, по которым выполняются действия над векторами. Также в стереометрии появляется новое понятие компланарных и некомпланарых векторов.

источники:

http://planshet-info.ru/kompjutery/kak-najti-vysotu-tetrajedra-formula

http://100urokov.ru/predmety/vektora-v-prostranstve

Вектор $%vec{OD}$% равен полусумме векторов $%vec{OB}$% и $%vec{OC}$%. Аналогично для остальных сторон. Тогда из равенств $%vec{OD}=frac12(vec{OB}+vec{OC})$%, $%vec{OE}=frac12(vec{OC}+vec{OA})$%, $%vec{OF}=frac12(vec{OA}+vec{OB})$%, следует, что $%vec{OD}+vec{OE}+vec{OF}=vec{OA}+vec{OB}+vec{OC}$%. Поэтому вектор$%vec{OA}=vec{OA}+vec{OB}+vec{OC}-(vec{OB}+vec{OC})=vec{OD}+vec{OE}+vec{OF}-2vec{OD}=-vec{OD}+vec{OE}+vec{OF}$% имеет координаты $%(-1;1;1)$% в рассматриваемом базисе. Это координаты вершины $%A$%. Для вершин $%B$% и $%C$% координаты будут равны $%(1;-1;1)$% и $%(1;1;-1)$% соответственно. Координаты точки $%O$% нулевые.

Многогранник с 4 гранями

Правильный тетраэдр
Tetrahedron.jpg . (Нажмите здесь, чтобы вращаться модель)
Тип Платоновое тело
Элементы F = 4, E = 6. V = 4 (χ = 2)
Грани по сторонам 4 {3}
Обозначение Конвея T
Шлефли символы {3,3}
h {4,3}, s {2,4}, sr {2,2}
Конфигурация лица V3.3.3
символ Wythoff 3 | 2 3. | 2 2 2
Диаграмма Кокстера Узел CDel 1.png CDel 3.png CDel node.png CDel 3.png CDel node.png = Узел CDel h.png CDel 4.png CDel node.png CDel 3.png CDel node.png . Узел CDel h.png CDel 2x.png Узел CDel h.png CDel 4.png CDel node.png . Узел CDel h.png CDel 2x.png Узел CDel h.png CDel 2x.png Узел CDel h.png
Симметрия Td, A 3, [3,3], (* 332)
Группа вращения T, [3,3], (332)
Ссылки U 01, C 15, W 1
Свойства правильный, выпуклый дельтаэдр
Двугранный угол 70,528779 ° = arccos (⁄ 3)
Тетраэдр vertfig.png . 3.3. 3. (Вершинная фигура ) Tetrahedron.png . Самодвойственный. (двойной многогранник )
Тетраэдр flat.svg . Сеть

Тетраэдр (Matemateca IME-USP )3D-модель правильного тетраэдра.

В геометрия, тетраэдр (во множественном числе: тетраэдры или тетраэдры ), также известная как треугольная пирамида, представляет собой многогранник, состоящий из четырех треугольных граней, шести прямых ребер и четырех вершинных углов. Тетраэдр является самым простым из всех обычных выпуклых многогранников и единственным, у которого меньше пяти граней.

Тетраэдр — это трехмерный случай более общей концепции евклидова симплекса, и, таким образом, также может быть называется 3-симплексом .

Тетраэдр — это один из видов пирамиды, который представляет собой многогранник с плоским основанием многоугольника и треугольными гранями, соединяющими основание с общей точкой. В случае тетраэдра основанием является треугольник (любая из четырех граней может считаться основанием), поэтому тетраэдр также известен как «треугольная пирамида».

Как и все выпуклые многогранники, тетраэдр можно сложить из одного листа бумаги. У него две такие сети.

Для любого тетраэдра существует сфера (называемая описанной сферой ), на которой лежат все четыре вершины, и другая сфера (Insphere ) касательная к граням тетраэдра.

Содержание

  • 1 Правильный тетраэдр
    • 1.1 Координаты правильного тетраэдра
    • 1.2 Углы и расстояния
    • 1.3 Изометрии правильного тетраэдра
    • 1.4 Ортогональные проекции правильного тетраэдра
    • 1.5 Поперечное сечение правильного тетраэдра
    • 1.6 Сферическая мозаика
    • 1.7 Спиральная укладка
  • 2 Другие частные случаи
    • 2.1 Изометрии неправильных тетраэдров
  • 3 Общие свойства
    • 3.1 Объем
      • 3.1.1 Формула типа Герона для объема тетраэдра
      • 3.1.2 Разделитель объема
      • 3.1.3 Неевклидов объем
    • 3.2 Расстояние между краями
    • 3.3 Свойства аналогично треугольнику
    • 3.4 Геометрические соотношения
    • 3.5 Закон синусов для тетраэдров и пространства всех форм тетраэдров
    • 3.6 Закон синусов косинусы тетраэдров
    • 3.7 Внутренняя точка
    • 3.8 Inradius
    • 3.9 Circumradius
    • 3.10 Circumcenter
    • 3.11 Centroid
    • 3.12 Faces
  • 4 Целочисленные тетраэдры
  • 5 Родственные многогранники и соединения
  • 6 Приложения
    • 6.1 Численный анализ
    • 6.2 Химия
    • 6.3 Электричество и электроника
    • 6.4 Игры
    • 6.5 Цветовое пространство
    • 6.6 Современное искусство
    • 6.7 Популярная культура
    • 6.8 Геология
    • 6.9 Структурная инженерия
    • 6.10 Авиация
  • 7 Тетраэдрический граф
  • 8 См. Также
  • 9 Ссылки
  • 10 Внешние ссылки

Правильный тетраэдр

A Правильный тетраэдр является тетраэдром в все четыре грани которого являются равносторонними треугольниками. Это одно из пяти правильных Платоновых тел, известных с древних времен.

В правильном тетраэдре все грани имеют одинаковый размер и форму (конгруэнтны), и все ребра имеют одинаковую длину.

Пять тетраэдров уложены на плоскости, причем самые высокие трехмерные точки отмечены цифрами 1, 2, 3, 4 и 5. Затем эти точки соединяются друг с другом и тонкий объем пустого пространства Остается, где пять углов ребер не полностью пересекаются.

Обычные тетраэдры сами по себе не тесселяция (заполнение пространства), но если они чередуются с правильными октаэдрами в При соотношении двух тетраэдров к одному октаэдру они образуют чередующиеся кубические соты , которые представляют собой мозаику. Некоторые тетраэдры, которые не являются правильными, включая ортосхему Шлефли и тетраэдр Хилла, могут быть мозаичными.

Правильный тетраэдр самодвойственен, что означает, что его двойственный является другим правильным тетраэдром. Составная фигура , содержащая два таких двойных тетраэдра, образует звездчатый октаэдр или октангулу стелла.

Координаты правильного тетраэдра

Следующие декартовы координаты определяют четыре вершины тетраэдра с длиной ребра 2 с центром в начале координат и двумя ребрами уровня:

(± 1, 0, — 1 2) и (0, ± 1, 1 2) { displaystyle left ( pm 1,0, — { frac {1} { sqrt {2}}} right) quad { mbox {and}} quad left (0, pm 1, { frac {1} { sqrt {2}}} right)}{ displaystyle  left ( pm 1, 0, - { frac {1} { sqrt {2}}}  right)  quad { mbox {and}}  quad  left (0,  pm 1, { frac {1} { sqrt {2}}}  right)}

Выражается симметрично как 4 точки на единичной сфере, центр тяжести в начале координат, с уровнем нижней грани, вершины:

v 1 = (8 9, 0, — 1 3) { displaystyle v_ {1} = left ({ sqrt { frac {8} {9}}}, 0, — { frac {1} {3}} right)}{ displaystyle v_ {1} =  left ({ sqrt { frac {8} {9}}}, 0, - { frac {1} {3}}  right)}

v 2 = (- 2 9, 2 3, — 1 3) { displaystyle v_ {2 } = left (- { sqrt { frac {2} {9}}}, { sqrt { frac {2} {3}}}, — { frac {1} {3}} right) }{ displaystyle v_ {2 } =  left (- { sqrt { frac {2} {9}}}, { sqrt { frac {2} {3}}}, - { frac {1} {3}}  right) }

v 3 = (- 2 9, — 2 3, — 1 3) { displaystyle v_ {3} = left (- { sqrt { frac {2} {9}}}, — { sqrt { frac {2} {3}}}, — { frac {1} {3}} right)}{ displaystyle v_ {3} =  left (- { sqrt { frac {2} {9}}}, - { sqrt { frac {2} {3}}}, - { frac {1} {3}}  right)}

v 4 = (0, 0, 1) { displaystyle v_ {4} = ( 0,0,1)}{ displaystyle v_ {4} = (0,0,1)}

с длиной кромки 8 3 { displaysty le { sqrt { frac {8} {3}}}}{ displaystyle { sqrt { frac {8} {3}}}} .

Еще один набор координат основан на альтернативном кубе или демикубе с длиной ребра 2. Эта форма имеет диаграмму Кокстера Узел CDel h.png CDel 4.png CDel node.png CDel 3.png CDel node.png и символ Шлефли h {4,3}. Тетраэдр в этом случае имеет длину ребра 2√2. Инвертирование этих координат генерирует двойственный тетраэдр, а пара вместе образует звездчатый октаэдр, вершины которого совпадают с вершинами исходного куба.

Тетраэдр: (1,1,1), (1, −1, −1), (−1,1, −1), (−1, −1,1)
Двойной тетраэдр : (−1, −1, −1), (−1,1,1), (1, −1,1), (1,1, −1)

Правильный тетраэдр ABCD и его описанная сфера

Углы и расстояния

Для правильного тетраэдра с длиной ребра a:

Площадь грани A 0 = 3 4 a 2 { displaystyle A_ {0} = { frac { sqrt {3 }} {4}} a ^ {2} ,}{ displaystyle A_ {0} = { frac { sqrt {3}} {4}} a ^ {2} ,}
Площадь поверхности A = 4 A 0 = 3 a 2 { displaystyle A = 4 , A_ {0} = { sqrt {3} } a ^ {2} ,}A = 4 , A_ {0} = { sqrt {3}} a ^ {2} ,
Высота пирамиды h = 6 3 a = 2 3 a { displaystyle h = { frac { sqrt {6}} {3}} a = { sqrt { frac {2} {3}}} , a ,}{ displaystyle h = { frac { sqrt {6}} { 3}} a = { sqrt { frac {2} {3}}} , a ,}
Расстояние от центра тяжести до вершины 3 4 h = 6 4 a = 3 8 a { displaystyle { frac {3} {4 }} , h = { frac { sqrt {6}} {4}} , a = { sqrt { frac {3} {8}}} , a ,}{ displaystyle { frac {3} {4}} , h = { frac { sqrt {6}} {4}} , a = { sqrt {  frac {3} {8}}} , a ,}
От края до противоположного расстояние до края l = 1 2 a { displaystyle l = { frac {1} { sqrt {2}}} , a ,}{ displaystyle l = { frac {1} { sqrt {2}}} , a ,}
Объем V = 1 3 A 0 h = 2 12 a 3 = a 3 6 2 { displaystyle V = { frac {1} {3}} A_ {0} h = { frac { sqrt {2}} {12}} a ^ {3} = { frac {a ^ {3}} {6 { sqrt {2}}}} ,}{ displaystyle V = { frac {1} {3}} A_ {0} h = { frac { sqrt {2}} {12}} a ^ {3} = { frac {a ^ {3}} {6 { sqrt {2}}}} ,}
угол грань-вершина-кромка дуга соз ⁡ (1 3) знак равно arctan ⁡ (2) { displaystyle arccos left ({ frac {1} { sqrt {3}}} right) = arctan left ({ sqrt {2}} right) ,}{ displaystyle  arccos  left ({ frac {1} { sqrt {3}}}  right) =  arctan  left ({ sqrt {2}}  right) ,} . (прибл. 54,7356 °)
угол грань-кромка-грань, т. Е. «Двугранный угол» arccos ⁡ (1 3) = arctan ⁡ (2 2) { displaystyle arccos left ({ frac { 1} {3}} right) = arctan left (2 { sqrt {2}} right) ,}{ displaystyle  arccos  left ({ frac {1 } {3}}  right) =  arctan  left (2 { sqrt {2}}  right) ,} . (приблизительно 70,5288 °)
Угол вершины-центра-вершины, угол между прямыми от центра тетраэдра до любых двух вершин. Это также угол между границами плато в вершине. В химии это называется тетраэдрическим валентным углом. Этот угол (в радианах) также является длиной дуги геодезического сегмента на единичной сфере, полученной в результате центрального проецирования одного края тетраэдра на сферу. arccos ⁡ (- 1 3) = 2 arctan ⁡ (2) { displaystyle arccos left (- { frac {1} {3}} right) = 2 arctan left ({ sqrt { 2}} right) ,}{ displaystyle  arccos  left (- { frac {1} {3}}  right) = 2  arctan  left ({ sqrt {2}}  right) ,} . (приблизительно 109,4712 °)
Телесный угол в вершине, образуемой гранью arccos ⁡ (23 27) { displaystyle arccos left ( { frac {23} {27}} right)}{ displaystyle  arccos  left ({ frac {23} {27} }  right)} . (примерно 0,55129 стерадиан ). (примерно 1809,8 квадратных градусов )
Радиус описанной сферы R = 6 4 a = 3 8 a { displaystyle R = { frac { sqrt {6}} {4}} a = { sqrt { frac {3} {8}}} , a ,}{ displaystyle R = { frac { sqrt {6}} {4}} a = { sqrt {  frac {3} {8}}} , a ,}
Радиус Insphere, касательный к граням r = 1 3 R = a 24 { displaystyle r = { frac {1} {3}} R = { frac {a} { sqrt {24}}} ,}{ displaystyle r = { frac {1} {3}} R = { frac {a} { sqrt {24}}} ,}
Радиус средней сферы, касающийся ребер r M = r R = a 8 { displaystyle r _ { mathrm {M}} = { sqrt {rR}} = { frac {a} { sqrt {8}}} ,}{ displaystyle r _ { mathrm {M}} = { sqrt {rR}} = { frac {a} { sqrt {8}}} ,}
Радиус экзосферы r E = 6 { displaystyle r _ { mathrm {E}} = { frac {a} { sqrt {6}}} ,}{ displaystyle r _ { mathrm {E}} = { frac {a} { sqrt {6}}} ,}
Расстояние до центра экзосферы от противоположной вершины d VE = 6 2 a = 3 2 a { displaysty le d _ { mathrm {VE}} = { frac { sqrt {6}} {2}} a = { sqrt { frac {3} {2}}} a ,}{ displaystyle d _ { mathrm {VE}} = { frac { sqrt {6}} {2}} a = { sqrt { frac {3} {2}}} a ,}

В отношении на базовой плоскости наклон грани (2√2) в два раза больше, чем у кромки (√2), что соответствует тому факту, что расстояние по горизонтали от основания до вершины по краю вдвое больше, чем по медиане грани. Другими словами, если C является центроидом основания, расстояние от C до вершины основания в два раза больше, чем от C до середины края основания. Это следует из того факта, что медианы треугольника пересекаются в его центроиде, и эта точка делит каждый из них на два отрезка, один из которых в два раза длиннее другого (см. доказательство ).

Для правильного тетраэдра с длиной стороны a, радиусом R описывающей его сферы и расстояниями d i от произвольной точки в 3-пространстве до его четырех вершин мы имеем

д 1 4 + д 2 4 + д 3 4 + д 4 4 4 + 16 р 4 9 = (д 1 2 + д 2 2 + д 3 2 + д 4 2 4 + 2 р 2 3) 2; 4 (а 4 + d 1 4 + d 2 4 + d 3 4 + d 4 4) = (а 2 + d 1 2 + d 2 2 + d 3 2 + d 4 2) 2. { displaystyle { begin {align} { frac {d_ {1} ^ {4} + d_ {2} ^ {4} + d_ {3} ^ {4} + d_ {4} ^ {4}} { 4}} + { frac {16R ^ {4}} {9}} = left ({ frac {d_ {1} ^ {2} + d_ {2} ^ {2} + d_ {3} ^ {2} + d_ {4} ^ {2}} {4}} + { frac {2R ^ {2}} {3}} right) ^ {2}; \ 4 left (a ^ {4 } + d_ {1} ^ {4} + d_ {2} ^ {4} + d_ {3} ^ {4} + d_ {4} ^ {4} right) = left (a ^ {2} + d_ {1} ^ {2} + d_ {2} ^ {2} + d_ {3} ^ {2} + d_ {4} ^ {2} right) ^ {2}. end {align}} }{ displaystyle { begin {align} { frac {d_ {1} ^ {4} + d_ {2} ^ {4} + d_ {3} ^ {4} + d_ {4} ^ {4}} {4}} + { frac {16R ^ {4}} {9}} =  left ( { frac {d_ {1} ^ {2} + d_ {2} ^ {2} + d_ {3} ^ {2} + d_ {4} ^ {2}} {4}} + { frac {2R) ^ {2}} {3}}  right) ^ {2}; \ 4  left (a ^ {4} + d_ {1} ^ {4} + d_ {2} ^ {4} + d_ {3 } ^ {4} + d_ {4} ^ {4}  right) =  left (a ^ {2} + d_ {1} ^ {2} + d_ {2} ^ {2} + d_ {3} ^ {2} + d_ {4} ^ {2}  right) ^ {2}.  End {align}}}

Изометрии правильного тетраэдра

Собственные вращения (поворот третьего порядка на вершине и грани и второй порядок на двух ребрах) и плоскость отражения (через две грани и одно ребро) в группе симметрии правильного тетраэдра

Вершины куба можно сгруппировать в две группы по четыре, каждая из которых образует правильный тетраэдр (см. выше, а также анимацию, показывающую одну из два тетраэдра в кубе). Симметрии правильного тетраэдра соответствуют половине симметрий куба: симметрии, которые отображают тетраэдры сами по себе, а не друг в друга.

Тетраэдр — единственное платоново твердое тело, которое не отображается на себя с помощью точечной инверсии.

Правильный тетраэдр имеет 24 изометрии, формируя группу симметрии Td, [3,3 ], (* 332), изоморфна симметрической группе, S 4. Их можно разделить на следующие категории:

  • T, [3,3], (332) изоморфна переменной группе, A 4 (тождество и 11 собственных вращений) с следующие классы сопряженности (в скобках даны перестановки вершин или, соответственно, граней и представление единичного кватерниона ):
    • identity (identity; 1)
    • поворот вокруг оси через вершину, перпендикулярную противоположной плоскости, на угол ± 120 °: 4 оси, по 2 на каждую ось, вместе 8 ((1 2 3) и т.д.; 1 ± i ± j ± k / 2)
    • поворот на угол 180 °, так что край отображается на противоположный край: 3 ((1 2) (3 4) и т.д.; i, j, k)
  • отражения в плоскости, перпендикулярной краю: 6
  • отражений в плоскости в сочетании с поворотом на 90 ° вокруг оси, перпендикулярной плоскости: 3 оси, по 2 на каждую ось, вместе 6; эквивалентно, это повороты на 90 ° в сочетании с инверсией (x отображается в — x ): вращения соответствуют поворотам куба относительно осей лицом к лицу

Ортогонально проекции правильного тетраэдра

Правильный тетраэдр имеет две специальные ортогональные проекции, одна с центром на вершине или, что эквивалентно, на грани, и одна с центром на ребре. Первый соответствует плоскости Кокстера A 2.

Ортографическая проекция

Центрированная по Грань / вершина Край
Изображение 3-симплекс t0 A2.svg 3-симплексный t0.svg
Проективная. симметрия [3] [4]

Поперечное сечение правильного тетраэдра

Центральное поперечное сечение правильного тетраэдра представляет собой квадрат.

Два скошенных перпендикуляра противоположно ребра правильного тетраэдра определяют набор параллельных плоскостей. Когда одна из этих плоскостей пересекает тетраэдр, результирующее поперечное сечение представляет собой прямоугольник . Когда пересекающаяся плоскость находится рядом с одним из краев, прямоугольник получается длинным и тонким. На полпути между двумя краями пересечение представляет собой квадрат. Соотношение сторон прямоугольника меняется на противоположное, когда вы проходите эту половину пути. Для пересечения квадрата средней точки результирующая граничная линия пересекает каждую грань тетраэдра аналогично. Если тетраэдр делится пополам на этой плоскости, обе половины становятся клиньями.

тетрагональным дифеноидом, если смотреть перпендикулярно двум зеленым краям.

Это свойство также применяется для тетрагональных дифеноидов при применении к две специальные пары кромок.

Сферическая мозаика

Тетраэдр также может быть представлен как сферическая мозаика и спроецирован на плоскость через стереографическую проекцию . Эта проекция конформна, сохраняя углы, но не площади или длины. Прямые на сфере проектируются как дуги окружности на плоскость.

Униформа ti ling 332-t2.png Tetrahedron stereographic projection.svg
Ортографическая проекция Стереографическая проекция

Спиральное наложение

Одиночное кольцо из 30 тетраэдров Спираль Бурдейка – Кокстера внутри 600-ячеек, в стереографической проекции

Правильные тетраэдры могут быть уложены лицом к лицу в хиральную апериодическую цепочку, называемую спиралью Бурдейка – Кокстера. В четырехмерном все выпуклые правильные 4-многогранники с тетраэдрическими ячейками (5-ячеечная, 16-ячеечная и 600-ячейка ) могут быть построены как мозаики 3-сферы этими цепочками, которые становятся периодическими в трехмерном пространстве граничной поверхности 4-многогранника.

Другие особые случаи

равнобедренный тетраэдр, также называемый дисфеноидом, представляет собой тетраэдр, где все четыре грани — это конгруэнтные треугольники. заполняющий пространство тетраэдр упакован с конгруэнтными копиями самого себя в пространство тайла, как тетраэдрические соты дифеноида.

В треугольном тетраэдре три угла в одной вершине равны прямые углы. Если все три пары противоположных ребер тетраэдра перпендикулярны, то он называется ортоцентрическим тетраэдром. Когда перпендикулярна только одна пара противоположных ребер, это называется полуортоцентрическим тетраэдром . изодинамический тетраэдр — это тетраэдр, в котором чевианы, которые соединяют вершины с центрами противоположных граней, параллельны, а изогонический тетраэдр имеет параллельные чевианы, которые соединяют вершины с точками контакта противоположных граней с вписанной сферой тетраэдра.

Изометрии неправильных тетраэдров

Изометрии неправильных (немаркированных) тетраэдров зависят от геометрии тетраэдра, возможны 7 случаев. В каждом случае формируется 3-мерная точечная группа. Две другие изометрии (C 3, [3]) и (S 4, [2,4]) могут существовать, если включена маркировка граней или кромок. Для каждого типа ниже включены четырехгранные диаграммы с краями, окрашенными в соответствии с изометрической эквивалентностью, и серым цветом для уникальных краев.

Название тетраэдра Край. эквивалентность. диаграмма Описание
Симметрия
Шён. Кокс. Орб. Порядок.
Правильный тетраэдр Правильная диаграмма тетраэдра.png Четыре равносторонних треугольника Он образует группу симметрии T d, изоморфную симметрической группе, S 4. Правильный тетраэдр имеет диаграмму Кокстера Узел CDel 1.png CDel 3.png CDel node.png CDel 3.png CDel node.png и символ Шлефли {3,3}.
Td. T [3,3 ]. [3,3 impression * 332. 332 24. 12
Треугольная пирамида Равнобедренная диаграмма тригональной пирамиды.png Основание равностороннего треугольника и три равные стороны равнобедренного треугольника Это дает 6 изометрий, соответствующих 6 изометриям основания. Как перестановки вершин, эти 6 изометрий являются тождеством 1, (123), (132), (12), (13) и (23), образуя группу симметрии C 3v, изоморфную симметричная группа, S 3. Треугольная пирамида имеет символ Шлефли {3} ∨ ().
C3v. C3 [3 ]. [3pting * 33. 33 6. 3
Зеркальный клиновидный сустав Sphenoid diagram.png Два равных разностороннего треугольника с общим краем основания Имеет две пары равных ребер (1,3), (1,4) и (2,3), (2,4) и в противном случае нет равных ребер. Единственными двумя изометриями являются 1 и отражение (34), дающее группу C s, также изоморфную циклической группе, Z2.
Cs. =C1h. =C1v [] * 2
Неправильный тетраэдр. (Нет симметрии) Scalene tetrahedron diagram.png Четыре неравных треугольника

Его единственная изометрия — это тождество, а группа симметрии — тривиальная группа. Неправильный тетраэдр имеет символ Шлефли () ∨ () ∨ () ∨ ().

C1 [] 1 1
Дисфеноиды (Четыре равных треугольника)
Тетрагональный дисфеноид Тетрагональный дисфеноид diagram.png Четыре равных равнобедренныхтреугольников

Он имеет 8 изометрий. Если ребра (1,2) и (3,4) имеют длину, отличную от длины остальных 4, то 8 изометрий являются тождественными 1, отражениями (12) и (34) и поворотами на 180 ° (12) (34), (13) (24), (14) (23) и неправильные повороты на 90 ° (1234) и (1432), образующие группу симметрии D 2d. Тетрагональный дисфеноид имеет диаграмму Кокстера Узел CDel h.png CDel 2x.png Узел CDel h.png CDel 4.png CDel node.png и символ Шлефли s {2,4}.

D2d. S4 [2,4 ]. [2,4 ] 2 * 2. 2× 8. 4
Ромбический дисфеноид Ромбическая диаграмма дисфеноида.png Четыре равных скалентреугольника

It имеет 4 изометрии. Изометрии равны 1 и повороты на 180 ° (12) (34), (13) (24), (14) (23). Это четырехгруппа Клейна V4или Z2, представленная как точечная группа D 2. Ромбический дисфеноид имеет диаграмму Кокстера Узел CDel h.png CDel 2x.png Узел CDel h.png CDel 2x.png Узел CDel h.png и символ Шлефли sr {2,2}.

D2 [2,2 ] 222 4
Обобщенные дисфеноиды (2 пары равных треугольников)
Дигональный дисфеноид Дигональный дисфеноид diagram2.png . Дигональная диаграмма дисфеноида.png Две пары равных равнобедренных треугольников Это дает две противоположные кромки (1,2) и (3,4), которые перпендикулярны, но разной длины, а затем 4 изометрии равны 1, отражениям (12) и (34) и повороту на 180 ° (12) (34).. Группа симметрии — это C 2v, изоморфная четырехгруппе Клейна V4. Дигональный дисфеноид имеет символ Шлефли {} ∨ {}.
C2v. C2 [2 ]. [2 ] * 22. 22 4. 2
Филлический дисфеноид Половинчатый тетраэдр diagram.png . Полуоборотный тетраэдр diagram2.png Две пары равных разносторонних или равнобедренных треугольников

Он имеет две пары равных ребер (1,3), (2,4) и (1,4), (2,3), но в остальном нет равных ребер. Единственными двумя изометриями являются 1 и вращение (12) (34), что дает группу C 2, изоморфную циклической группе, Z2.

C2 [2] 22 2

Общие свойства

Объем

Объем тетраэдра определяется формулой объема пирамиды:

V = 1 3 A 0 h { displaystyle V = { frac {1} {3}} A_ {0 } , h ,}{ displaystyle V = { frac {1} {3}} A_ {0} , h ,}

где A 0 — это площадь основания, а h — высота от основания до вершины. Это применимо для каждого из четырех вариантов основания, поэтому расстояния от вершин до противоположных граней обратно пропорциональны площадям этих граней.

Для тетраэдра с вершинами a = (a 1, a 2, a 3), b = (b 1, b 2, b 3), c = (c 1, c 2, c 3) и d = (d 1, d 2, d 3), объем равен 1/6 | det (a− d, b− d, c− d) |, или любая другая комбинация пар вершин, образующих односвязный граф . Это можно переписать, используя скалярное произведение и кросс-произведение, что дает

V = | (a — d) ⋅ ((b — d) × (c — d)) | 6. { Displaystyle В = { гидроразрыва {| ( mathbf {a} — mathbf {d}) cdot (( mathbf {b} — mathbf {d}) раз ( mathbf {c} — mathbf {d})) |} {6}}.}V = { frac {| ( mathbf {a} -  mathbf {d })  cdot (( mathbf {b} -  mathbf {d})  times ( mathbf {c} -  mathbf {d})) |} {6}}.

Если начало системы координат выбрано таким, чтобы оно совпадало с вершиной d, то d = 0, поэтому

V = | a ⋅ (b × c) | 6, { displaystyle V = { frac {| mathbf {a} cdot ( mathbf {b} times mathbf {c}) |} {6}},}V = { frac {|  mathbf {a}  cdot ( mathbf {b }  times  mathbf {c}) |} {6}},

где a, b, и c представляют три ребра, которые встречаются в одной вершине, а a · (b× c) представляет собой тройное скалярное произведение. Сравнивая эту формулу с формулой, использованной для вычисления объема параллелепипеда , мы заключаем, что объем тетраэдра равен 1/6 объема любого параллелепипеда, который имеет три сходящихся с ним ребра.

Абсолютное значение скалярного тройного произведения можно представить в виде следующих абсолютных значений определителей:

6 ⋅ V = ‖ abc ‖ { displaystyle 6 cdot V = { begin {Vmatrix} mathbf {a} mathbf {b} mathbf {c} end {Vmatrix}}}6  cdot V = { begin {Vmatrix}  mathbf {a}  mathbf {b}  mathbf {c}  end {Vmatrix}} или 6 ⋅ V = ‖ abc ‖ { displaystyle 6 cdot V = { begin {Vmatrix} mathbf {a} \ mathbf {b} \ mathbf {c} end {Vmatrix}}}6  cdot V = { begin {Vmatrix}  mathbf {a} \ mathbf { b} \ mathbf {c}  end {Vmatrix}} где a = (a 1, a 2, a 3) { displaystyle mathbf {a} = (a_ {1}, a_ {2}, a_ {3}) ,} mathbf {a} = (a_ {1}, a_ {2}, a_ {3}) , выражается как вектор строки или столбца и т. Д.

Следовательно

36 ⋅ V 2 = | a 2 a ⋅ b a ⋅ c a ⋅ b b 2 b ⋅ c a ⋅ c b ⋅ c c 2 | { Displaystyle 36 cdot V ^ {2} = { begin {vmatrix} mathbf {a ^ {2}} mathbf {a} cdot mathbf {b} mathbf {a} cdot mathbf {c} \ mathbf {a} cdot mathbf {b} mathbf {b ^ {2}} mathbf {b} cdot mathbf {c} \ mathbf {a} cdot mathbf {c} mathbf {b} cdot mathbf {c} mathbf {c ^ {2}} end {vmatrix}}}36  cdot V ^ {2} = { begin {vmatrix}  mathbf {a ^ {2}}  mathbf {a}  cdot  mathbf {b}  mathbf {a}  cdot  mathbf {c} \ mathbf {a}  cdot  mathbf {b}  mathbf {b ^ {2}}  mathbf {b}  cdot  mathbf {c} \ mathbf {a}  cdot  mathbf {c}  mathbf {b}  cdot  mathbf {c}  mathbf {c ^ {2}}  end {vmatrix}} где a ⋅ b = ab cos ⁡ γ { displaystyle mathbf {a} cdot mathbf {b} = ab cos { gamma}} mathbf {a}  cdot  mathbf {b} = ab  cos { gamma} и т. Д.

, что дает

V = abc 6 1 + 2 cos ⁡ α соз ⁡ β соз ⁡ γ — соз 2 ⁡ α — соз 2 ⁡ β — соз 2 ⁡ γ, { displaystyle V = { frac {abc} {6}} { sqrt {1 + 2 cos { alpha} cos { beta} cos { gamma} — cos ^ {2} { alpha} — cos ^ {2} { beta} — cos ^ {2} { gamma}}}, ,}V = { frac {abc} {6}} { sqrt {1 + 2  cos { alpha}  cos { beta}  cos { gamma} -  cos ^ {2} { alpha} -  cos ^ {2} { beta} -  cos ^ {2} { gamma}}}, ,

где α, β, γ — плоские углы, входящие в вершину d . Угол α — это угол между двумя ребрами, соединяющими вершину d с вершинами b и c . Угол β имеет значение для вершин a и c, тогда как γ определяется положением вершин a и b.

Учитывая расстояния между вершинами тетраэдра объем может быть вычислен с помощью определителя Кэли – Менгера :

288 ⋅ V 2 = | 0 1 1 1 1 1 0 d 12 2 d 13 2 d 14 2 1 d 12 2 0 d 23 2 d 24 2 1 d 13 2 d 23 2 0 d 34 2 1 d 14 2 d 24 2 d 34 2 0 | { displaystyle 288 cdot V ^ {2} = { begin {vmatrix} 0 1 1 1 1 \ 1 0 d_ {12} ^ {2} d_ {13} ^ {2} d_ {14} ^ {2} \ 1 d_ {12 } ^ {2} 0 d_ {23} ^ {2} d_ {24} ^ {2} \ 1 d_ {13} ^ {2} d_ {23} ^ {2} 0 d_ {34} ^ {2} \ 1 d_ {14} ^ {2} d_ {24} ^ {2} d_ {34} ^ {2} 0 end {vmatrix}}}288  cdot V ^ {2} = { begin {vmatrix} 0 1 1 1 1 \ 1 0 d_ {12} ^ {2} d_ {13} ^ {2} d_ {14} ^ {2} \ 1 d_ {12} ^ { 2} 0 d_ {23} ^ {2} d_ {24} ^ {2} \ 1 d_ {13} ^ {2} d_ {23} ^ {2} 0 d_ {34} ^ {2} \ 1 d_ {14} ^ {2} d_ {24} ^ {2} d_ {34} ^ {2} 0  end {vmatrix}}

где нижние индексы i, j ∈ {1, 2, 3, 4} представляют вершины {a, b, c, d}, а d ij — попарное расстояние между ними, то есть длина ребра, соединяющего две вершины. Отрицательное значение определителя означает, что тетраэдр не может быть построен с заданными расстояниями. Эта формула, иногда называемая формулой Тартальи, по существу создана художником Пьеро делла Франческа в 15 веке как трехмерный аналог 1 века формула Герона для площади треугольника.

Обозначим a, b, c три ребра, которые пересекаются в точке, а x, y, z — противоположные стороны. Пусть V — объем тетраэдра; тогда

V = 4 a 2 b 2 c 2 — a 2 X 2 — b 2 Y 2 — c 2 Z 2 + XYZ 12 { displaystyle V = { frac { sqrt {4a ^ {2} b ^ {2} c ^ {2} -a ^ {2} X ^ {2} -b ^ {2} Y ^ {2} -c ^ {2} Z ^ {2} + XYZ}} {12}}}{ displaystyle V = { frac { sqrt {4a ^ {2} b ^ {2} c ^ {2} -a ^ {2} X ^ {2} -b ^ {2} Y ^ {2} -c ^ {2} Z ^ {2} + XYZ}} {12}}}

где

X = b 2 + c 2 — x 2 { displaystyle X = b ^ {2} + c ^ {2} -x ^ {2}}{ displaystyle X = b ^ {2} + c ^ {2} -x ^ {2}}
Y = a 2 + c 2 — y 2 { displaystyle Y = a ^ {2} + c ^ {2} -y ^ {2}}{ displaystyle Y = a ^ {2} + c ^ {2} -y ^ {2}}
Z = a 2 + b 2 — z 2 { displaystyle Z = a ^ {2} + b ^ {2} -z ^ {2}}{ displaystyle Z = a ^ {2} + b ^ {2} -z ^ {2}}

В приведенной выше формуле используются различные выражения со следующей формулой. В приведенной выше формуле используются шесть длин ребер, а в следующей формуле используются три длины ребер и три угла.

V = abc 6 1 + 2 cos ⁡ α cos ⁡ β cos ⁡ γ — cos 2 ⁡ α — cos 2 ⁡ β — cos 2 ⁡ γ { displaystyle V = { frac {abc} {6}} { sqrt {1 + 2 cos { alpha} cos { beta} cos { gamma} — cos ^ {2} { alpha} — cos ^ {2} { beta} — cos ^ {2} { gamma}}}}{ displaystyle V = { frac {abc} {6}} { sqrt {1 + 2  cos { alpha}  cos { beta}  cos { gamma} -  cos ^ {2} { alpha} -  cos ^ {2} { beta} -  cos ^ {2} { gamma}}}}

Формула типа Герона для объема тетраэдра

Если U, V, W, u, v, w — длины ребер тетраэдра (первый три образуют треугольник; u напротив U и так далее), тогда

volume = (- a + b + c + d) (a — b + c + d) (a + b — c + d) (a + b + c — d) 192 uvw { displaystyle { text {volume}} = { frac { sqrt {, (- a + b + c + d) , (a-b + c + d) , (a + b-c + d) , (a + b + cd)}} {192 , u , v , w}}}{ text {volume }} = { frac { sqrt {, (- a + b + c + d) , (a-b + c + d) , (a + b-c + d) , (a + b + cd)}} {192 , u , v , w}}

где

a = x YZ b = y ZX c = z XY d = xyz X = (w — U + v) (U + v + w) x = (U — v + w) (v — w + U) Y = (u — V + w) ( V + w + u) y = (V — w + u) (w — u + V) Z = (v — W + u) (W + u + v) z = (W — u + v) (u — v + W). { displaystyle { begin {align} a = { sqrt {xYZ}} \ b = { sqrt {yZX}} \ c = { sqrt {zXY}} \ d = { sqrt {xyz} } \ X = (w-U + v) , (U + v + w) \ x = (U-v + w) , (v-w + U) \ Y = (u-V + w) , (V + w + u) \ y = (V-w + u) , (w-u + V) \ Z = (v-W + u) , (W + u + v) \ z = (W-u + v) , (u-v + W). end {align}}}{ begin {align} a = { sqrt {xYZ}} \ b = { sqrt {yZX}} \ c = { sqrt {zXY}} \ d = { sqrt {xyz}} \ X = (w-U + v) , (U + v + w) \ x = (U-v + w) , (v-w + U) \ Y = ( и-V + w) , (V + w + u) \ y = (V-w + u) , (w-u + V) \ Z = (v-W + u) , (W + u + v) \ z = (W-u + v) , (u-v + W).  end {align}}

Разделитель объема

Плоскость, которая разделяет два противоположных края тетраэдра в заданном соотношении также делит объем тетраэдра в таком же соотношении. Таким образом, любая плоскость, содержащая бимедиан (соединитель середин противоположных ребер) тетраэдра , делит объем тетраэдра пополам.

Неевклидов объем

Для тетраэдров в гиперболическое пространство или в трехмерной эллиптической геометрии, двугранные углы тетраэдра определяют его форму и, следовательно, его объем. В этих случаях объем определяется по формуле Мураками – Яно. Однако в евклидовом пространстве масштабирование тетраэдра изменяет его объем, но не его двугранные углы, поэтому такой формулы не может быть.

Расстояние между краями

Любые два противоположных ребра тетраэдра лежат на двух наклонных линиях, а расстояние между ребрами определяется как расстояние между двумя наклонными линиями. линий. Пусть d будет расстоянием между линиями наклона, образованными противоположными краями a и b− c, как вычислено здесь. Тогда другая формула объема задается как

V = d | (a × (b — c)) | 6. { displaystyle V = { frac {d | ( mathbf {a} times mathbf {(bc)}) |} {6}}.}V = { frac { d | ( mathbf {a}  times  mathbf {(bc)}) |} {6}}.

Свойства, аналогичные свойствам треугольника

Тетраэдр имеет много свойств, аналогичных свойствам треугольника, включая внутреннюю сферу, описанную сферу, средний тетраэдр и внешние сферы. Он имеет соответствующие центры, такие как центр окружности, центр окружности, эксцентрики, центр Шпикера и такие точки, как центроид. Однако обычно нет ортоцентра в смысле пересечения высот.

Гаспар Монж обнаружил центр, который существует в каждом тетраэдре, теперь известный как точка Монжа : точка, в которой находятся шесть срединных плоскостей. тетраэдра пересекаются. Срединная плоскость определяется как плоскость, ортогональная ребру, соединяющему любые две вершины, который также содержит центроид противоположного ребра, образованного путем соединения двух других вершин. Если высоты тетраэдра пересекаются, то точка Монжа и ортоцентр совпадают, давая класс ортоцентрического тетраэдра.

. Ортогональная линия, опущенная от точки Монжа к любой грани, пересекает эту грань в середине отрезка прямой между ортоцентр лица и основание высоты упало с противоположной вершины.

Отрезок, соединяющий вершину тетраэдра с центроидом противоположной грани, называется срединной, а отрезок, соединяющий середины двух противоположных ребер, называется бимедианой тетраэдра.. Следовательно, в тетраэдре четыре медианы и три бимедианы. Все эти семь отрезков параллельны в точке, называемой центроидом тетраэдра. Кроме того, четыре медианы делятся на центроид в соотношении 3: 1 (см. теорему Коммандино ). Центроид тетраэдра — это середина между его точкой Монжа и центром описанной окружности. Эти точки определяют линию Эйлера тетраэдра, которая аналогична прямой Эйлера треугольника.

окружность из девяти точек общего треугольника имеет аналог в описанной сфере среднего тетраэдра тетраэдра. Это сфера с двенадцатью точками и, помимо центроидов четырех граней эталонного тетраэдра, она проходит через четыре замещающие точки Эйлера, по одной трети пути от точки Монжа к каждой из четырех вершин. Наконец, он проходит через четыре базовые точки ортогональных прямых, опущенных от каждой точки Эйлера к грани, не содержащей вершину, которая породила точку Эйлера.

Центр T двенадцатиточечной сферы также лежит на прямой Эйлера. В отличие от своего треугольного аналога, этот центр находится на одной трети пути от точки Монжа M к центру описанной окружности. Кроме того, ортогональная линия, проходящая через точку T к выбранной грани, копланарна с двумя другими ортогональными линиями к той же грани. Первая — это ортогональная линия, проходящая через соответствующую точку Эйлера к выбранной грани. Вторая — это ортогональная линия, проходящая через центр тяжести выбранной грани. Эта ортогональная линия, проходящая через центр из двенадцати точек, находится на полпути между ортогональной линией точки Эйлера и центроидальной ортогональной линией. Кроме того, для любой грани центр из двенадцати точек лежит в средней точке соответствующей точки Эйлера и ортоцентре этой грани.

Радиус двенадцатиточечной сферы составляет одну треть радиуса описанной окружности контрольного тетраэдра.

Существует связь между углами, образованными гранями общего тетраэдра, определяемая как

| — 1 cos ⁡ (α 12) cos ⁡ (α 13) cos ⁡ (α 14) cos ⁡ (α 12) — 1 cos ⁡ (α 23) cos ⁡ (α 24) cos ⁡ (α 13) cos ⁡ (α 23) — 1 cos ⁡ (α 34) cos ⁡ (α 14) cos ⁡ (α 24) cos ⁡ (α 34) — 1 | Знак равно 0 { displaystyle { begin {vmatrix} -1 cos {( alpha _ {12})} cos {( alpha _ {13})} cos {( alpha _ {14}) } \ cos {( alpha _ {12})} — 1 cos {( alpha _ {23})} cos {( alpha _ {24})} \ cos {( alpha _ {13})} cos {( alpha _ {23})} — 1 cos {( alpha _ {34})} \ cos {( alpha _ {14})} cos {( alpha _ {24})} cos {( alpha _ {34})} — 1 \ end {vmatrix}} = 0 ,}{ begin {vmatrix} -1  cos {( alpha _ {12})}  cos {( alpha _ {13 })}  cos {( alpha _ {14})} \ cos {( alpha _ {12})} - 1  cos {( alpha _ {23})}  cos {(  alpha _ {24})} \ cos {( alpha _ {13})}  cos {( alpha _ {23})} - 1  cos {( alpha _ {34})} \ cos {( alpha _ {14})}  cos {( alpha _ {24})}  cos {( alpha _ {34})} - 1 \ end {vmatrix} } = 0 ,

где α ij — угол между гранями i и j.

геометрическая медиана координат положения вершины тетраэдра и его изогонический центр связаны при обстоятельствах, аналогичных тем, которые наблюдаются для треугольника. Лоренц Линделёф обнаружил, что любому данному тетраэдру соответствует точка, теперь известная как изогонический центр, O, в котором телесные углы, образуемые гранями, равны, имеют общее значение π sr, и при углы между противоположными краями равны. Телесный угол π sr составляет четверть угла, охватываемого всем пространством. Когда все телесные углы в вершинах тетраэдра меньше π sr, O лежит внутри тетраэдра, а поскольку сумма расстояний от O до вершин минимальна, O совпадает с геометрической медианой , M, вершин. В том случае, если телесный угол в одной из вершин, v, составляет ровно π sr, тогда O и M совпадают с v. Однако если у тетраэдра есть вершина v с телесным углом больше π sr, M по-прежнему соответствует к v, но O лежит вне тетраэдра.

Геометрические соотношения

Тетраэдр — это 3- симплекс. В отличие от других Платоновых тел, все вершины правильного тетраэдра равноудалены друг от друга (это единственно возможное расположение четырех равноудаленных точек в трехмерном пространстве).

Тетраэдр — это треугольная пирамида, а правильный тетраэдр — самодвойственный.

. Правильный тетраэдр может быть вложен внутрь куба пополам. таких способов, что каждая вершина является вершиной куба, а каждое ребро — диагональю одной из граней куба. Для одного такого вложения декартовы координаты для вершин равны

(+1, +1, +1);
(−1, −1, +1);
(−1, +1, −1);
(+1, −1, −1).

Это дает тетраэдр с длиной ребра 2√2 с центром в начале координат. Для другого тетраэдра (который двойственен первому) поменяйте все знаки местами. Эти две вершины тетраэдра вместе являются вершинами куба, демонстрируя, что правильный тетраэдр представляет собой 3- полукуб.

stella octangula.

Объем этого тетраэдра составляет одну треть объема куба куб. Объединение обоих тетраэдров дает правильное полиэдрическое соединение, называемое соединением двух тетраэдров или stella octangula.

Внутренняя часть stella octangula представляет собой октаэдр, и, соответственно, правильный октаэдр является результатом отсечения от правильного тетраэдра четырех правильных тетраэдров половинного линейного размера (т. е. выпрямления тетраэдра).

Приведенное выше вложение делит куб на пять тетраэдров, один из которых правильный. Фактически, пять — это минимальное количество тетраэдров, необходимое для создания куба. Чтобы убедиться в этом, начиная с базового тетраэдра с 4 вершинами, каждый добавленный тетраэдр добавляет не более 1 новой вершины, поэтому необходимо добавить еще как минимум 4, чтобы создать куб с 8 вершинами.

Включение тетраэдров внутрь правильного соединения пяти кубов дает еще два правильных соединения, содержащих пять и десять тетраэдров.

Обычные тетраэдры не могут замощить пространство сами по себе, хотя этот результат кажется достаточно вероятным, чтобы Аристотель утверждал, что это возможно. Однако два правильных тетраэдра могут быть объединены с октаэдром, давая ромбоэдр, который может занимать мозаичное пространство.

Однако известно несколько неправильных тетраэдров, копии которых могут занимать мозаичное пространство, например, тетраэдрические соты дифеноида. Полный список остается открытой проблемой.

Если ослабить требование, чтобы все тетраэдры имели одинаковую форму, можно разбить пространство, используя только тетраэдры, разными способами. Например, можно разделить октаэдр на четыре одинаковых тетраэдра и снова объединить их с двумя правильными. (В качестве примечания: эти два вида тетраэдров имеют одинаковый объем.)

Тетраэдр уникален среди однородных многогранников тем, что не имеет параллельных граней.

Закон синусов для тетраэдров и пространства всех форм тетраэдров

Tetra.png

Следствием обычного закона синусов является то, что в тетраэдр с вершинами O, A, B, C, имеем

sin ⁡ ∠ O A B ⋅ sin ⁡ ∠ O B C ⋅ sin ⁡ ∠ O C A = sin ⁡ ∠ O A C ⋅ sin ⁡ ∠ O C B ⋅ sin ⁡ ∠ O B A. { displaystyle sin angle OAB cdot sin angle OBC cdot sin angle OCA = sin angle OAC cdot sin angle OCB cdot sin angle OBA. ,} sin  angle OAB  cdot  sin  угол OBC  cdot  sin  angle OCA =  sin  angle OAC  cdot  sin  angle OCB  cdot  sin  angle OBA. ,

One может рассматривать две стороны этой идентичности как соответствующие ориентации поверхности по часовой стрелке и против часовой стрелки.

Если поставить любую из четырех вершин в роли O, мы получим четыре таких тождества, но не более трех из них независимы: если стороны трех из них «по часовой стрелке» умножаются, и произведение получается равным равняется произведению сторон «против часовой стрелки» тех же трех тождеств, а затем общие множители сокращаются с обеих сторон, результатом является четвертое тождество.

Три угла являются углами некоторого треугольника тогда и только тогда, когда их сумма равна 180 ° (π радиан). Какое условие на 12 углов необходимо и достаточно, чтобы они были 12 углами какого-нибудь тетраэдра? Ясно, что сумма углов любой стороны тетраэдра должна составлять 180 °. Так как таких треугольников четыре, существует четыре таких ограничения на суммы углов, и количество степеней свободы тем самым сокращается с 12 до 8. Четыре соотношения, задаваемые этим синусоидальным законом, дополнительно уменьшают число степеней свободы: от 8 до не 4, а 5, поскольку четвертое ограничение не является независимым от первых трех. Таким образом, пространство всех форм тетраэдров является 5-мерным.

Закон косинусов для тетраэдров

Пусть {P 1,P2, P 3, P 4 } — точки тетраэдра. Пусть Δ i — площадь грани, противоположная вершине P i, и пусть θ ij — двугранный угол между двумя гранями тетраэдра, примыкающими к ребру. P iPj.

Закон косинусов для этого тетраэдра, который связывает площади граней тетраэдра с двугранными углами вокруг вершины, задается следующим соотношением:

Δ i 2 = Δ j 2 + Δ К 2 + Δ l 2 — 2 (Δ j Δ k соз ⁡ θ il + Δ j Δ l cos ⁡ θ ik + Δ k Δ l cos ⁡ θ ij) { displaystyle Delta _ {i} ^ {2} = Delta _ {j} ^ {2} + Delta _ {k} ^ {2} + Delta _ {l} ^ {2} -2 ( Delta _ {j} Delta _ { k} cos theta _ {il} + Delta _ {j} Delta _ {l} cos theta _ {ik} + Delta _ {k} Delta _ {l} cos theta _ { ij})} Delta _ {i} ^ {2} =  Delta _ {j} ^ {2} +  Delta _ {k} ^ {2} +  Delta _ {l} ^ {2} -2 ( Delta _ {j}  Дельта _ {k}  cos  theta _ {il} +  Delta _ {j}  Delta _ {l}  cos  theta _ {ik} +  Delta _ {k}  Delta _ {l}  cos  theta _ {ij})

Внутренняя точка

Пусть P — любая внутренняя точка тетраэдра объема V, вершинами которого являются A, B, C и D, а площади противоположных граней — это F a, F b, F c и F d. Тогда

P A ⋅ F a + P B ⋅ F b + P C ⋅ F c + P D ⋅ F d ≥ 9 V. { displaystyle PA cdot F _ { mathrm {a}} + PB cdot F _ { mathrm {b}} + PC cdot F _ { mathrm {c}} + PD cdot F _ { mathrm {d}} geq 9V.}{ displaystyle PA  cdot F _ { mathrm {a}} + PB  cdot F _ { mathrm {b}} + PC  cdot F _ { mathrm {c }} + PD  cdot F _ { mathrm {d}}  geq 9V.}

Для вершин A, B, C и D, внутренней точки P и футов J, K, L и M перпендикуляров от P к граням, и предположим, что грани имеют равные площади, тогда

PA + PB + PC + PD ≥ 3 (PJ + PK + PL + PM). { displaystyle PA + PB + PC + PD geq 3 (PJ + PK + PL + PM).}PA + PB + PC + PD  geq 3 (PJ + PK + PL + PM).

Inradius

Обозначение внутреннего радиуса тетраэдра как r и inradii его треугольных граней как r i для i = 1, 2, 3, 4, мы имеем

1 r 1 2 + 1 r 2 2 + 1 r 3 2 + 1 r 4 2 ≤ 2 р 2, { displaystyle { frac {1} {r_ {1} ^ {2}}} + { frac {1} {r_ {2} ^ {2}}} + { frac {1} { r_ {3} ^ {2}}} + { frac {1} {r_ {4} ^ {2}}} leq { frac {2} {r ^ {2}}},}{ frac {1} {r_ {1} ^ {2}}} + { frac {1} {r_ {2} ^ {2}}} + { frac {1} {r_ {3} ^ {2}}} + { frac {1} {r_ {4} ^ {2}}}  leq { frac {2} {r ^ {2}}},

с равенство тогда и только тогда, когда тетраэдр правильный.

Если A 1, A 2, A 3 и A 4 обозначают площадь каждой грани, значение r определяется как

r = 3 VA 1 + A 2 + A 3 + A 4 { displaystyle r = { frac {3V} {A_ {1} + A_ {2} + A_ {3} + A_ {4}}}}{ displaystyle r = { frac {3V} {A_ {1} + A_ {2} + A_ {3} + A_ {4}}}} .

Эта формула получается из деления тетраэдра на четыре тетраэдра, точки которых являются тремя точками одной из исходных граней и центром. Поскольку четыре субтетраэдра заполняют объем, мы имеем V = 1 3 A 1 r + 1 3 A 2 r + 1 3 A 3 r + 1 3 A 4 r { displaystyle V = { frac {1} { 3}} A_ {1} r + { frac {1} {3}} A_ {2} r + { frac {1} {3}} A_ {3} r + { frac {1} {3}} A_ { 4} r}{ displaystyle V = { frac {1} {3}} A_ {1} r + { frac {1} {3}} A_ {2} r + { frac {1} {3} } A_ {3} r + { frac {1} {3}} A_ {4} r} .

Окружной радиус

Обозначим радиус описанной окружности тетраэдра как R. Пусть a, b, c — длины трех ребер, которые встречаются в вершине, а A, B, C — длина противоположных краев. Пусть V — объем тетраэдра. Тогда

R = (a A + b B + c C) (a A + b B — c C) (a A — b B + c C) (- a A + b B + c C) 24 В. { displaystyle R = { frac { sqrt {(aA + bB + cC) (aA + bB-cC) (aA-bB + cC) (- aA + bB + cC)}} {24V}}.}{ displaystyle R = { frac { sqrt {(aA + bB + cC) (aA + bB-cC) (aA-bB + cC) (- aA + bB + cC)}} {24V}}.}

Центр описанной окружности

Центр описанной окружности тетраэдра может быть найден как пересечение трех биссектрисных плоскостей. Биссектрисная плоскость определяется как плоскость с центром и ортогональна ребру тетраэдра. С помощью этого определения центр описанной окружности C тетраэдра с вершинами x 0,x1,x2,x3может быть сформулирован как произведение матрица-вектор:

C = A — 1 B, где A = ([x 1 — x 0] T [x 2 — x 0] T [x 3 — x 0] T) и B = 1 2 (x 1 2 — x 0 2 x 2 2 — x 0 2 x 3 2 — x 0 2) { displaystyle { begin {align} C = A ^ {- 1} B { text {where}} A = left ({ begin {matrix} left [x_ {1} -x_ {0} right] ^ {T} \ left [x_ {2} -x_ {0} right] ^ {T} \ left [x_ {3} -x_ {0} right] ^ {T} end {matrix}} right) { text {and}} B = { frac {1} {2}} left ({ begin {matrix} x_ {1} ^ {2} -x_ {0} ^ {2} x_ {2} ^ {2} -x_ {0} ^ {2} \ x_ {3} ^ {2} -x_ {0} ^ {2} end {matrix}} right) \ конец {align}}}{ displaystyle { begin {align} C = A ^ {- 1} B { text {where}}  A =  left ({ begin {matrix}  left [x_ {1} -x_ {0}  right] ^ {T} \ left [x_ {2} -x_ {0}  right] ^ {T} \ left [x_ {3} -x_ { 0}  right] ^ {T}  end {matrix}}  right)  { text {and}}  B = { frac {1} {2}}  left ({ begin {matrix } x_ {1} ^ {2} -x_ {0} ^ {2} \ x_ {2} ^ {2} -x_ {0} ^ {2} \ x_ {3} ^ {2} -x_ { 0} ^ {2}  end {matrix}}  right) \ end {align}}}

В отличие от центроида, центр описанной окружности не всегда может лежать внутри тетраэдра. Аналогично тупому треугольнику, у тупого тетраэдра центр описанной окружности находится вне объекта.

Центроид

Центр масс тетраэдра вычисляется как среднее арифметическое его четырех вершин, см. Центроид.

Грани

сумма площадей любых трех граней больше, чем площадь четвертой грани.

Целочисленные тетраэдры

Существуют тетраэдры, имеющие целочисленные длины ребер, площади граней и объем. Они называются тетраэдрами Герона. В одном примере один край 896, противоположный край 990 и четыре других края 1073; две грани — это равнобедренные треугольники с площадью 436800, а две другие — равнобедренные с площадью 47120, а объем равен 124185600.

Тетраэдр может иметь целочисленный объем и последовательные целые числа в качестве ребер, примером является тот, у которого есть ребра 6, 7, 8, 9, 10 и 11 и объем 48.

Родственные многогранники и соединения

Правильный тетраэдр можно рассматривать как треугольник пирамида.

Правильные пирамиды
Дигональ Треугольник Квадрат Пятиугольник Шестиугольник Шестиугольник Восьмиугольник Эннеагональ Десятиугольник…
Неправильный Правильный Равносторонний Равнобедренный
Двуугольная пирамида1.png Tetrahedron.svg Квадрат e pyramid.png Пятиугольная пирамида.png Шестиугольная пирамида.png Он ptagonal pyramid1.png Восьмиугольная пирамида1.png Enneagonal pyramid1.png Десятиугольная пирамида1.png
Сферическая двуугольная пирамида.png Сферическая тригональная пирамида.png Сферическая квадратная пирамида.png Сферическая пятиугольная пирамида.png Сферическая шестиугольная пирамида. png Сферическая семиугольная пирамида. png Сферическая восьмиугольная пирамида.png Сферическая эннеагональная пирамида.png Сферическая десятиугольная пирамида.png

Правильный тетраэдр можно рассматривать как вырожденный многогранник, равномерный двугранный антипризма, где базовые многоугольники редуцированы двуугольники.

Семейство однородных n-угольных антипризм [

  • v

]

Изображение многогранника Digonal antiprism.png Trigonal antiprism.png Квадратная антипризма.png Пятиугольная антипризма.png Гексагональная антипризма.png Antiprism 7.png Восьмиугольная антипризма. png Эннеагональная антипризма.png Десятиугольная антипризма.png Гендекагональная антипризма.png Додекагональная антипризма.png Апейрогональная антипризма
Сферическая мозаичное изображение Сферическая двуугольная антипризма.png Сферическая тригональная антипризма.png Сферическая квадратная антипризма.png Сферическая пятиугольная антипризма.png Сферическая шестиугольная антипризма.png Сферическая семиугольная антипризма.png Сферическая восьмиугольная антипризма.png Плоское мозаичное изображение Infinite antiprism.svg
Vertex con конфигурация n.3.3.3 2.3.3.3 3.3.3.3 4.3.3.3 5.3.3.3 6.3.3.3 7.3.3.3 8.3. 3.3 9.3.3.3 10.3.3.3 11.3.3.3 12.3.3.3 ∞.3.3.3

Правильный тетраэдр можно рассматривать как вырожденный многогранник, равномерный двойственный двояковыпуклый трапецоэдр, содержащий 6 вершин, в двух наборах коллинеарных ребер.

Семейство n-угольных трапеций
Изображение многогранника Digonal trapezohedron.png TrigonalTrapezohedron.svg Tetragonal trapezohedron.png Pen tagonal trapezohedron.svg Hexagonal trapezohedron.png Heptagonal trapezohedron.png Восьмиугольный трапецоэдр.png Десятиугольная трапеция.png Dodecagonal trapezohedron.png Апейрогональный трапецоэдр
Сферическое мозаичное изображение Сферическая двуугольная антипризма.png Сферический треугольный трапецоэдр.png Сферический тетрагональный trapezohedron.png Сферический пятиугольный trapezohedron.png Сферический шестиугольный trapezohedron.png Сферический семиугольник trapezohedron.png Сферическая восьмиугольная трапеция.png Сферический десятиугольный трапецииэдр.png Сферический додекагональный трапецоэдр.png Плоское мозаичное изображение Апейрогональный trapezohedron.svg
Конфигурация лица Vn.3.3.3 V2.3.3.3 V3.3.3.3 V4.3.3.3 V5.3.3.3 V6.3.3.3 V7.3.3.3 V8.3.3.3 V10.3.3.3 V12.3.3.3 V∞.3.3.3

Применен процесс усечения к тетраэдру образует серию однородных многогранников. Усечение ребер до точек дает октаэдр как выпрямленный тетраэдр. Процесс завершается двунаправленной связью, уменьшая исходные грани до точек и снова создавая самодвойственный тетраэдр.

Семейство однородных тетраэдрических многогранников
Симметрия : [3,3], (* 332) [3,3], (332)
Равномерный многогранник-33-t0.p ng Равномерный многогранник-33-t01.png Равномерный многогранник-33-t1.png Равномерный многогранник-33-t12.png U niform polyhedron-33-t2.png Однородный многогранник-33-t02.png Равномерный многогранник-33-t012.png Равномерный многогранник-33-s012.svg
Узел CDel 1.png CDel 3.png CDel node.png CDel 3.png CDel node.png Узел CDel 1.png CDel 3.png Узел CDel 1.png CDel 3.png CDel node.png CDel node.png CDel 3.png Узел CDel 1.png CDel 3.png CDel node.png CDel node.png CDel 3.png Узел CDel 1.png CDel 3.png Узел CDel 1.png CDel node.png CDel 3.png CDel node.png CDel 3.png Узел CDel 1.png Узел CDel 1.png CDel 3.png CDel node.png CDel 3.png Узел CDel 1.png Узел CDel 1.png CDel 3.png Узел CDel 1.png CDel 3.png Узел CDel 1.png Узел CDel h.png CDel 3.png Узел CDel h.png CDel 3.png Узел CDel h.png
{3,3} t {3,3} r {3,3} t {3,3} {3,3} rr {3,3} tr {3,3} sr {3,3}
Двойники к однородным многогранникам
Tetrahedron.svg Triakistetrahedron.jpg Hexahedron.svg Triakistetrahedron.jpg Tetrahedron.svg Rhombicdodecahedron.jpg Tetrakishexahedron.jpg Dodecahedron.svg
V3.3.3 V3.6.6 V3.3.3.3 V3.6.6 V3.3.3 V3.4.3.4 V4.6.6 V3.3.3.3.3

Этот многогранник топологически связан как часть последовательности правильных многогранников с символами Шлефли {3, n}, продолжение в гиперболической плоскости.

* n32 мутация симметрии регулярных мозаик: {3, n} [

  • v

]

Сферический Евклид. Компактный гипер. Парако. Некомпактный гиперболический
Trigonal dihedron.svg Униформа ti ling 332-t2.png Un iform Tiling 432-t2.png Равномерная мозаика 532-t2.png Равномерный многогранник-63-t2.png Треугольный тайлинг порядка 7.svg H2-8-3-primal.svg Тайлинг H2 23i -4.png Тайлинг H2 23j12-4.png Тайлинг H2 23j9 -4.png Плитка H2 23j6-4.png Тайлинг H2 23j3-4.png
3.3 3 3 3 3 3 3 3 3 3 3 3

Тетраэдр топологически связан с серией правильных многогранников и мозаик с фигурами вершин порядка 3 .

* n32 изменение симметрии правильных мозаик: {n, 3} [

  • v

]

Сферическое Евклидово Компактное гиперболическое. Парако. Некомпактный гиперболический
Сферический тригональный hosohedron.png Равномерное разбиение 332-t0-1-.png Равномерная мозаика 432-t0.png Равномерная мозаика 532-t0.png Равномерный многогранник-63-t0.png Heptagon tiling.svg H2-8-3-dual.svg H2-I-3-dual.svg Тайлинг H2 23j12 -1.png Мозаика H2 23j9-1.png Плитка H2 23j6-1.png Плитка H2 23j3-1.png
{2,3} {3,3} {4,3} {5,3} {6,3} {7,3} {8,3} {∞, 3} {12i, 3} {9i, 3} {6i, 3} {3i, 3}
  • Соединения тетраэдров
  • Два тетраэдра в кубе

  • Соединение пяти тетраэдров

  • Соединение десяти тетраэдров

Можно построить интересный многогранник из пяти пересекающихся тетраэдров. Это соединение пяти тетраэдров было известно сотни лет. Это регулярно встречается в мире оригами. Соединение двадцати вершин даст правильный додекаэдр. Существуют как левосторонние, так и правосторонние формы, которые являются зеркальным отображением друг друга. Наложение обеих форм дает соединение десяти тетраэдров, в котором десять тетраэдров расположены как пять пар stellae octangulae. Октангула стелла представляет собой соединение двух тетраэдров в двойном положении, и его восемь вершин определяют куб как их выпуклую оболочку.

квадратный осоэдр — это еще один многогранник с четырьмя гранями, но у него нет треугольных граней.

Приложения

Численный анализ

Неправильный объем в пространстве можно аппроксимировать нерегулярной триангулированной поверхностью и нерегулярными тетраэдрическими элементами объема.

В численном анализе сложные трехмерные формы обычно разбиваются или аппроксимируются с помощью многоугольной сетки неправильных тетраэдров в процессе создания уравнений для конечно-элементный анализ, особенно в численном решении уравнений в частных производных. Эти методы имеют широкое практическое применение в вычислительной гидродинамике, аэродинамике, электромагнитных полях, гражданском строительстве, химической инженерии., военно-морская архитектура и инженерия и смежные области.

Химия

Ион аммония тетраэдрический

Форма тетраэдра наблюдается в природе в ковалентно связанных молекулах. Все sp-гибридизированные атомы окружены атомами (или неподеленными электронными парами ) в четырех углах тетраэдра. Например, в молекуле метана (CH. 4) или ионе аммония (NH. 4) четыре атома водорода окружают центральный атом углерода или азота с тетраэдрической симметрией. По этой причине один из ведущих журналов по органической химии называется Tetrahedron. Центральный угол между любыми двумя вершинами идеального тетраэдра равен arccos (−1/3), или приблизительно 109,47 °.

Вода, H. 2O, также имеет тетраэдрическую структуру., с двумя атомами водорода и двумя неподеленными парами электронов вокруг центральных атомов кислорода. Однако его тетраэдрическая симметрия не идеальна, поскольку неподеленные пары отталкиваются сильнее, чем одинарные связи O – H.

Четвертичные фазовые диаграммы в химии представлены графически в виде тетраэдров.

Однако четвертичные фазовые диаграммы в технике связи представлены графически на двухмерной плоскости.

Электричество и электроника

Если шесть одинаковых резисторов спаяны вместе, чтобы образовать тетраэдр, то сопротивление, измеренное между любыми двумя вершинами, будет вдвое меньше. одного резистора.

Поскольку кремний является наиболее распространенным полупроводником, используемым в твердотельной электронике, а кремний имеет валентность из четырех, тетраэдрическая форма четырех химических связей в кремнии сильно влияет на то, как кристаллы кремния образуются и какие формы они принимают.

Игры

4-сторонние игральные кости

В Королевскую игру Ура, датируемую 2600 годом до нашей эры, играли с набором четырехгранных игральных костей.

Особенно в ролевой игре, это твердое тело известно как 4-сторонний кубик, один из наиболее распространенных многогранных кубиков с номером свернувшись, появляясь вокруг нижней или верхней вершины. Некоторые головоломки, подобные кубику Рубика, являются тетраэдрическими, например, Pyraminx и Pyramorphix.

Color space

Тетраэдры используются в алгоритмах преобразования цветового пространства. для случаев, когда ось яркости по диагонали сегментирует цветовое пространство (например, RGB, CMY).

Современное искусство

Австрийская художница Мартина Шеттина создала тетраэдр, используя люминесцентные лампы. Он был показан на биеннале светового искусства в Австрии 2010.

Он используется в качестве обложки альбома в окружении черного пламени на The End of All Things to Come от Mudvayne.

Популярная культура

Стэнли Кубрик изначально задумывал монолит в 2001: Космическая одиссея как тетраэдр, согласно Марвину Мински, когнитивному исследователю. ученый и эксперт по искусственному интеллекту, который консультировал Кубрика по поводу компьютера HAL 9000 и других аспектов фильма. Кубрик отказался от идеи использовать тетраэдр, поскольку посетитель, который видел кадры с ним, не узнал, что это было, и он не хотел, чтобы в фильме ничего не понимали обычные люди.

В сезоне 6, эпизоде ​​15 из Футурама, названный «Мёбиус Дик », команда «Планетного экспресса» проходит через область в космосе, известную как Бермудский тетраэдр. Многие другие корабли, проходящие через этот район, таинственным образом исчезли, в том числе и первый экипаж Planet Express.

В фильме 2013 года Oblivion большая структура на орбите над Землей имеет форму тетраэдра и называется Тет.

Геология

Тетраэдрическая гипотеза, первоначально опубликованная Уильямом Лоутианом Грином для объяснения формирования Земли, была популярна в начале 20 века..

Структурная инженерия

Тетраэдр с жесткими краями по своей природе жесткий. По этой причине его часто используют для усиления рамных конструкций, таких как космические рамки.

авиация

. На некоторых аэродромах большой каркас в форме тетраэдра с двумя закрытыми сторонами из тонкого материала устанавливается на вращающийся стержень и всегда направлен против ветра. Он достаточно большой, чтобы его можно было увидеть с воздуха, и иногда он подсвечивается. Его цель — служить ссылкой для пилотов, указывающих направление ветра.

Тетраэдрический граф

Тетраэдрический граф
3-симплексный t0.svg
Вершины 4
Ребра 6
Радиус 1
Диаметр 1
Обхват 3
Автоморфизмы 24
Хроматическое число 4
Свойства Гамильтониан, правильный, симметричный, дистанционно-регулярный, дистанционно-транзитивный, 3-вершинно-связанный, планарный граф
Таблица графов и параметров

скелет тетраэдра (содержащий вершины и ребра) образует граф с 4 вершинами и 6 ребрами. Это частный случай полного графа, K 4 и колесного графа, W 4. Это один из 5 платоновых графов, каждый из которых является скелетом своего платонового тела.

3-симплекс t0 A2.svg . 3-кратной симметрии

См. Также

  • спираль Бурдейка – Кокстера
  • Конфигурация Мёбиуса
  • Caltrop
  • Демигиперкуб и симплекс — n-мерные аналоги
  • Пентахорон — 4-мерный аналог
  • Tetra Pak
  • Тетраэдрический воздушный змей
  • Тетраэдрическое число
  • Упаковка тетраэдра
  • Треугольная дипирамида — построена путем соединения двух тетраэдров вдоль одной грани
  • Треугольный тетраэдр

Ссылки

Внешние ссылки

На Викискладе есть материалы, связанные с Тетраэдр .
  • Вайсштейн, Эрик У. «Тетраэдр». MathWorld.
  • Бесплатные бумажные модели тетраэдра и многих других многогранников
  • Удивительный, заполняющий пространство, нерегулярный тетраэдр, который также включает описание «вращающегося кольца тетраэдров», также известного как a калейдоцикл.
  • v
  • t

Фундаментальный выпуклый правильный и равномерный многогранник в измерениях 2–10

An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Треугольник Квадрат p -угольник Шестиугольник Пентагон
Тетраэдр Октаэдр • Куб Демикуб Додекаэдр • Икосаэдр
5-элементный 16 ячеек • Tesseract Demitesseract 24-элементный 120-элементный • 600-элементный
5-симплексный 5-ортоплекс • 5-куб 5-полукуб
6-симплекс 6-ортоплекс • 6-куб 6-полукуб 122 • 221
7-симплекс 7-ортоплекс • 7-куб 7-полукуб 132 • 231 • 321
8-симплекс 8-ортоплекс • 8-куб 8-полукуб 142 • 241 • 421
9-симплекс 9-ортоплекс • 9-куб 9-демикуб
10-симплекс 10-ортоплекс • 10-куб 10-полукуб
n-симплекс n-ортоплекс • n- куб n-полукуб 1k2 • 2k1 • k21 n-пятиугольный многогранник
Темы: Семейства многогранников • Правильный многогранник • Список правильных многогранников и соединений

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как составить swot анализ личности
  • Как на покров любимого найти
  • Майнкрафт как найти огромную деревню
  • Как найти катет с помощью тангенса
  • Как составить лекцию по истории

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии