Печатать книгу
Сайт: | Профильное обучение |
Курс: | Химия. 11 класс |
Книга: | § 6.1. Молярная концентрация газа |
Напечатано:: | Гость |
Дата: | Четверг, 25 Май 2023, 18:51 |
Газообразные вещества, в отличие от твёрдых и жидких, занимают весь предоставленный им объём. Поэтому в одном и том же сосуде может находиться разное количество газа. От этого количества будет зависеть давление в системе.
Определение количества газа и его доли в газовой смеси важно для разных практических целей. Например, следует выяснить, опасен ли для жизни уровень содержания метана или угарного газа в воздухе, пригоден ли для дыхания воздух в помещении с большим количеством углекислого газа или воздух на высоте 10 км, взрывоопасна ли данная смесь воздуха с водородом, в каком соотношении пары бензина должны смешиваться с воздухом в двигателе внутреннего сгорания.
Для решения подобных задач в качестве количественной характеристики используют молярную концентрацию газообразного вещества, которая показывает количество данного газообразного вещества в единице объёма.
Молярная концентрация газообразного вещества — величина, равная отношению его количества к объёму, который этот газ занимает:
Молярная концентрация газов измеряется в моль/дм3.
Например, молярная концентрация СО2 при нормальных условиях составляет:
Из приведённой выше формулы следует, что количество газообразного вещества в сосуде есть произведение молярной концентрации газа на объём сосуда, так как газ заполняет весь объём:
Понятие молярной концентрации газообразного вещества сходно с понятием молярной концентрации растворённого вещества, с которым вы ознакомились в курсе химии 8-го класса:
Причиной сходства является то, что растворённое вещество равномерно распределяется во всём объёме раствора, как и газообразное — во всём объёме сосуда.
Пример 1. Определите молярную концентрацию углекислого газа массой 3 г, находящегося в сосуде объёмом 4 дм3.
Дано:
m(CO2) = 3 г
V(сосуда) = 4 дм3
с(СО2) — ?
Решение
Ответ: с(СО2) = 0,017 моль/дм3.
Молярная концентрация газообразного вещества — величина, равная отношению его количества к объёму, который этот газ занимает:
Вопросы, задания, задачи
1. Установите соответствие между величинами.
1. Объём газа. 2. Молярная концентрация газа. 3. Количество вещества. 4. Молярная концентрация вещества в растворе |
А. с(NО2) = 0,15 моль/дм3. Б. с(NaOH) = 0,15 моль/дм3. В. V(H2S) = 4 дм3. Г. n(СО2) = 2 моль |
2. Определите молярную концентрацию аммиака количеством 0,7 моль в сосуде объёмом 14 дм3.
3. Определите массу сернистого газа в сосуде объёмом 400 см3, если молярная концентрация SO2 равна 0,5 моль/дм3.
4. Определите и сравните молярные концентрации трёх газов — водорода, азота и кислорода, если известно, что они находятся в сосудах объёмом по 5 дм3, а масса каждого из газов равна 7 г.
5. Сосуд объёмом 50 дм3 содержит гелий массой 10 г. В этот сосуд добавили гелий массой 8 г. Во сколько раз изменилась молярная концентрация газа? Как на исходную концентрацию гелия повлияет добавление аргона массой 8 г?
6. При газификации угля образовалась смесь газов, в которой на 1 дм3 СО приходится 4 дм3 Н2, 1 дм3 СН4, 3 дм3 СО2. Рассчитайте молярную концентрацию каждого газа в смеси.
7. Озон относится к веществам класса высокой опасности. Его предельно допустимая концентрация (ПДК) в воздухе рабочей зоны равна 0,1 мг/м3. При этом порог человеческого обоняния приблизительно равен 0,01 мг/м3. Рассчитайте молярную концентрацию озона в воздухе при его содержании 0,01 мг/м3.
8. Рассчитайте молярную концентрацию кислорода в воздухе (объёмная доля кислорода равна 21 %).
9. При действии соляной кислоты на твёрдое вещество выделился газ, относительная плотность которого по воздуху составляет 1,172. Какое из веществ использовал экспериментатор: СаС2, СаСО3, CaS, СаСl2?
10. Определите объём углекислого газа, выделившегося при действии соляной кислоты объёмом 0,5 дм3 на мрамор (карбонат кальция). Молярная концентрация кислоты составляет 2,7 моль/дм3.
Самоконтроль
1. Молярную концентрацию можно рассчитать по формулам:
а) ;
б) ;
в) ;
г) .
2. Молярная концентрация газообразного вещества имеет размерность:
- а) дм3/моль;
- б) моль/дм3;
- в) г/дм3;
- г) моль–1.
3. При н. у. объём 22,4 дм3 имеют вещества количеством 1 моль, формулы которых:
- а) СаС2;
- б) С2Н6;
- в) СО2;
- г) О3.
4. Молярная концентрация азота массой 5,6 г, находящегося в сосуде объёмом 20 дм3, равна (моль/дм3):
- а) 0,001;
- б) 0,01;
- в) 0,02;
- г) 0,1.
5. При нормальных условиях в сосуде объёмом 5 дм3 содержится газ массой 5,6 г. Его молярная концентрация составляет 0,04 моль/дм3. Этим газом может быть:
- а) С2Н4;
- б) С2Н6;
- в) N2;
- г) CО.
Формулы молекулярной физики
Формула концентрации молекул
Здесь n — концентрация , N — количество молекул (безразмерное), V — объем
.
Формула плотности
Здесь — плотность вещества
, m — масса вещества (кг), V — объем
.
Формула относительной молекулярной массы
Здесь — относительная молекулярная масса (безразмерная),
— масса одной молекулы (кг),
— масса атома углерода (кг).
Формула количества вещества (количества молей)
Здесь v — количество вещества (количество молей) (моль), m — масса вещества (кг), М — молярная масса (кг/моль).
Формулы массы одной молекулы
Здесь — масса одной молекулы (кг), т — масса вещества (кг), N — количество молекул (безразмерное), М — молярная масса (кг/моль),
— число Авогадро,
— плотность вещества
, n — концентрация молекул
.
Формулы количества молекул
Здесь A — количество молекул (безразмерное), п — концентрация молекул , V— объем
, v — количество вещества (количество молей) (моль),
— число Авогадро
, m — масса вещества (кг),
— масса одной молекулы.
Формулы средней квадратичной скорости молекул
Здесь — средняя квадратичная скорость молекул (м/с), R = 8,31 Дж/(моль • К) — молярная газовая постоянная, Т — абсолютная температура (К), М — молярная масса (кг/моль),
Дж/К — постоянная Больцмана,
— масса одной молекулы (кг).
Основное уравнение кинетической теории идеального газа
Здесь р — давление газа (Па), — масса одной молекулы (кг), n — концентрация молекул
,
— средняя квадратичная скорость молекул (м/с),
— средняя кинетическая энергия молекул (Дж).
Формула средней кинетической энергии молекул
Здесь — средняя кинетическая энергия молекул (Дж),
— масса одной молекулы (кг),
— средняя квадратичная скорость молекул (м/с).
Связь шкал Цельсия и Кельвина
Здесь Т — абсолютная температура (К), t — температура по шкале Цельсия.
Связь средней кинетической энергии молекул идеального газа с абсолютной температурой
Здесь — средняя кинетическая энергия молекул (Дж), k — постоянная Больцмана (Дж/К), Т — абсолютная температура (К).
У равнение состояния идеального газа — уравнение Клапейрона — Менделеева
Здесь р — давление газа (Па), V — объем , т — масса газа (кг), М — молярная масса (кг/моль), R — молярная газовая постоянная (ДжДмоль • К), Т — абсолютная температура (К), v — количество вещества (количество молей) (моль),
— объем моля
.
Объединенный газовый закон — уравнение Клапейрона
при
Здесь — давление (Па), объем
и абсолютная температура (К) газа в первом состоянии,
— давление (Па), объем
и абсолютная температура (К) газа во втором состоянии.
Закон Бойля — Мариотта (изотермический процесс)
при
Здесь Т — абсолютная температура газа (К), m — масса газа (кг), — давление (Па) и объем газа
в первом состоянии,
— давление (Па) и объем
газа во втором состоянии.
Закон Гей-Люссака (изобарный процесс)
при
Здесь р — давление газа (Па), m — масса газа (кг), и
— объем
и абсолютная температура (К) газа в первом состоянии,
— объем
и абсолютная температура (К) газа во втором состоянии.
Закон Шарля
при
Здесь V — объем газа , m — масса газа (кг),
— давление (Па) и абсолютная температура (К) газа в первом состоянии,
— давление (Па) и абсолютная температура (К) газа во втором состоянии.
Связь давления идеального газа с концентрацией его молекул и температурой
Здесь р — давление газа (Па), к — постоянная Больцмана (Дж/К), п — концентрация молекул газа , абсолютная температура Т (К).
Формулы относительной влажности
Здесь — относительная влажность (безразмерная или в %), р — плотность водяного пара в воздухе при данной температуре
— плотность насыщенного водяного пара при той же температуре
— давление водяного пара в воздухе при данной температуре (Па),
— давление насыщенного водяного пара в воздухе при той же температуре (Па).
Работа при изобарном изменении объема газа
Здесь А — работа (Дж), р — давление газа (Па), — изменение объема газа
— соответственно начальный и конечный объемы газа
.
Внутренняя энергия идеального одноатомного газа
Здесь U — внутренняя энергия газа (Дж), m — масса газа (кг), М — молярная масса газа (кг/моль), R — молярная газовая постоянная (Дж/(моль • К), Т — абсолютная температура (К), v — количество вещества или число молей (моль), — изменение внутренней энергии (Дж),
— изменение температуры (К).
Первый закон термодинамики
Здесь Q — количество теплоты, переданное термодинамической системе (Дж), — изменение внутренней энергии системы (Дж), А — работа против внешних сил (Дж)
Применение первого закона термодинамики к термодинамическим процессам
к изотермическому: при
к изохорному: при V = const
к изобарному: при р = const
к адиабатному: при Q = 0
Здесь Т — абсолютная температура (К), — изменение внутренней энергии (Дж), Q — количество теплоты (Дж), А — работа (Дж), V — объем
, р — давление (Па).
Формулы количества теплоты при нагревании или охлаждении тел
Здесь Q — количество теплоты, переданное телу при нагревании или отданное им при охлаждении (Дж), с — удельная теплоемкость вещества (Дж/(кг • К), т — масса тела (кг), — изменение температуры тела по шкале Цельсия,
и
— температуры тела в начале и в конце процесса передачи теплоты по шкале Цельсия,
— изменение абсолютной температуры тела (К),
— абсолютные температуры тела в начале и в конце процесса передачи теплоты (К),
— теплоемкость тела (Дж/К).
Формула количества теплоты при плавлении или кристаллизации
Здесь Q — количество теплоты (Дж), т — масса тела (кг), — удельная теплота плавления вещества (Дж/кг).
Формула количества теплоты при парообразовании или конденсации
Здесь Q — количество теплоты (Дж), m — масса тела (кг), r — удельная теплота парообразования (Дж/кг).
Формула количества теплоты при сгорании топлива
Здесь Q — количество выделившейся теплоты, m — масса топлива (кг), q — удельная теплота сгорания (Дж/кг).
Коэффициент полезного действия теплового двигателя
Здесь — коэффициент полезного действия (безразмерный или в %),
— работа, совершенная двигателем (Дж),
— количество теплоты, полученное рабочим веществом от нагревателя (Дж),
— количество теплоты, отданное рабочим веществом холодильнику (Дж).
Коэффициент полезного действия идеального теплового двигателя
Здесь — коэффициент полезного действия идеального теплового двигателя (безразмерный или в %),
— абсолютная температура нагревателя (К),
— абсолютная температура холодильника(К).
Эта теория со страницы подробного решения задач по физике, там расположена теория и подробное решения задач по всем темам физики:
Задачи по физике с решением
Возможно вам будут полезны эти страницы:
Газ обладает высокой реакционной способностью по сравнению с жидкими и твердыми телами ввиду большой площади его активной поверхности и высокой кинетической энергии образующих систему частиц. При этом химическая активность газа, его давление и некоторые другие параметры зависят от концентрации молекул. Рассмотрим в данной статье, что это за величина и как ее можно вычислить.
О каком газе пойдет речь?
В данной статье будут рассмотрены так называемые идеальные газы. В них пренебрегают размерами частиц и взаимодействием между ними. Единственным процессом, который происходит в идеальных газах, являются упругие столкновения между частицами и стенками сосуда. Результатом этих столкновений является возникновение абсолютного давления.
Любой реальный газ приближается по своим свойствам к идеальному, если уменьшать его давление или плотность и увеличивать абсолютную температуру. Тем не менее существуют химические вещества, которые даже при низких плотностях и высоких температурах далеки от идеального газа. Ярким и всем известным примером такого вещества является водяной пар. Дело в том, что его молекулы (H2O) являются сильно полярными (кислород оттягивает на себя электронную плотность от атомов водорода). Полярность приводит к появлению существенного электростатического взаимодействия между ними, что является грубым нарушением концепции идеального газа.
Универсальный закон Клапейрона-Менделеева
Чтобы уметь рассчитывать концентрацию молекул идеального газа, следует познакомиться с законом, который описывает состояние любой идеальной газовой системы независимо от ее химического состава. Этот закон носит фамилии француза Эмиля Клапейрона и русского ученого Дмитрия Менделеева. Соответствующее уравнение имеет вид:
P*V = n*R*T.
Равенство говорит о том, что произведение давления P на объем V всегда для идеального газа должно быть прямо пропорционально произведению температуры абсолютной T на количество вещества n. Здесь R — это коэффициент пропорциональности, который получил название универсальной газовой постоянной. Она показывает величину работы, которую 1 моль газа выполняет в результате расширения, если его на 1 К нагреть (R=8,314 Дж/(моль*К)).
Концентрация молекул и ее вычисление
Согласно определению под концентрацией атомов или молекул понимают количество частиц в системе, которое приходится на единицу объема. Математически можно записать:
cN = N/V.
Где N — общее число частиц в системе.
Прежде чем записать формулу для определения концентрации молекул газа, вспомним определение количества вещества n и выражение, которое связывает величину R с постоянной Больцмана kB:
n = N/NA;
kB = R/NA.
Используя эти равенства, выразим отношение N/V из универсального уравнения состояния:
P*V = n*R*T =>
P*V = N/NA*R*T = N*kB*T =>
cN = N/V = P/(kB*T).
Таким образом мы получили формулу для определения концентрации частиц в газе. Как видно, она прямо пропорционально зависит от давления в системе и обратно пропорционально от абсолютной температуры.
Поскольку количество частиц в системе велико, то концентрацией cN пользоваться неудобно при выполнении практических расчетов. Вместо нее чаще используют молярную концентрацию cn. Она для идеального газа определяется так:
cn = n/V = P/(R *T).
Пример задачи
Необходимо рассчитать молярную концентрацию молекул кислорода в воздухе при нормальных условиях.
Для решения этой задачи вспомним, что в воздухе находится 21 % кислорода. В соответствии с законом Дальтона кислород создает парциальное давление 0,21*P0, где P0 = 101325 Па (одна атмосфера). Нормальные условия также предполагают температуру 0 oC (273,15 К).
Мы знаем все необходимые параметры для вычисления молярной концентрации кислорода в воздухе. Получаем:
cn(O2) = P/(R *T) = 0,21*101325/(8,314*273,15) = 9,37 моль/м3.
Если эту концентрацию привести к объему 1 литр, то мы получим значение 0,009 моль/л.
Чтобы понять, сколько молекул O2 содержится в 1 литре воздуха, следует умножить рассчитанную концентрацию на число NA. Выполнив эту процедуру, получим огромное значение: N(O2) = 5,64*1021 молекул.
Как Найти Концентрацию. , где — молярная концентрация вещества (молярность), — количество моль вещества. Чтобы вычислить процентную концентрацию (или массовую долю растворенного вещества) необходимо.
Чтобы вычислить процентную концентрацию (или массовую долю растворенного вещества) необходимо. Нормальность отображает концентрацию кислоты или щелочи в растворе. В химии концентрация раствора показывает, как много растворенного вещества содержится в растворителе.
Узнайте, Как Лучше Сосредоточиться На Работе, С Помощью Полезных Советов, Которые Улучшат Концентрацию Внимания У Вас И.
Андрей сафронов ученик (99), закрыт 12 лет назад При некоторой температуре равновесная концентрация so3 в системе 2so2 (г) + o2 (г) = 2so3 (г) оказалось равной 0,04 моль/л, при этом 40% so2 превратилось в so3. Размерность в си [n] = 1/м 3, в системе сгс — [n] = 1/см 3.
2.Как Рассчитать Значение Poh Концентрацию Ионов.
Любой раствор состоит из растворенного вещества и растворителя. Растворы концентрации 0,01 м (или 0,01 моль на литр) иногда называют сантимолярными. Раствор, имеющий концентрацию 1 моль/л, называют молярным раствором и обозначают как 1 м раствор (не надо путать эту букву м, стоящую после цифры, с ранее указанным обозначением молярной массы, т.е.
Как Рассчитать Концентрацию Ионов[H+],Если Известно Значение Ph?
Чтобы узнать нормальность раствора, в расчетах можно использовать как молярность, так и эквивалентную массу молекулы. Определить молярную концентрацию раствора серной кислоты, если в 2л раствора содержится 0,98г кислоты. Молярная концентрация (объемная) — количество моль вещества находящееся в единице объема раствора.
Концентра́ция Части́ц — Физическая Величина, Равная Отношению Числа Частиц N К Объёму V, В Котором Они Находятся:
Не забудем предварительно перевести процент в десятичную дробь. Как определить массовую долю раствора Как приготовить раствор заданной концентрации;
Если Концентрация Является Функцией Координаты.
Нормальность отображает концентрацию кислоты или щелочи в растворе. В баллоне вместимостью 5 л находится азот массой 17,5 г. Количество молей вещества, содержащееся в массе :
Концентрация частиц – это величина, показывающая, сколько частиц вещества находится в каком-либо объеме. Она вычисляется по формуле: c = N/V, ее размерность 1/м^3. Часто возникает необходимость определить концентрацию молекул, причем исследуемое вещество может быть в любом агрегатном состоянии: твердом, жидком или газообразном.
Представьте, что любознательный царь Гиерон дал своему придворному математику еще одну корону, приказав: «Вот она-то точно из чистого золота. Определи, Архимед, какова концентрация молекул в ней». Гениального ученого такая задача поставила бы в тупик. Ну, а вы решите ее очень быстро. Предположим, корона весила бы ровно 1,93 килограмма, занимая при этом объем в 100 см^3.
Прежде всего найдите, сколько молей золота содержится в таком количестве вещества. С помощью таблицы Менделеева вы узнаете молекулярную массу золота: 197 а.е.м. (атомных единиц массы). А масса одного моля любого вещества (в граммах) численно равна его молекулярной массе. Следовательно, один моль золота весит 197 грамм. Разделив фактическую массу короны на молярную массу золота, вы получите: 1930/197 = 9,79. Или, округленно, 9,8 молей золота.
Умножьте количество молей на универсальное число Авогадро, показывающее, сколько элементарных частиц содержится в моле любого вещества. 9,8*6,022*10^23 = 5,9*10^24. Вот сколько молекул золота приблизительно содержится в короне.
Ну, а теперь найти концентрацию молекул проще простого. 100 кубических сантиметров – это 0,0001 м^3. Разделим: 5,9*10^24/0,0001 = 5,9*10^28. Концентрация молекул золота равна 5,9*10^28/м3.
Теперь предположим, что вам задана такая задача: при давлении Р, средняя квадратичная скорость молекул углекислого газа равна V. Требуется определить концентрацию его молекул. И здесь нет ничего сложного. Существует так называемое основное уравнение кинетической теории идеального газа: Р = V^2m0C/3, где C – концентрация молекул газа, а m0 – масса одной его молекулы. Следовательно, искомая концентрация С находится так: С = 3P/m0V^2.
Единственная неизвестная величина – m0. Ее можно узнать в справочнике по химии или физике. Можно также вычислить по формуле: m0 = M/Na, где М – молярная масса углекислого газа (44 грамм/моль), а Na – число Авогадро (6,022х1023). Подставив все величины в формулу, вычислите искомую концентрацию С.
Видоизмените условие задачи. Предположим, вам известны только температура Т и давление Р углекислого газа. Как по этим данным найти концентрацию его молекул? Давление и температура газа связаны формулой: P = CkT, где С – концентрация молекул газа, а К – постоянная Больцмана, равная 1,38*10^-23. То есть С = P/kT. Подставив в формулу известные величины, вы вычислите концентрацию С.