Как найти конечный заряд

Электризация и электрический заряд

Определения

Электростатика — раздел физики, изучающий неподвижные заряды.

Электризация — процесс, в результате которого тело приобретает электрический заряд. Если тело начиняет притягивать к себе другие тела, то говорят, что оно наэлектризовано, или приобрело электрический заряд.

Электрический заряд — физическая величина, определяющая способность тел участвовать в электромагнитных взаимодействиях.

Электрический заряд обозначается как q. Единица измерения — Кулон (Кл).

В природе существуют два вида зарядов, которые условно назвали положительными и отрицательными. Одноименные заряды отталкиваются, а разноименные притягиваются.

Закон сохранения зарядаАлгебраическая сумма зарядов в замкнутой системе сохраняется:

qi=const.

Замкнутая система в электростатике — такая система, которая не обменивается зарядами с окружающей средой.

Экспериментально доказано, что заряды можно делить, но до определенного предела. Носитель наименьшего электрического заряда — электрон. Он заряжен отрицательно.

Заряд электрона:

qe=1,6·1019 Кл

Масса электрона:

me=9,1·1031 кг

Модуль любого заряда кратен заряду электрона:

q=Nqe

N — избыток электронов.

В процессе электризации от одного тела к другому передаются только электроны. Если у тела избыток электронов, то оно заряжено отрицательно, а если недостаток, то — положительно.

Внимание! Заряженные тела притягивают к себе нейтральные тела и тела с противоположным зарядом. Отталкивание наблюдается только между одноименно заряженными телами.

Пример №1. На двух одинаковых металлических шарах находятся положительный заряд 7 нКл и отрицательный заряд 1 нКл. Каким станет заряд на каждом шаре при соприкосновении шаров?

После того, как шары соприкоснутся, заряд на них выровняется. Так как большим зарядом обладает положительно заряженный шар, то оба шара в итоге будут заряжены положительно:

(7 – 1)/2 нКл = 3 нКл

Каждый шар будет иметь положительный заряд, равный 3 нКл.

Закон Кулона

Закон Кулона — основной закон электростатики, который был открыт экспериментально в 1785 году.

Закон Кулона

Два неподвижных точечных заряда в вакууме взаимодействуют друг с другом с силой, прямо пропорциональной квадрату расстояния между ними:

FK=k|q1||q2|r2

FK — сила, с которой взаимодействуют два точечных заряда (кулоновская сила, или сила Кулона). |q1| (Кл) и |q2| (Кл) — модули зарядов, r (м) — расстояние между зарядами, k — коэффициент пропорциональности, который численно равен силе взаимодействия между двумя точечными зарядами по 1 Кл, находящимися на расстоянии 1 м друг от друга:

k=14πε0=9·109 Н·м2/Кл2

ε0  электрическая постоянная равная, 8,85∙10–12 Кл2/(Н∙м2).
Закон Кулона в среде

FK=k|q1||q2|εr2

ε — диэлектрическая проницаемость. Это табличная величина, которая показывает, во сколько раз электрическое взаимодействие в среде уменьшается по сравнению с вакуумом.

Направление силы Кулона

Направление силы Кулона зависит от знаков зарядов. На рисунке ее прикладывают к центру заряженного тела.

Подсказки к задачам

Подсказка №1

При соприкосновении одинаковых проводящих шариков, один из которых заряжен, заряд между шариками делится поровну:

q′
1
=q2=q2

Подсказка №2

При соприкосновении одинаковых проводящих шаров заряды складываются с учетом знаков и делятся поровну. Модули зарядом двух шариков:

q1=q2=|q1±q2|2

Пример №2. Два маленьких одинаковых металлических шарика заряжены положительными зарядами q и 5q и находятся на некотором расстоянии друг от друга. Шарики привели в соприкосновении и раздвинули на прежнее расстояние. Как изменилась сила взаимодействия шариков?

Изначально сила Кулона была равна:

FK1=kq5qr2=5kq2r2

Когда шарики коснулись, заряд каждого из них стал равен:

q=5q+q2=3q

После того, как шарики раздвинули на прежнее расстояние, сила взаимодействия между ними стала равна:

FK2=k3q3qr2=9kq2r2

Поделим вторую силы на первую и получим:

FK2FK1=9kq2r2·r25kq2=95=1,8

Следовательно, после всех манипуляций сила взаимодействия между двумя заряженными шариками увеличилась в 1,8 раз.

Задание EF17493

Точечный отрицательный заряд q помещён слева от неподвижных положительно заряженных шариков (см. рисунок). Куда направлена равнодействующая кулоновских сил, действующих на заряд q?

а) вверх

б) вниз

в) вправо

г) влево


Алгоритм решения

  1. Вспомнить, как взаимодействуют разноименные заряды.
  2. Установить взаимодействие заряда с каждым из шариков.
  3. Выяснить, куда будет направлена равнодействующая сила, действующая на заряд со стороны заряженных шариков.

Решение

Отрицательные и положительные заряды притягиваются. Следовательно, каждый из положительно заряженных шариков притягивает отрицательный заряд q к себе — каждая из сил (FK1 и FK2) будет направлена вправо. Поэтому их равнодействующая FK тоже будет направлена вправо.

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17545

В треугольнике АВС угол С – прямой. В вершине А находится точечный заряд Q. Он действует с силой 2,5·10–8 Н на точечный заряд q, помещённый в вершину С. Если заряд q перенести в вершину В, то заряды будут взаимодействовать с силой 9,0·10–9 Н. Найдите отношение AC/BC.

а) 0,36

б) 0,60

в) 0,75

г) 1,67


Алгоритм решения

1.Записать исходные данные.

3.Применить закон Кулона для данного случая.

4.Выполнить решение в общем виде.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Сила, с которой заряд Q действует на точечный заряд q, помещенный в вершину С: FKC = 2,5∙10–8 Н.

 Сила, с которой заряд Q действует на точечный заряд q, помещенный в вершину В: FKB = 9∙10–9 Н.

Запишем закон Кулона:

FK=k|q1||q2|r2

Применим закон Кулона для 1 и 2 случая:

FKC=k|q||Q|AC2

FKB=k|q||Q|AB2

По условию задачи нужно найти соотношение сторон треугольника АС к ВC. Для этого выразим известные стороны треугольника из формул выше:

AC=k|q||Q|FKC

AB=k|q||Q|FKB

Сторону ВС можно выразить с помощью теоремы Пифагора (АВС — прямоугольный треугольник, так как угол С является прямым):

BC=AB2AC2=k|q||Q|FKBk|q||Q|FKC=k|q||Q|(FKCFKB)FKBFKC

Отсюда:

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17737

На рисунке изображены два одинаковых электрометра, шары которых имеют заряды противоположных знаков. Если их шары соединить проволокой, то показания обоих электрометров

Ответ:

а) не изменятся

б) станут равными 1

в) станут равными 2

г) станут равными 0


Алгоритм решения

1.Записать показания электрометров.

2.Установить, что произойдет, если их соединить проволокой.

3.Вычислить показания электрометров после их соединения.

Решение

Запишем показания электрометров:

 Слева электрометр показывает отрицательный заряд q1, равный «3».

 Справа электрометр показывает положительный заряд q2, равный «1».

Когда электрометры соединятся проволокой, избыточный отрицательный заряд в виде электронов частично переместится из левого электрометра в правый электрометр так, что показания приборов выровняются. Они будут показывать:

q=|q1+q2|2=22=1

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 4.6k

Электрический заряд

Электрический заряд — это физическая величина, которая определяет способность тел создавать электромагнитное поле и принимать участие в электромагнитном взаимодействии.
Мы состоим из клеток, клетки состоят из молекул, молекулы в свою очередь состоят из атомов, а атомы — из ядра и электронов. Ядро состоит из протонов и нейтронов.

Протон — это частица, которая заряжена положительно, нейтрон — нейтрально, а электрон — отрицательно. Электрон вращается по орбитам, которые во много раз больше, чем размер электрона.

Размер электрона с размером орбиты можно сравнить так: представьте футбольный мяч и футбольное поле. Во сколько раз поле больше мяча, во столько же раз орбита больше, чем электрон.

протон нейтрон электрон

Как мы уже выяснили, электрические заряды бывают положительными и отрицательными. Одноименные заряды отталкиваются, разноименные притягиваются:

ядро

А вот измерять Электрический заряд мы будем в Кулонах [Кл]. Нет, не тех, что болтаются на цепочке. Шарль Кулон — это физик, который изучал электромагнитные явления.

физика разрядов

Что такое электризация тел и как она происходит

Вы замечали, что когда снимаете свитер или футболку летят искры и слышны потрескивания? А когда вы выходите из машины и вас бьёт током? Это статическое электричество или электризация тел.

Она возникает в результате накопления электрических зарядов разных знаков на объектах с последующей их компенсацией.

В этой статье мы кратко рассмотрим данное явление, причины его возникновения, а также способы применения как в быту, так и в промышленности.

Определение

Электризацией называется процесс разделения электрических зарядов и накопление их в определенных местах предметов и тел. Явление происходит в результате трения, соприкосновения тел или в результате электростатической индукции. Простыми словами, когда рядом расположен какой-то предмет, обладающий электрическим полем.

Напомним: в физике выделяют два рода зарядов – положительные и отрицательные, или протоны и электроны. Между ними возникает электрическое поле. Одноименные заряды притягиваются, а разноименные отталкиваются.

Явление наблюдается на источниках питания и не только. На диэлектриках накапливаются заряды, все видели это в опытах, иллюстрирующих явление с эбонитовыми и стеклянными палочками, которые демонстрировали на уроках физики в школе.

Изначально все атомы, из них состоит всё что нас окружает, электрически нейтральны. В результате явления электризации на поверхности предметов появляются положительные или отрицательные заряды. Напомним школьный опыт: если потереть эбонитовую палочку шерстяной тканью, после прекращения трения палочка останется заряженной. Тогда говорят, что тело электризовано.

Таким образом, во время трения электроны переходили с одного предмета на другой. В результате, после прекращения трения избыточные электроны остались «не на своих» телах и получился избыточный заряд, и оно перестало быть нейтральным. В результате трения палочки о шерсть или мех на её поверхности образовался отрицательный заряд.

Первая — это механическое взаимодействие. При трении расстояние между предметами сопоставимо расстоянию между молекулами в нём. Так как электроны в одном из тел слабее связаны с ядром – они переходят «вырываются» на другое тело. Другими способами электризации являются удар и соприкосновение.

Вторая группа — электризация влиянием, то есть явление наблюдается при воздействии на тело внешних сил, среди которых:

  • Воздействие светом. Открыто профессором А.Г. Столетовым в 1888 году, заключается в том, что при воздействии светом на цинк, алюминий, цезий, натрий, свинец, калий и другие металлы они теряют электроны и становятся заряженными положительно.
  • Теплом. При нагревании металла электронам сообщается энергия достаточная для того чтобы покинуть пределы металла, в результате он приобретает положительный заряд.
  • Химическая реакция. При наличии двух электродов из разных металлов происходят окислительно-восстановительные реакции, в результате один из них становится заряженным положительно, а второй – отрицательно. Подробнее мы это рассматривали в статье про анод и катод.
  • Под давлением. В пьезоэлектриках (кварц, сегнетовая соль, фосфат аммония), при механическом воздействии (сжатии или растяжении), на гранях образуются положительные и отрицательные заряды.

ЧИТАТЬ ДАЛЕЕ: Искатель (детектор) скрытой проводки своими руками
Явление электризации связано с такими физическими законами как:

  • Закон Кулона. Описывает силу, с которой взаимодействуют заряды. Таким образом можно определить, как сильно наэлектризованные тела притягиваются друг к другу.
  • Закон сохранения заряда. В нём сказано, что алгебраическая сумма зарядов в замкнутой системе неизменна. Это говорит о том, что избыточные заряды на электризованных предметах не появляются из ниоткуда, а переходят с тела на тело.

Мы уже рассматривали эти законы, вы можете ознакомиться подробнее в соответствующих статьях, на которые мы сослались.

Явление электризации имеет как положительные и отрицательные проявления. Примеры положительного применения:

  1. Использование электростатических фильтров пыли для очистки воздуха в системах вентиляции на производстве и в быту. Особенно актуально, если в процессе производства возникает много пыли.
  2. Окраска автомобилей и других металлических изделий. С помощью электростатических распылителей удаётся зарядить краску отрицательно, кузов автомобиля заземляется. В результате частицы краски притягиваются к кузовным деталям авто. Качество покраски улучшается, а расход краски уменьшается.
  3. Электростатическое копчение мяса и рыбы, позволяет значительно ускорить процесс копчения.
  4. Создание искусственного меха или декоративных ворсистых покрытий. Мелкий ворс пропускают через сетку, из-за взаимодействия с электрическим полем ворс падает ровным слоем перпендикулярно покрываемой поверхности, предварительно обработанной клеевым составом.

Также есть ряд применений для очистки, сортировки, фильтрации, а также в медицине для ускорения лечения.

Отрицательное влияние электризации может привести к фатальным последствиям:

  1. Возникновение искр при соприкосновении заряженных предметов. К таким случаям можно отнести искры в быту, которые проскакивают, когда вы снимаете свитер, когда вас бьёт током при выходе из машины. Например, самолёт в полёте электризуется и при подведении к нему трапа могут проскочить искры, а из-за этого возможно воспламенение, поэтому сначала снимают заряд с самолёта. Также известны случаи воспламенения нефтяных танкеров из-за электризации.
  2. Явление приводит к появлению больших электрических зарядов, они могут привести к выходу из строя электронных компонентов в технике, как при производстве техники, так и в процессе эксплуатации или ремонта. Это происходит в результате разрядки инструмента на печатную плату. Поэтому мастера по ремонту электроники должны работать в заземленных электрических браслетах и заземленными паяльниками и прочим. В современной элементной базе есть ряд технических решений по минимизации влияния электризации на их работу. Например, установка диодов Зенера параллельно цепи ЗАТВОР-ИСТОК полевых транзисторов.

Интересно! Известен случай, когда при покрытии лаком печатных плат после монтажа электронных компонентов, наблюдалась большая отбраковка, при том, что все изделия проходили проверку до покрытия лаком. Возник вопрос: как избавиться от проблемы электризации? Проблема решилась заземлением краскопульта.

Мы кратко объяснили явление электризации тел и рассказали, при каких условиях происходят процессы появления зарядов на предметах. Электризация важна в производстве и она нашла массу полезных применений. К сожалению, если не предусмотреть способы решения отрицательных проявлений, предотвратить ненужные искры в местах с вероятностью взрывов – оно приведет к серьезным проблемам.

Что такое анод и катод — простое объяснение

Как найти мощность тока — формулы с примерами расчетов

Чем отличается переменный ток от постоянного — объяснение простыми словами

Электризация

Чтобы разобраться с тем, как тело приобретает электрический заряд и сохраняет его, нам для начала нужно поближе познакомится с протоном и электроном. Протон — ленивый и неповоротливый — он точно не будет никуда перемещаться, если мы не переместим атом целиком.

А вот электрон — парень подвижный, и ему перебежать с одного атома на другой — ничего не стоит.

Шарль Кулон

Мы поговорим о двух типах электризации: электризация соприкосновением и электризация трением.

  • Электризация соприкосновением — это процесс, при котором мы берем два проводящих тела: отрицательно заряженное и нейтральное.

Свободные электроны переходят с незаряженного тела на нейтральное. А если мы возьмем положительно заряженное тело вместо отрицательного, то свободные электроны перейдут с нейтрального тела, чтобы уравновесить заряды.

  • Электризации трением — это когда мы берем два незаряженных тела и трем их друг о друга.

Электроны переходят от одного тела к другому и в отличии от электризации соприкосновением заряжаются противоположными по знаку и равными по модулю зарядами.

То есть при соприкосновении заряд раздают одного знака и поровну. Как если бы ты поделился с другом конфетами, которых у тебя с избытком.

При трении наоборот — заряды у тел будут разных знаков, но также в одинаковом количестве. Например, у вас есть равное количество денег в рублях и долларах, и у меня аналогичная ситуация с той же суммой. Вы решили лететь в США, а мне как раз доллары не нужны. Чтобы не ходить в банк, мы можем просто поменяться. Тогда у вас будут только доллары, а у меня — только рубли. Главное, договориться про курс :)

Давайте решим пару задач по этой теме.

Задачка один

Из какого материала может быть сделан стержень, соединяющий электрометры, изображённые на рисунке?

А. Стекло

Б. Эбонит

протон и электрон

Решение:

Он может быть сделан либо из проводника, либо из диэлектрика. Проводник пропускает через себя заряды, а диэлектрик — нет. Если мы посмотрим на показания электрометров, то увидим, что они отличаются.

Как мы помним, при соприкосновении заряды уравниваются по величине (один электрометр делится конфетами с другим). В данном случае никто ни с кем не делился, это значит, что стержень не пропускает — он диэлектрик. И стекло, и эбонит являются диэлектриками. Значит подходят оба варианта!

Задачка два

В процессе трения о шёлк стеклянная линейка приобрела положительный заряд. Как при этом изменилось количество заряженных частиц на линейке и шёлке при условии, что обмен при трении не происходил?

А) количество протонов на стеклянной линейке

Б) количество электронов на шёлке

Решение:

Вспомните, как мы охарактеризовали протон: он ленивый и неподвижный! Значит количество протонов ни на стеклянной линейке, ни на шелке измениться просто не может. Мы же не отламываем кусок линейки вместе с атомами, из которых она состоит. А вот электроны охотно перемещаются. Нам известно, что линейка приобрела положительный заряд. Получается, электроны сбежали от нее к шелку. Следовательно, количество электронов на шелке увеличилось.

Другие соображения

Предположим, что нам известен процесс, нарушающий закон сохранения заряда, в ходе которого, затратив энергию E{displaystyle E}, можно создать заряд e{displaystyle e}. Пользуясь этим процессом, создадим заряд e{displaystyle e}, затратив энергию E{displaystyle E} в клетке Фарадея с потенциалом φ{displaystyle varphi }. Извлечём затем созданный заряд и переместим его подальше от клетки. Получим энергию в виде работы электростатических сил eφ{displaystyle evarphi }. Обратим теперь процесс создания заряда и получим ранее затраченную энергию E{displaystyle E}. Повторяя такой процеcc, можно создать вечный двигатель I рода. Следовательно, допущение о возможности нарушения закона сохранения электрического заряда является ложным. Данное рассуждение показывает связь между законом сохранения электрического заряда и предположением о ненаблюдаемости абсолютной величины электрического потенциала.

Электростатическая индукция

Кажется, с электризацией разобрались. Теперь разберемся, что произойдет, если мы поднесем одно тело к другому, но не вплотную. Произойдет такое явление, как электростатическая индукция — явление перераспределения зарядов в нейтрально заряженных телах.

Давай разбираться на примере задачи:

На нити подвешен незаряженный металлический шарик. К нему снизу поднесли положительно заряженную палочку. Как изменится при этом сила натяжения нити?

Решение:

Здесь важно подчеркнуть, что незаряженный — значит заряжен нейтрально. То есть в теле равное количество положительных и отрицательных зарядов.

Электроны металлического шарика будут притягиваться к поднесенной положительной палочке. В результате шарик притягивается к палочке, следовательно, сила натяжения нити увеличивается.

Ответ: сила натяжения нити увеличивается

Поляризация диэлектрика

Давайте возьмем два, на первый взгляд, одинаковых задания из ЕГЭ.

Задание 1

Если к незаряженному металлическому шару поднести, не касаясь, точечный положительный заряд, то на стороне шара, ближайшей к заряду, появится отрицательный заряд. Как называется это явление?

Мы только что это разобрали: то электростатическая индукция.

Задание 2

Если к незаряженному диэлектрическому шару поднести, не касаясь, точечный положительный заряд, то на стороне шара, ближайшей к заряду, появится отрицательный заряд. Как называется это явление?

Кажется, что очень похоже на электростатическую индукцию, но это явление будет называться поляризация. В чем разница:

В первом случае — это проводник, а во втором — диэлектрик. Если не вдаваться в подробности, то поляризация диэлектрика — процесс, очень похожий по природе своей на электростатическую индукцию, только происходит в непроводящих материалах.

Закон сохранения электрического заряда

И последнее, о чем мы сегодня поговорим — этот закон сохранения заряда

Звучит он так:

Алгебраическая сумма зарядов электрически замкнутой системы сохраняется.

Закон сохранения заряда

q1 + q2 + q3 + … + qn = const

q1, q2, q3, …, qn — заряды электрически замкнутой системы [Кл]

Задачка раз

У нас есть два металлических шарика. Один имеет положительный заряд 2q, а другой — отрицательный -3q. Шарики соприкасаются, после чего их разъединяют. Каков конечный заряд каждого шарика?

Решение:

Для решения этой задачи нам нужно найти алгебраическую сумму зарядов.

2q – 3q = -1q.

Это суммарный заряд шариков и до, и после и во время взаимодействия.

Так как суммарный заряд сохраняется, но шарики соприкоснулись, суммарный заряд разделится между всеми шариками поровну. То есть нам нужно суммарный заряд просто поделить на количество шариков — на 2.

-1/2 = -0,5q.

И это ответ к нашей задаче.

Ответ: конечный заряд шариков будет равен -0,5 Кл.

Задачка два

Металлическая пластина, имевшая положительный заряд, по модулю равный 10е, при освещении потеряла шесть электронов. Каким стал заряд пластины?

Решение:

У положительно заряженной пластины 10e забрали 6 электронов. Заряд одного электрона равен -е. Спасемся математикой и посчитаем:

q = q₀ — 6(— e) = 10e + 6e = 16e

Красный знак «минус» образуется из-за того, что мы «отнимаем» электроны, а зеленый — из-за того, что электрон отрицательный. «Минус на минус» дает плюс, поэтому мы получаем 10e + 6e = 16е.

Ответ: 16е

Задачка три

Имеются два одинаковых проводящих шарика. Одному из них сообщили электрический заряд +8q, другому -4q. Затем шарики привели в соприкосновение и развели на прежнее расстояние. Какими стали заряды у шариков после соприкосновения?

Решение:

По закону сохранения заряда сумма зарядов в замкнутой системе остается постоянной.

+8q — 4q = + 4q

Два шарика привели в соприкосновение и развели, значит их суммарный заряд разделится между шариками поровну.

+4q/2 = +2q

Ответ: заряды шариков равны 2q.

Другие соображения[ | код]

Предположим, что нам известен процесс, нарушающий закон сохранения заряда, в ходе которого, затратив энергию E{displaystyle E}, можно создать заряд e{displaystyle e}. Пользуясь этим процессом, создадим заряд e{displaystyle e}, затратив энергию E{displaystyle E} в клетке Фарадея с потенциалом φ{displaystyle varphi }. Извлечём затем созданный заряд и переместим его подальше от клетки. Получим энергию в виде работы электростатических сил eφ{displaystyle evarphi }. Обратим теперь процесс создания заряда и получим ранее затраченную энергию E{displaystyle E}. Повторяя такой процеcc, можно создать вечный двигатель I рода. Следовательно, допущение о возможности нарушения закона сохранения электрического заряда является ложным. Данное рассуждение показывает связь между законом сохранения электрического заряда и предположением о ненаблюдаемости абсолютной величины электрического потенциала.

Электрический заряд, обозначаемый в международной системе единиц буквами q и Q, считается скалярной физической величиной, которая определяет свойство частицы или тела выступать в качестве источника электромагнитного поля и вступать в прямое взаимодействие с ним. В физике существует несколько видов электромагнитных заряженных частиц, и они называются положительными или отрицательными. Обе единицы измеряются в Кулонах, а найти их можно путём вычисления произведения одного Ампера с одной секундой.

1.1. Электрический заряд. Закон Кулона

Подобно понятию гравитационной массы тела в механике Ньютона, понятие заряда в электродинамике является первичным, основным понятием.

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Электрический заряд обычно обозначается буквами q или Q.

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

  • Существует два рода электрических зарядов, условно названных положительными и отрицательными.
  • Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.
  • Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда.

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

q1 + q2 + q3 + … +qn = const.

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы – нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду e.

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером. Атом данного вещества может потерять один или несколько электронов или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион.

Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов. Таким образом, электрический заряд тела – дискретная величина:

Физические величины, которые могут принимать только дискретный ряд значений, называются квантованными. Элементарный заряд e является квантом (наименьшей порцией) электрического заряда. Следует отметить, что в современной физике элементарных частиц предполагается существование так называемых кварков – частиц с дробным зарядом и Однако, в свободном состоянии кварки до сих пор наблюдать не удалось.

В обычных лабораторных опытах для обнаружения и измерения электрических зарядов используется электрометр – прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 1.1.1). Стержень со стрелкой изолирован от металлического корпуса. При соприкосновении заряженного тела со стержнем электрометра, электрические заряды одного знака распределяются по стержню и стрелке. Силы электрического отталкивания вызывают поворот стрелки на некоторый угол, по которому можно судить о заряде, переданном стержню электрометра.

Рисунок 1.1.1.
Перенос заряда с заряженного тела на электрометр

Электрометр является достаточно грубым прибором; он не позволяет исследовать силы взаимодействия зарядов. Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Ш. Кулоном в 1785 г. В своих опытах Кулон измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора – крутильных весов (рис. 1.1.2), отличавшихся чрезвычайно высокой чувствительностью. Так, например, коромысло весов поворачивалось на 1° под действием силы порядка 10–9 Н.

Идея измерений основывалась на блестящей догадке Кулона о том, что если заряженный шарик привести в контакт с точно таким же незаряженным, то заряд первого разделится между ними поровну. Таким образом, был указан способ изменять заряд шарика в два, три и т. д. раз. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами.

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

Рисунок 1.1.2.
Прибор Кулона

Рисунок 1.1.3.
Силы взаимодействия одноименных и разноименных зарядов

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Силы взаимодействия подчиняются третьему закону Ньютона: Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис. 1.1.3). Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл).

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.

Коэффициент k в системе СИ обычно записывают в виде:

где – электрическая постоянная.
В системе СИ элементарный заряд e равен:

e = 1,602177·10–19 Кл ≈ 1,6·10–19 Кл.

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции.

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Рис. 1.1.4 поясняет принцип суперпозиции на примере электростатического взаимодействия трех заряженных тел.

Рисунок 1.1.4.
Принцип суперпозиции электростатических сил

Модель. Взаимодействие точечных зарядов

Принцип суперпозиции является фундаментальным законом природы. Однако, его применение требует определенной осторожности, в том случае, когда речь идет о взаимодействии заряженных тел конечных размеров (например, двух проводящих заряженных шаров 1 и 2). Если к системе из двух заряженных шаров поднсти третий заряженный шар, то взаимодействие между 1 и 2 изменится из-за перераспределения зарядов.

Принцип суперпозиции утверждает, что при заданном (фиксированном) распределении зарядов на всех телах силы электростатического взаимодействия между любыми двумя телами не зависят от наличия других заряженных тел.

Формула нахождения заряда

Определить искомую величину можно из физико-математической формулы силы тока. В соответствии с ней, нужно перемножить силу тока на время его прохождения по проводнику. Количество заряда можно узнать через формулу +-ne, где n служит целым числом, а е равно значению = -1,6*10^-19 Кулон.

Обратите внимание! Формула заряда является следствием прямой зависимости напряженности электромагнитного поля от потенциала его частицы, что является основным правилом нахождения емкости заряженного конденсатора и величины энергии, накопленной в нём. Кроме того, вычислить количество заряда можно через силу Лоренца.

Положительные и отрицательные заряды

Два вида электрических зарядов

Носителями двух видов зарядов являются протоны и электроны. По историческим причинам заряд электрона считается отрицательным, имеет значение -1 и обозначается -e. Протон имеет положительный заряд +1 и обозначается +e.

Если тело содержит больше протонов, чем электронов, то оно считается положительно заряженным. Ярким примером положительного вида заряда в природе является заряд стеклянной палочки после того, как ее потрут шелковой тканью. Соответственно, если тело содержит больше электронов, чем протонов, оно полагается отрицательно заряженным. Этот вид электрического заряда наблюдается на пластиковой линейке, если ее потереть шерстью.

Отметим, что заряд протона и электрона хоть и очень маленький, он не является элементарным. Обнаружены кварки — «кирпичики», образующие элементарные частицы, которые имеют заряды ±1/3 и ±2/3 относительно заряда электрона и протона.

Как вычислять с помощью законов

Поскольку q и Q являются скалярными единицами, вычислить их с помощью законов можно через точные формулы, выведенные известными учеными-физиками. К примеру, в соответствии с законом Кулона, можно найти величину и силовое направление взаимодействия заряженных частиц между несколькими неподвижными телами.

Вам это будет интересно Особенности расчета делителя напряжения

Закон сохранения

Все элементарные частицы подразделяются на нейтральные или заряженные. Они вступают во взаимодействие друг с другом внутри электромагнитного поля. Частицы, которые имеют одноименный электрон, отталкиваются, а разноименный – притягиваются. В первом случае наблюдается избыток электронов, а во втором – их недостаток. Оба типа частиц заряжаются посредством электризации. На практике, при возникновении данного явления, заряженные частицы равны по модулю, несмотря на противоположность знаков. Когда разные частицы притягиваются, то между ними происходит электризация и сохранение электрона. При этом, сумма всех изолированных системных частиц не изменяется, то есть, q + q + q…= const.

Закон Кулона

Выше было сказано, что электрические заряженные микрочастицы бывают как положительными, так и отрицательными, а их наличие подтверждается силовым взаимодействием, которое с помощью экспериментов на весах описал в 1785 году О. Кулон, создав свой физико-математический закон.

Закон Кулона представляет собой физическую закономерность, которая описывает взаимодействие наэлектризованных частиц между не электризованными, в зависимости от промежутка между ними. В соответствии с этой формулировкой, чем больше электронов имеет частица, тем ближе она расположена к другой элементарной единице заряда, и, соответственно, сила возрастает.

Обратите внимание! При увеличении расстояния между частицами, сал их взаимодействия неизменно убывает. В математической формуле это выглядит так: F1 = F2 = K*(q1*q2/r2), где q1 и q2 считаются модулями заряженных микрочастиц, k является коэффициентом пропорциональности, который зависит от системного выбора единицы, а r — расстоянием.

История открытий

Еще в древности было замечено, что если потереть янтарь о шелковую материю, то камень начнет притягивать к себе легкие предметы. Уильям Гильберт изучал эти опыты до конца XVI века. В отчете о проделанной работе предметы, которые могут притягивать другие тела, назвал наэлектризованными.

Следующие открытия в 1729 году сделал Шарль Дюфе, наблюдая за поведением тел при их трении об разные материи. Таким образом он доказал существование двух видов зарядов: первые образуются при трении смолы о шерсть, а вторые – при трении стекла о шелк. Следуя логике, он назвал их «смоляными» и «стеклянными». Бенджамин Франклин также исследовал этот вопрос и ввел понятия положительного и отрицательного заряда. На иллюстрации – Б. Франклин ловит молнию.

Шарлем Кулоном, портрет которого изображен ниже, был открыт закон, который впоследствии был назван Законом Кулона. Он описывал взаимодействие двух точечных зарядов. Также смог измерить величину и изобрел для этого крутильные весы, о которых мы расскажем позже.

И уже в начале прошлого века Роберт Милликен, в результате проведенных опытов, доказал их дискретность. Это значит, что заряд каждого тела равен целому кратному элементарного электрического заряда, а элементарным является электрон.

Образец решения задач по теме «Электрический заряд»

Ниже приведены образцы решения простых задач по электростатике, в частности, на закон Кулона.

Задача 1. Несколько одинаковых заряженных шаров имеют показатели q1 = 6 микрокулон и q2 = -18 микрокулон. Они располагаются друг от друга на 36 сантиметров (0,36 метров). Насколько будет меняться сила их взаимодействия при соприкосновении друг с другом и разведении в сторону?

Чтобы решить эту задачу, нужно воспользоваться эл заряд формулой F=K*(q1*q2/r2), подставив вместо букв известные величины. В результате, выйдет число 7,5.

Задача 2. Маленькие одинаковые шары находятся на промежутке в 0,15 метра и притягиваются с силой 1 микроньютон. Задача состоит в определении первоначальных зарядов шаров.

Чтобы решить вторую задачу, нужно использовать ту же формулу Кулона, но немного видоизмененную: F=kq2/r2. Затем вывести из правила показатель q2. Он будет равен Fr2/k. Подставив известные значения и выполнив несложные расчеты, получится цифры в 10^-7 или 10 микрокулон.

В целом, электрический заряд представляет собой физическую скалярную величину, которая определяет способность тел являться источником электромагнитного поля и участвовать во взаимодействии с ним. Отыскать величину, которая обозначается буквами q и Q, для решения задач или для выполнения другой работы, можно через закон сохранения, Кулона и представленные выше основные физические формулы.

Источник

Способы передачи электрического заряда и электризация

Демонстрация явления элекризации

Под электризацией понимается процесс, в результате которого электрически нейтральное тело приобретает отличный от нуля заряд. Этот процесс связан с перемещением элементарных носителей заряда, чаще всего электронов. Наэлектризовать тело можно с помощью следующих способов:

  • В результате контакта. Если заряженным телом прикоснуться к другому телу, состоящему из проводящего материала, то последнее приобретет электрический заряд.
  • Трение изолятора о другой материал.
  • Электрическая индукция. Суть этого явления заключается в перераспределении электрических зарядов внутри тела за счет воздействия электрического внешнего поля.
  • Явление фотоэффекта, при котором электроны вырываются из твердого тела за счет воздействия на него электромагнитного излучения.
  • Электролиз. Физико-химический процесс, который происходит в расплавах и растворах солей, кислот и щелочей.
  • Термоэлектрический эффект. В данном случае электризация возникает за счет градиентов температуры в теле.

Литература

  1. Буров Л.И., Стрельченя В.М. Физика от А до Я: учащимся, абитуриентам, репетиторам. – Мн.: Парадокс, 2000. – 560 с.
  2. Мякишев Г.Я. Физика: Электродинамика. 10-11 кл.: учеб. Для углубленного изучения физики /Г.Я. Мякишев, А.З. Синяков, Б.А. Слободсков. – М.Ж Дрофа, 2005. – 476 с.
  3. Физика: Учеб. пособие для 10 кл. шк. и классов с углубл. изуч. физики/ О. Ф. Кабардин, В. А. Орлов, Э. Е. Эвенчик и др.; Под ред. А. А. Пинского. – 2-е изд. – М.: Просвещение, 1995. – 415 с.
  4. Элементарный учебник физики: Учебное пособие. В 3 т./ Под ред. Г.С. Ландсберга: Т. 2. Электричество и магнетизм. – М: ФИЗМАТЛИТ, 2003. – 480 с.

Электрометр

Для обнаружения и измерения электрических зарядов применяется электрометр

. Электрометр состоит из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 2). Стержень со стрелкой закреплен в плексигласовой втулке и помещен в металлический корпус цилиндрической формы, закрытый стеклянными крышками.

Принцип работы электрометра

. Прикоснемся положительно заряженной палочкой к стержню электрометра. Мы увидим, что стрелка электрометра отклоняется на некоторый угол (см. рис. 2). Поворот стрелки объясняется тем, что при соприкосновении заряженного тела со стержнем электрометра электрические заряды распределяются по стрелке и стержню. Силы отталкивания, действующие между одноименными электрическими зарядами на стержне и стрелке, вызывают поворот стрелки. Наэлектризуем эбонитовую палочку еще раз и вновь коснемся ею стержня электрометра. Опыт, показывает, что при увеличении электрического заряда на стержне угол отклонения стрелки от вертикального положения увеличивается. Следовательно, по углу отклонения стрелки электрометра можно судить о значении электрического заряда, переданного стержню электрометра.

Рис. 2

В чем выражается взаимодействие

Электрические заряды притягиваются и отталкиваются друг от друга. Это похоже на взаимодействие магнитов. Всем знакомо, что если потереть линейку или шариковую ручку о волосы – она наэлектризуется. Если в этом состоянии поднести её к бумаге, то она прилипнет к наэлектризованному пластику. При электризации происходит перераспределение зарядов, так что на одной части тела их становится больше, а на другой меньше.

По этой же причине вас иногда бьёт током шерстяной свитер или другие люди, когда вы их касаетесь.

Вывод: электрические заряды с одним знаком стремятся друг к другу, а с разными – отталкиваются. Они перетекают с одного тела на другое, когда касаются друг друга.

Как найти заряд

В задачах по физике иногда нужно найти заряд какого-либо тела на основе его взаимодействия с электрическим полем или другими телами. В большинстве случаев размерами самого тела пренебрегают, чтобы не рассчитывать распределение элементарных зарядов по его массе или поверхности.

Нахождение величины элементарного заряда

Инструкция

Например, как найти заряд пылинки массой 1 мг, которая влетела в однородное электрическое поле напряженностью 100 кВ/м, пролетела 4 см и при этом ее скорость увеличилась с 1 м/с до 3 м/с?

Сделайте краткую запись условий поставленной задачи: m=1 мг,V1=1 м/с, V2=3 м/с, S=4см, E=кВ/м, q-?

Приравняйте силу, сообщающую пылинке ускорение, к силе, действующей на пылинку со стороны однородного электрического поля. Из этого равенства алгебраически выразите заряд пылинки: получается, что произведение массы пылинки и ускорения пылинки равно произведению напряженности электрического поля и заряда; в итоге заряд пылинки находится как отношение произведения массы пылинки и ускорения к величине напряженности электрического поля.

Запишите кинематическое уравнение для определения ускорения пылинки: ускорение определяется как отношение разности квадратов конечной и начальной скорости к удвоенному значению пройденного пылинкой пути.

Подставьте это уравнение в выражение для определения заряда пылинки. В окончательном варианте заряд пылинки равен отношению произведения массы пылинки и разности квадратов конечной и начальной скоростей к удвоенному произведению пройденного пути и напряженности электрического поля.

Проверьте размерность искомой величины: для этого в конечную формулу для определения заряда вместо букв, обозначающих физические величины, подставьте единицы физических величин, выраженные в системе СИ: единица измерения заряда определится как отношение произведения кг•(м/с)2 к произведению м•В/м; сократите в этой дроби одинаковые единицы измерения; используйте определение физических величин 1 Ньютон и 1 Джоуль и замените ими определенные комбинации физических величин.

Подставив числовые значения, вычислите заряд пылинки. Получится q=10 нКл

Видео по теме

Полезный совет

Пояснения: согласно второму закону Ньютона ускорение пылинке сообщает равнодействующая всех сил, действующих на пылинку; так как о сопротивлении движению пылинки не упомянуто, на нее действует единственная сила – со стороны электрического поля.

1 Ньютон: [1Н] = [кг∙м/с2]; [Дж] =[Н∙м]; [Дж/В]=[Кл]

При подстановке числовых значений переведите значения всех физических величин в систему СИ; при переводе некоторых величин для исключения очень громоздких чисел или неудобных десятичных дробей используйте в качестве множителя число 10 в положительной или отрицательной степени.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

По определению любой электрический заряд q находится в точке пространства, где есть поле électrique E находится под действием силы électrique F = дх Е.

Итак, как рассчитать емкость электрической цепи?

Для тела, имеющего определенное количество электричества и имеющего определенный потенциал, электрическая емкость получается делением количества электричества на потенциал.

Тем более, как посчитать заряд в кулонах? Согласно «закону Кулона», изложенному сегодня в школьных учебниках, сила, действующая между двумя точечными зарядами Q и q, находящимися на расстоянии d, равна: F = k Qq/d2 где k — коэффициент, зависящий от системы единиц. Точка B расположена на расстоянии R + 2r от центра (C’).

кроме того, как рассчитать электрический заряд в кулонах? Между двумя зарядами A и B действует кулоновская сила притяжения со значением Feˊl=8,2×10−8 Н.

Données:

  1. нагрузка B: qB=-1,6×10-19 С.
  2. расстояние между А и В: d=5,3×10−11 м.
  3. Постоянная Кулона: k=9,0×109 Н.м2. С–2.

Как рассчитать электрический заряд иона в кулонах? Напомним формулу, связывающую электрический заряд иона с количеством захваченных или высвобожденных электронов:

  1. q_{ион} = n_{электрон} раз влево (-вправо), если электроны были захвачены.
  2. q_{ион} = n_{электрон} раз влево (вправо), если электроны были отданы.

Как рассчитать емкость?

Для его расчета необходимо разделить свои расходы на доходы, то есть: Коэффициент долга = все расходы/чистый фиксированный доход заемщиков и созаемщика х 100.

Как рассчитать емкость С?

C-конденсаторы1 и C2 соединены параллельно: Формула для расчета эквивалентной емкости: Cэкв. = C1 + C2. Где: С1 = 20 мкФ и C2 = 30 мкФ. Итак: Сэкв. = C1 + C2 = 20 мкФ + 30 мкФ = 50 мкФ. Эквивалентная емкость для конденсаторов, соединенных параллельно, составляет 50 мкФ.

Как рассчитать физические возможности?

Единицей емкости в системе СИ является фарад ( ). Согласно формуле Q = CV это емкость конденсатора, для которой QA = 1 Кл, когда ddp, приложенная между пластинами, равна VA — VB = 1 В.

Как рассчитать заряд атома?

Теперь, поскольку атомы обычно имеют такое же количество протонов, как и электронов, говорят, что атом имеет нулевой заряд («0»). Положительные и отрицательные заряды компенсируют друг друга. Чтобы найти полный заряд атома, прибавьте положительные заряды к отрицательным зарядам.

Как перевести в кулоны?

Кулон — это электрический заряд (количество электричества), пересекающий сечение проводника, по которому проходит ток силой один ампер в течение одной секунды (1 Кл = 1 А·с). Он равен 6,241×509.18 элементарные заряды.

Как рассчитать заряд молекулы?

Сумма формальных нагрузок всегда равна общей нагрузке (z) здания. Nv = число электронов на валентной оболочке атома, рассматриваемого в его изолированном основном состоянии. Nl = количество связей, образованных рассматриваемым атомом в исследуемой молекуле.

Как рассчитать число элементарных зарядов?

Любой электрический заряд кратен элементарному заряду. Пример: заряд одного моля электронов равен q = N.A ×qe = 6,02.1023 × (–1,6.1019) = 96 320 С.

Что является единицей измерения электрического заряда?

В системе международных единиц (СИ), введенной 3 мая 1961 г., единицей заряда является кулон. называется абсолютной диэлектрической проницаемостью вакуума.

Как выразить заряд иона?

Покажем, выставив заряд иона: здесь 2+, т. е. общий заряд этого иона равен +2е. Состав иона: Атомный номер равен 29, поэтому ядро ​​содержит 29 протонов. Массовое число равно 63, поэтому ядро ​​содержит 63-29, или 34 нейтрона.

Каков заряд иона?

Ион — это атом или группа атомов, у которых не столько положительных зарядов (протонов), сколько отрицательных зарядов (электронов). Таким образом, эти атомы имеют конечный положительный или отрицательный заряд.

Как предсказать заряд иона?

Чтобы предсказать заряд иона, просто определите количество электронов, которое элемент может потерять или приобрести, чтобы достичь полного октета. Для этого мы должны сначала узнать число валентных электронов, которые содержит нейтральный атом.

Как рассчитать кредитоспособность?

Формула для расчета кредитоспособности выглядит следующим образом: умножьте доход за вычетом ежемесячных платежей на 33 (самый высокий процент долга) и разделите результат на 100.

Как рассчитать платежеспособность?

Платежеспособность = (Доход x 33%) – расходы

Смотрите также

Est-ce que le nutritionniste est remboursé par la Sécu ?

Например, у пары с общим ежемесячным доходом в размере 10 000 евро и расходами в размере 1500 1800 евро платежеспособность будет равна XNUMX XNUMX евро.

Как рассчитать удельную теплоемкость?

Cv = Q/(ΔT м) .

Массовая теплоемкость – это тепло или энергия, необходимая для изменения единицы массы вещества постоянного объема на 1°C. Формула Cv = Q / (ΔT m) .

Какова емкость конденсатора?

Емкость конденсатора C определяется отношением его заряда Q к разности потенциалов между обкладками (V1 — V2). Запишем следующим образом: , где C в фарадах (F), Q в кулонах (C), V1 и В2 в вольтах (В).

Как рассчитать емкость CD конденсатора?

Рассчитайте эквивалентную емкость С, если принять диэлектрик, состоящий из гуттаперчи. Отсюда можно сделать вывод, что эквивалентная емкость Cэкв. сборки конденсаторов, включенных параллельно, равна сумме емкостей конденсаторов.

Какова формула конденсатора?

Рассчитайте заряд конденсатора по формуле: Q = C x V, где Q — заряд конденсатора в кулонах.

В каких единицах измеряется мощность?

Единицы измерения емкости

Основной единицей измерения вместимости в Международной системе (СИ) является литр (л).

Какова роль емкости?

Конденсатор представляет собой элементарный электронный компонент, состоящий из двух проводящих пластин (называемых «электродами») с общим влиянием и разделенных поляризуемым изолятором (или «диэлектриком»). Его основное свойство состоит в том, что он может накапливать противоположные электрические заряды на своем якоре.

Не забудьте поделиться статьей!

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти напряжение формула по закону ома
  • Магия как побыстрее найти работу
  • Как составить необычный словарь
  • Как найти процент от количества в экселе
  • Как найти proxy в сети

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии