Как найти конечную температуру по физике

Найти конечную температуру

Колличество теплоты, удельная теплота плавления

#15352
2013-04-22 03:11 GMT

Здравствуйте!

В стакан налили 0,5 л воды (температура 5 град. цельс.) Туда же кинули 7 кубиков льда по 10 г (0 град. цельс.) Найти конечную температуру. С(воды)=4,19 кДж/кг*С, L(льда)=333 кДж/кг

Дано:

m1 = 0,5 кг

t1 = 5 C

m2 = 0,07 кг

t2 = 0 C

C = 4190 Дж/кг*С

L = 333000 Дж/кг

Найти t кон.

Q1 = L*m2 + m2*C*(delta t)

Q1 = 333000*0,07 + 0,07*4190*(t — 0) = 23310+ 293,3 t

Q2 = m1*C*(delta t)

Q2 = 0,5*4190*(t — 5) = 2095 t — 10475

Q1=Q2

293,3 t — 2095 t = 10475 — 23310

t = 7,1 C — Больше изначальной. Помогите, не могу понять, где ошибка..

#15353
2013-04-22 08:28 GMT

Cамая большая твоя ошибка, что плохо учила или не понимала физику в школе.

Нужно представлять как изменится температура.

Умножать на (дельта T) не глядя. (дельта Т) всегда считать положительной величиной.

А знак учитывать при составлении уравнения баланса (если получает то +, если отдаёт то минус)

Если ни то, ни другое, ни третье не помогает, прочтите, наконец инструкцию.

#15354
2013-04-22 09:41 GMT

#15408
2013-04-25 05:02 GMT

Спасибо, iskander! Вы очень помогли Хорошая ссылка!

Привет! Найти это всё очень просто, зная просто-напросто формулы.

Чтоб найти конечную температуру или t2 в физике, надо следовать вот этой формуле: t1+дельта t. Как видишь, всё просто.

t1 — это начальная температура, а дельта t — это изменение температуры.

Чтоб найти t1, надо сделать так: из t2 вычесть дельта t.

А чтобы найти дельту t, надо Q разделить на cm.

Чтобы найти массу, зная лишь объем, надо этот самый известный объем просто умножить на плотность вещества. Плотность можно найти в таблице плотностей, она есть в учебниках, на физике она часто встречается и её разрешают пользоваться.



Самое главное, — записывай всё, что диктует тебе учитель. Это важно! Зная формулы, легко решишь то, что тебе надо. Физику понимать надо, её не заучишь как тот же русский язык.

В этой статье тема «найти тепловое равновесие» будет кратко изложена. В состоянии теплового равновесия передача тепла между двумя веществами, находящимися в контакте, отсутствует.

Из нулевого закона термодинамики мы получаем ясное представление о тепловом равновесии. Тепловое равновесие — это состояние между двумя объектами, при котором тепло не передается и объекты контактируют друг с другом. Температура для двух объектов остается одинаковой для условия теплового равновесия.

Очень интересной концепцией, связанной с температурой, является термин тепловое равновесие. Два вещества находятся в состоянии теплового равновесия, если в замкнутой системе температура объектов повышается или снижается до тех пор, пока они не достигнут состояния равновесия, несмотря на то, что между двумя веществами не происходит передачи энергии. Так же, как и когда вещества не находятся в контакте, они также находятся в состоянии теплового равновесия, если, находясь в контакте, тем не менее обмен энергией между двумя веществами не происходит.

найти тепловое равновесие

Изображение – Развитие теплового равновесия в замкнутой системе с течением времени через тепловой поток нивелирует температурные перепады;
Кредит изображения — Википедия

Примеры теплового равновесия:

Некоторые примеры теплового равновесия обсуждаются ниже.

  1. Измерение температуры тела человека термометром хороший пример теплового равновесия. При исследовании температуры с помощью термометра температура набирается термометром и через определенное время, когда температура тела и термометра становится одинаковой, теплопередача между телом и термометром прекращается, что означает, что состояние достигает равновесного состояния.
  2. Внезапно сунуть руку в кубик льда — еще один хороший пример теплового равновесия. Когда рука помещается в кубик льда, в это время температура между кубиком и рукой начинает снижаться. передавать тепло и когда температура между рукой и кубиком льда станет одинаковой, теплопередача будет остановлена, что означает, что состояние достигает состояния равновесия.
  3. Плавление кубика масла также является примером теплового равновесия. Когда кубик масла помещается в естественную в это время температуру между кубиком и атмосферой, попытайтесь достичь той же температуры, таким образом, начнется передача тепла, и когда температура между атмосферой и кубиком масла станет одинаковой, теплопередача прекратится. , означает, что состояние достигает состояния равновесия.

Как найти тепловое равновесие?

Тепловое равновесие – это состояние, при котором теплообмен двух веществ прекращается, когда их температуры достигают одной и той же точки. Тепловое равновесие определяется по этой формуле

Где,

Q = полная энергия удельной материи тела, выраженная в джоулях.

m = масса конкретного вещества тела, выраженная в граммах.

Ce = Удельная теплоемкость удельной материи тела, которая выражается в джоулях на кельвин на килограмм

Δt = температура конкретного вещества тела, выраженная в градусах Кельвина.

Если заданы значения массы вещества и удельной теплоемкости, температуры, то легко подставляя значения в …уравнение (1), мы можем определить величину теплового равновесия.

Теперь с помощью численной задачи обсуждается тепловое равновесие,

Проблема:

Чтобы 40 граммов воды нагрелись до 45 градусов по Цельсию. Теперь определите значение энергии, при котором вода остается в состоянии теплового равновесия.

Решение:-

В задаче приведены данные,

Масса воды (м) = 40 грамм

Удельная теплоемкость воды Ce = 4.17 Дж на грамм-градус Цельсия

Температура Δt = 45 градусов по Цельсию

Мы знаем, что формула теплового равновесия такова:

Q = м х Сe х Δt

Где,

Q = Полная энергия удельной материи тела

m = масса конкретного вещества тела

Ce= Удельная теплоемкость удельного вещества тела

Δt = температура конкретного вещества тела

Теперь мы помещаем значения в уравнение,

Q = 40 х 4.17 х 45

Q = 7506 Дж.

Чтобы 40 граммов воды нагрелись до 45 градусов по Цельсию. Значение энергии, при котором вода остается на тепловое равновесие состояние 7506 Дж.

Когда найти тепловое равновесие?

Когда два тела соприкасаются, тепло (энергия) передается от одного к другому, пока они не достигнут одинаковой температуры (находятся в тепловом равновесии). Когда объекты имеют одинаковую температуру, теплопередача отсутствует.

Формула для расчета теплового равновесия:

Тепло – это поток энергии от более высокой температуры к более низкой температуре. Когда эти температуры уравновешиваются, тепло перестает течь, тогда говорят, что система (или набор систем) находится в тепловом равновесии.

Формула теплового равновесия:

Q = м х Сe х Δt

Где,

Q = полная энергия удельной материи тела, выраженная в джоулях.

m = масса конкретного вещества тела, выраженная в граммах.

Ce= удельная теплоемкость удельного вещества тела, выраженная в джоулях на кельвин на килограмм.

Δt = температура конкретного вещества тела, выраженная в градусах Кельвина.

Как найти конечную температуру в тепловом равновесии?

С помощью числовых значений конечная температура в тепловом равновесии описана ниже,

Кусок железа массой 220 грамм. Температура куска железа составляет 310 градусов по Цельсию. Предположим, что кусок железа опущен на сосуд, наполненный водой. Вес воды 1.2 кг, температура 22 градуса по Цельсию.

Определить конечную температуру теплового равновесия воды.

Решение:-

Пусть конечная температура в тепловом равновесии для воды = Т градусов по Цельсию.

Теперь изменение температуры,

Δт = Токончательный — Тначальный

Изменение тепла,

Q = м х Сe х Δt

Итак, изменение теплоты куска железа равно

  ΔQжелезо = 220/1000 х 450 х (Т – 310) Дж

  ΔQжелезо = 99 (Т – 310) Дж

Итак, изменение теплоты воды равно

ΔQводы = 1.20 х 4200 х (Т — 22) Дж

ΔQводы = 5040 (Т – 22) Дж

Используя закон сохранения энергии, мы можем написать,

ΔQжелезо+ ΔQводы = 0

Помещая полученные значения,

99 (Т – 310) + 5040 (Т – 22) = 0

99 Тл – 30690 + 5040Т – 110880 = 0

5138 Т = 141570

Т = 141570/5138

Т = 27.5 градусов по Цельсию.

Кусок железа массой 220 грамм. Температура куска железа составляет 310 градусов по Цельсию. Предположим, что кусок железа опущен на сосуд, наполненный водой. Вес воды 1.2 кг, температура 22 градуса по Цельсию.

Конечная температура в тепловом равновесии для воды составляет 27.5 градусов по Цельсию.

Проблема: 1

Сколько энергии потребуется для повышения температуры 55 граммов воды на 40 градусов по Цельсию?

Решение:-

Данные данные,

Масса воды (м) = 40 грамм

Удельная теплоемкость воды Ce = 4.17 Дж на грамм-градус Цельсия

Температура ΔT = 55 градусов по Цельсию

Мы знаем, что формула теплового равновесия такова:

Q = м х Сe х ΔТ

Где,

Q = Полная энергия удельной материи тела

m = масса конкретного вещества тела

Ce = Удельная теплоемкость удельного вещества тела

Delta; t = Температура конкретного вещества тела

Q = 40 х 4.17 х 55

Q = 9174 Дж.

Для повышения температуры 9174 граммов воды на 55 градусов по Цельсию требуется энергия 40 Дж.

Проблема: 2

Рамеш, друг Ратана, увлекается коллекционированием камней. Пока Рамеш собирает камни, он всегда бросает их в контейнер. Контейнер изготовлен из металлического алюминия. Вес контейнера 15.2 грамма. Естественно, температура контейнера составляет около 36 градусов по Цельсию. Теперь Рамешу в алюминиевую тару наливают холодную воду. Температура воды будет 22 градуса по Цельсию, а вес воды 32 грамма.

Определите точную температуру, при которой температура алюминиевого сосуда и температура холодной воды будут одинаковыми.

Решение: —

Мы знаем, что формула теплового равновесия такова:

Q = м х Сe х ΔТ

Где,

Q = Полная энергия удельной материи тела

m = масса конкретного вещества тела

Ce = Удельная теплоемкость удельного вещества тела

Delta; t = (Конечная температура – ​​Начальная температура) удельного вещества тела

Для алюминия,

QA = мA * СeA * ΔtA ………….. уравнение (1)

Данные данные,

mA = 15.2 грамма

CeA  = 0.215 калории на грамм-градус Цельсия

ΔtA = (Тf — ТiA) градус Цельсия = (Tf – 36) градусов по Цельсию

Для воды,

QW = мW * СeW * ΔtW ………….. уравнение (1)

Данные данные,

mW = 32 грамм

CeW = 1 калории на грамм-градус Цельсия

ΔtW = (Тf — ТiW) градус Цельсия = (Tf – 22) градусов по Цельсию

Теперь из ………….. уравнения (1) и ………….. уравнения (2) мы можем написать,

QA = мA * СeA * ΔtA знак равно QW = (-) мW * СeW * ΔtW

Подставляя значение из уравнения (1) и уравнения (2),

15.2 х (0.215) х (Тf – 36) = (-) 32 х 1 х (Тf — 22)

(Поместите значение для CeW = 1 калории на грамм-градус Цельсия

3.268 х (Тf – 36) = -32 (Тf — 22)

3.268 Tf – 117.648 = -32 Тлf + 704

3.268 Tf + 32 тf = 704 + 117.648

Tf = 704 + 117.648/35.268

Tf = 23.2 градуса по Цельсию

Рамеш, друг Ратана, увлекается коллекционированием камней. Пока Рамеш собирает камни, он всегда бросает их в контейнер. Контейнер изготовлен из металлического алюминия. Вес контейнера 15.2 грамма. Естественно, температура контейнера составляет около 36 градусов по Цельсию. Теперь Рамешу в алюминиевую тару наливают холодную воду. Температура воды будет 22 градуса по Цельсию, а вес воды 32 грамма.

Точная температура, при которой температура алюминиевого контейнера и температура холодной воды будут одинаковыми, составляет 23.2 градуса по Цельсию.

Проблема: 3

Неустановленный металл хранится в лаборатории. Вес неуказанного металла 6 грамм. Теперь к неуказанному металлу добавлена ​​энергия 248.2 Дж. Температура неуказанного металла повышается до 116 градусов по Цельсию.

Теперь определите количество удельной теплоемкости для неуказанного металла.

Решение:-

Данные данные,

Масса неуказанного металла (м) = 6 грамм

Нужно рассчитать,

Удельная теплоемкость для неуказанного металла Ce знак равно Джоуль на грамм-градус Цельсия

Температура Delta; t = 116 градуса по Цельсию

Общая энергия неуказанного металла (Q) = 248.2 Дж.

Мы знаем, что формула теплового равновесия такова:

Q = м х Сe х ΔТ

Ce = Q/мDelta; t

Где,

Q = Полная энергия удельной материи тела

m = масса конкретного вещества тела

Ce= Удельная теплоемкость удельного вещества тела

Delta; t = Температура конкретного вещества тела

Ce = 248.2 / 6Delta; t

Ce= 248.2/6 х 116

Ce = 0.356 Дж на грамм-градус Цельсия.

Неустановленный металл хранится в лаборатории. Вес неуказанного металла 6 грамм. Теперь к неуказанному металлу добавлена ​​энергия 248.2 Дж. Температура неуказанного металла повышается до 116 градусов по Цельсию. Количество удельной теплоты для неуказанного металла составляет 0.356 Дж на грамм-градус Цельсия.

Вывод:

Две физические системы находятся в тепловом равновесии, если между ними нет чистого потока тепловой энергии, когда они соединены путем, проницаемым для тепла.

With a calorimeter, you can measure reaction enthalpies or heat capacities using the final temperature (Tf) of the contents. But what if you know the reaction enthalpy of your reaction and the heat capacities of the materials you are using and you want to predict what Tf will be instead? You can do this too — and in fact, this kind of problem is a common question on quizzes in chemistry classes.

    Reread the homework/quiz question and determine what information you can extract from the question. You will probably be given a reaction enthalpy, the calorimeter constant and the heat capacity of the mixture formed by the reaction in the calorimeter, together with the starting temperatures.

    Assume the calorimeter is perfect, i.e. that it does not lose heat to its environment.

    Remember that in a perfect calorimeter, the heat given off by the reaction is equal to the sum of the heat gained by the calorimeter and the heat gained by its contents. Moreover, both the calorimeter and its contents will reach the same final temperature — Tf. Consequently, you can use this information to write the following equation: Reaction enthalpy = (heat capacity of contents) x (mass of contents) x (Ti — Tf) + (Calorimeter constant) x (Ti — Tf) where Ti is the initial temperature and Tf is the final temperature. Notice that you’re subtracting Tfinal from Tinitial and not the other way around. That’s because in chemistry, reaction enthalpies are negative if the reaction gives off heat. If you want, you can subtract Ti from Tf instead, as long as you remember to flip the sign on your answer when you’re done.

    Solve for Tf as follows: Reaction enthalpy = (heat capacity of contents) x (mass of contents) x (Ti — Tf) + (Calorimeter constant) x (Ti — Tf)

    Factor (Ti — Tf) out of the right side to yield: Reaction enthalpy = (Ti — Tf) x ( (heat capacity of contents) x (mass of contents) + (Calorimeter constant) )

    Divide both sides by ( (heat capacity of contents) x (mass of contents) + (Calorimeter constant) ) to yield the following: Reaction enthalpy / ( (heat capacity of contents) x (mass of contents) + (Calorimeter constant) ) = Ti — Tf

    Flip the sign on both sides then add Ti to both sides to yield the following: Ti — ( Reaction enthalpy / ( (heat capacity of contents) x (mass of contents) + (Calorimeter constant) ) ) = Tf

    Plug in the numbers given you as part of the question and use them to calculate Tf. For example, if the reaction enthalpy is -200 kJ, the heat capacity of the mixture formed by the reaction is 0.00418 kJ/gram Kelvin, the total mass of the products of the reaction is 200 grams, the calorimeter constant is 2 kJ / K, and the initial temperature is 25 C, what is Tf?

    Answer: First, write out your equation: Tf = Ti — ( Reaction enthalpy / ( (heat capacity of contents) x (mass of contents) + (Calorimeter constant) ) )

    Now, plug in all your numbers and solve: Tf = 25 degrees — (-200 kJ / (0.00418 kJ/g K times 200 g + 2 kJ/K) ) Tf = 25 degrees — (-200 kJ / 2.836 kJ/K) Tf = 25 + 70.5 Tf = 95.5 degrees C

    Things You’ll Need

    • Pencil
    • Paper
    • Calculator

Тела, температура которых отличается, могут обмениваться тепловой энергией. То есть, между телами будет происходить теплообмен. Самостоятельно тепловая энергия переходит от более нагретых тел к менее нагретым.

Что такое теплообмен и при каких условиях он происходит

Тела, имеющие различные температуры, будут обмениваться тепловой энергией. Этот процесс называется теплообменом.

Теплообмен – процесс обмена тепловой энергией между телами, имеющими различные температуры.

Рассмотрим два тела, имеющие различные температуры (рис. 1).

Тело, имеющее более высокую температуру, будет остывать и отдавать тепловую энергию телу, имеющему низкую температуру. А тело с низкой температурой будет получать количество теплоты и нагреваться.

Два тела обмениваются тепловой энергией

Рис.1. Два тела во время теплообмена и после

На рисунке, горячее тело имеет розовый оттенок, а холодное изображено голубым цветом.

Когда температуры тел выравниваются, теплообмен прекращается.

Чтобы теплообмен происходил, нужно, чтобы тела имели различные температуры.

Когда температура тел выравняется, теплообмен прекратится.

Тепловое равновесие — это состояние, при котором тела имеют одинаковую температуру.

Уравнение теплового баланса и сохранение тепловой энергии

Когда тело остывает, оно отдает тепловую энергию (теплоту).  Утерянное количество теплоты Q имеет знак «минус».

А когда тело нагревается – оно получает тепловую энергию. Приобретенное количество теплоты Q имеет знак «плюс».

Эти факты отражены на рисунке 2.

Полученное во время теплообмена количество теплоты имеет знак «+», а отданное Q – знак «-»

Рис. 2. Полученное количество теплоты имеет знак «+», а отданное Q – знак «-»

Закон сохранения тепловой энергии: Количество теплоты, отданное горячим телом равно количеству теплоты, полученному холодным телом.

Примечание: Существует и другая формулировка закона сохранения энергии: Энергия не появляется сама собой и не исчезает бесследно. Она переходит из одного вида в другой.

Уравнение теплового баланса

Тот факт, что тепловая энергия сохраняется, можно записать с помощью математики в виде уравнения. Такую запись называют уравнением теплового баланса.

Запишем уравнение теплового баланса для двух тел, обменивающихся тепловой энергией:

[large boxed{ Q_{text{остывания горяч}} + Q_{text{нагревания холод}} = 0 }]

(large Q_{text{остывания горяч}} left( text{Дж} right) ) – это количество теплоты горячее тело теряет.

(large Q_{text{нагревания холод}} left( text{Дж} right) ) – это количество теплоты холодное тело получает.

В левой части уравнения складываем количество теплоты каждого из тел, участвующих в теплообмене.

Записываем ноль в правой части уравнения, когда теплообмен с окружающей средой отсутствует. То есть, теплообмен происходит только между рассматриваемыми телами.

В некоторых учебниках применяют сокращения:

[large Q_{1} + Q_{2} = 0 ]

Примечание: Складывая два числа мы получим ноль, когда эти числа будут:

  • равными по модулю и
  • имеют различные знаки (одно число — знак «плюс», а второе – знак «минус»).

Если несколько тел участвуют в процессе теплообмена

Иногда в процессе теплообмена участвуют несколько тел. Тогда, для каждого тела нужно записать формулу количества теплоты Q. А потом все количества теплоты подставить в уравнение для теплового баланса:

[large boxed{ Q_{1} + Q_{2} + Q_{3} + ldots + Q_{n} = 0 } ]

При этом:

  • Q для каждого нагреваемого тела будет обладать знаком «+»,
  • Q для каждого охлаждаемого тела — знаком «-».

Пример расчетов для теплообмена между холодным и горячим телом

К горячей воде, массой 200 грамм, имеющей температуру +80 градусов Цельсия, добавили холодную воду, в количестве 100 грамм при температуре +15 градусов Цельсия. Какую температуру будет иметь смесь после установления теплового равновесия? Считать, что окружающая среда в теплообмене не участвует.

Примечание: Здесь мы рассматриваем упрощенную задачу, для того, чтобы облегчить понимание закона сохранения энергии. Мы не учитываем в этой задаче, что вода содержится в емкости. И часть тепловой энергии будет затрачиваться на то, чтобы изменить температуру емкости.

При решении других задач обязательно учитывайте, что емкость, в которой будет содержаться вещество, имеет массу. И часть тепловой энергии будет затрачиваться на то, чтобы изменить температуру емкости.

 Решение:

В условии сказано, что окружающая среда в теплообмене не участвует. Поэтому, будем считать рассматриваемую систему замкнутой. А в замкнутых системах выполняются законы сохранения. Например, закон сохранения энергии.

Иными словами, с сосудом и окружающим воздухом теплообмен не происходит и, все тепловая энергия, отданная горячей водой, будет получена холодной водой.

1). Запишем уравнение теплового баланса, в правой части которого можно записать ноль:

[large Q_{text{остывания горяч}} + Q_{text{нагревания холод}} = 0 ]

2). Теперь запишем формулу для каждого количества теплоты:

[large Q_{text{остывания горяч}} = c_{text{воды}} cdot m_{text{горяч}} cdot (t_{text{общ}} — t_{text{горяч}} ) ]

[large Q_{text{нагревания холодн}} = c_{text{воды}} cdot m_{text{холодн}} cdot (t_{text{общ}} — t_{text{холодн}} ) ]

Примечания:

  1. (large c_{text{воды}} ) – удельную теплоемкость воды находим в справочнике;
  2. Массу воды переводим в килограммы;
  3. Горячая вода остывает и отдает тепловую энергию. Поэтому, разность (large (t_{text{общ}} — t_{text{горяч}} ) ) будет иметь знак «минус», потому, что конечная температура горячей воды меньше ее начальной температуры;
  4. Холодная вода получает тепловую энергию и нагревается. Из-за этого, разность (large (t_{text{общ}} — t_{text{холодн}} ) ) будет иметь знак «плюс», потому, что конечная температура холодной воды больше ее начальной температуры;

3). Подставим выражения для каждого Q в уравнение баланса:

[large c_{text{воды}} cdot m_{text{горяч}} cdot (t_{text{общ}} — t_{text{горяч}} ) + c_{text{воды}} cdot m_{text{холодн}} cdot (t_{text{общ}} — t_{text{холодн}} ) = 0 ]

4). Для удобства, заменим символы числами:

[large 4200 cdot 0,2 cdot (t_{text{общ}} — 80 ) + 4200 cdot 0,1 cdot (t_{text{общ}} — 15 ) = 0 ]

Проведем упрощение:

[large 840 cdot (t_{text{общ}} — 80 ) + 420 cdot (t_{text{общ}} — 15 ) = 0 ]

Раскрыв скобки и решив это уравнение, получим ответ:

[large t_{text{общ}} = 58,33 ]

Ответ: Температура смеси после прекращения теплообмена будет равна 58,33 градуса Цельсия.

Задача для самостоятельного решения:

В алюминиевом калориметре массой 100 грамм находится керосин массой 250 грамм при температуре +80 градусов Цельсия. В керосин поместили свинцовый шарик, массой 300 грамм. Начальная температура шарика +20 градусов Цельсия. Найдите температуру тел после установления теплового равновесия. Внешняя среда в теплообмене не участвует.

Примечание к решению: В левой части уравнения теплового баланса теперь будут находиться три слагаемых. Потому, что мы учитываем три количества теплоты:

  • (large Q_{1} ) – охлаждение алюминия от температуры +80 градусов до конечной температуры;
  • (large Q_{2} ) – охлаждение керосина от температуры +80 градусов до конечной температуры;
  • (large Q_{3} ) – нагревание свинца от температуры +20 градусов до конечной температуры;

А справа в уравнение теплового баланса запишем ноль. Так как внешняя среда в теплообмене не участвует.

Выводы

  1. Если тела имеют различную температуру, то между ними возможен обмен тепловой энергией, т. е. теплообмен;
  2. Когда тела будут иметь равную температуру, теплообмен прекратится;
  3. Тело с высокой температурой, отдает тепловую энергию (теплоту) и остывает. Отданное количество теплоты Q имеет знак «минус»;
  4. А тело с низкой температурой получает тепловую энергию и нагревается. Полученное количество теплоты Q имеет знак «плюс»;
  5. Количество теплоты, отданное горячим телом равно количеству теплоты, полученному холодным телом. Это – закон сохранения тепловой энергии;
  6. Сохранение тепловой энергии можно записать в виде уравнения теплового баланса;
  7. В левой части уравнения складываем количества теплоты (всех тел, участвующих в теплообмене);
  8. В правой части уравнения записываем ноль, когда теплообмен с окружающей средой отсутствует.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти коменданта в чистом небе
  • Темы как исправить зубы
  • Как правильно составить заявление в суд на управляющую компанию
  • Косоугольный треугольник как найти угол
  • Как найти мощность сопро

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии