1. Найди информационный объём следующего сообщения, если известно, что один символ кодируется одним байтом.
Кто владеет информацией, тот владеет миром.
Решение: посчитаем количество символов в сообщении, будем учитывать буквы, знаки препинания и пробелы.
Всего (43) символа. Каждый символ кодируется (1) байтом.
(I = К · i), (43 · 1) байт (= 43) байта.
Ответ: (43) байта.
2. Найди информационный объём слова из (12) символов в кодировке Unicode (каждый символ кодируется двумя байтами). Ответ дайте в битах.
Решение.
Мы знаем из условия задачи, что каждый символ кодируется двумя байтами. Найдём сколько это бит.
(2) байта (· 8 = 16) бит;
Слово состоит из (12) символов, поэтому
(16) бит (· 12) символов (= 192) бита.
Ответ: (192) бита.
3. Найди информационный вес книги, которая состоит из (700) страниц, на каждой странице (70) строк и в каждой строке (95) символов . Мощность алфавита — (256) символов. Ответ дать в Мб.
Решение: если мощность алфавита (256) символов, то информационный объём одного символа (8) бит.
Найдём количество символов в книге: (700·70·95 = 4655000) символов.
Информационный вес сообщения: (4655000·8=37240000) бит.
Ответ нужно дать в Мб, поэтому переведём биты в Мб
(37240000:8:1024:1024 = 4,44) Мб
Ответ: (4,44) Мб.
Набор символов знаковой системы (алфавит) можно рассматривать как различные возможные состояния (события).
Тогда, если считать, что появление символов в сообщении равновероятно, количество возможных событийN можно вычислить как N=2i
Количество информации в сообщении I можно подсчитать умножив количество символов K на информационный вес одного символа i
Итак, мы имеем формулы, необходимые для определения количества информации в алфавитном подходе:
Если к этим задачам добавить задачи на соотношение величин, записанных в разных единицах измерения, с использованием представления величин в виде степеней двойки мы получим 9 типов задач.
Рассмотрим задачи на все типы. Договоримся, что при переходе от одних единиц измерения информации к другим будем строить цепочку значений. Тогда уменьшается вероятность вычислительной ошибки.
Задача 1. Получено сообщение, информационный объем которого равен 32 битам. чему равен этот объем в байтах?
Решение: В одном байте 8 бит. 32:8=4
Ответ: 4 байта.
Задача 2. Объем информацинного сообщения 12582912 битов выразить в килобайтах и мегабайтах.
Решение: Поскольку 1Кбайт=1024 байт=1024*8 бит, то 12582912:(1024*8)=1536 Кбайт и
поскольку 1Мбайт=1024 Кбайт, то 1536:1024=1,5 Мбайт
Ответ:1536Кбайт и 1,5Мбайт.
Задача 3. Компьютер имеет оперативную память 512 Мб. Количество соответствующих этой величине бит больше:
1) 10 000 000 000бит 2) 8 000 000 000бит 3) 6 000 000 000бит 4) 4 000 000 000бит Решение: 512*1024*1024*8 бит=4294967296 бит.
Ответ: 4.
Задача 4. Определить количество битов в двух мегабайтах, используя для чисел только степени 2.
Решение: Поскольку 1байт=8битам=23битам, а 1Мбайт=210Кбайт=220байт=223бит. Отсюда, 2Мбайт=224бит.
Ответ: 224бит.
Задача 5. Сколько мегабайт информации содержит сообщение объемом 223бит?
Решение: Поскольку 1байт=8битам=23битам, то
223бит=223*223*23бит=210210байт=210Кбайт=1Мбайт.
Ответ: 1Мбайт
Задача 6. Один символ алфавита «весит» 4 бита. Сколько символов в этом алфавите?
Решение:
Дано:
i=4 | По формуле N=2i находим N=24, N=16 |
Найти: N — ? |
Ответ: 16
Задача 7. Каждый символ алфавита записан с помощью 8 цифр двоичного кода. Сколько символов в этом алфавите?
Решение:
Дано:
i=8 | По формуле N=2i находим N=28, N=256 |
Найти:N — ? |
Ответ: 256
Задача 8. Алфавит русского языка иногда оценивают в 32 буквы. Каков информационный вес одной буквы такого сокращенного русского алфавита?
Решение:
Дано:
N=32 | По формуле N=2i находим 32=2i, 25=2i,i=5 |
Найти: i— ? |
Ответ: 5
Задача 9. Алфавит состоит из 100 символов. Какое количество информации несет один символ этого алфавита?
Решение:
Дано:
N=100 | По формуле N=2i находим 32=2i, 25=2i,i=5 |
Найти: i— ? |
Ответ: 5
Задача 10. У племени «чичевоков» в алфавите 24 буквы и 8 цифр. Знаков препинания и арифметических знаков нет. Какое минимальное количество двоичных разрядов им необходимо для кодирования всех символов? Учтите, что слова надо отделять друг от друга!
Решение:
Дано:
N=24+8=32 | По формуле N=2i находим 32=2i, 25=2i,i=5 |
Найти: i— ? |
Ответ: 5
Задача 11. Книга, набранная с помощью компьютера, содержит 150 страниц. На каждой странице — 40 строк, в каждой строке — 60 символов. Каков объем информации в книге? Ответ дайте в килобайтах и мегабайтах
Решение:
Дано:
K=360000 | Определим количество символов в книге 150*40*60=360000. Один символ занимает один байт. По формуле I=K*iнаходим I=360000байт 360000:1024=351Кбайт=0,4Мбайт |
Найти: I— ? |
Ответ: 351Кбайт или 0,4Мбайт
Задача 12. Информационный объем текста книги, набранной на компьютере с использованием кодировки Unicode, — 128 килобайт. Определить количество символов в тексте книги.
Решение:
Дано:
I=128Кбайт,i=2байт | В кодировке Unicode один символ занимает 2 байта. Из формулыI=K*i выразимK=I/i,K=128*1024:2=65536 |
Найти: K— ? |
Ответ: 65536
Задача 13.Информационное сообщение объемом 1,5 Кб содержит 3072 символа. Определить информационный вес одного символа использованного алфавита
Решение:
Дано:
I=1,5Кбайт,K=3072 | Из формулы I=K*i выразимi=I/K,i=1,5*1024*8:3072=4 |
Найти: i— ? |
Ответ: 4
Задача 14.Сообщение, записанное буквами из 64-символьного алфавита, содержит 20 символов. Какой объем информации оно несет?
Решение:
Дано:
N=64, K=20 | По формуле N=2i находим 64=2i, 26=2i,i=6. По формуле I=K*i I=20*6=120 |
Найти: I— ? |
Ответ: 120бит
Задача 15. Сколько символов содержит сообщение, записанное с помощью 16-символьного алфавита, если его объем составил 1/16 часть мегабайта?
Решение:
Дано:
N=16, I=1/16 Мбайт | По формуле N=2i находим 16=2i, 24=2i,i=4. Из формулы I=K*i выразим K=I/i, K=(1/16)*1024*1024*8/4=131072 |
Найти: K— ? |
Ответ: 131072
Задача 16. Объем сообщения, содержащего 2048 символов,составил 1/512 часть мегабайта. Каков размер алфавита, с помощью которого записано сообщение?
Решение:
Дано:
K=2048,I=1/512 Мбайт | Из формулы I=K*i выразим i=I/K, i=(1/512)*1024*1024*8/2048=8. По формулеN=2iнаходим N=28=256 |
Найти: N— ? |
Ответ: 256
Задачи для самостоятельного решения:
- Каждый символ алфавита записывается с помощью 4 цифр двоичного кода. Сколько символов в этом алфавите?
- Алфавит для записи сообщений состоит из 32 символов, каков информационный вес одного символа? Не забудьте указать единицу измерения.
- Информационный объем текста, набранного на компьюте¬ре с использованием кодировки Unicode (каждый символ кодируется 16 битами), — 4 Кб. Определить количество символов в тексте.
- Объем информационного сообщения составляет 8192 бита. Выразить его в килобайтах.
- Сколько бит информации содержит сообщение объемом 4 Мб? Ответ дать в степенях 2.
- Сообщение, записанное буквами из 256-символьного ал¬фавита, содержит 256 символов. Какой объем информации оно несет в килобайтах?
- Сколько существует различных звуковых сигналов, состоящих из последовательностей коротких и длинных звонков. Длина каждого сигнала — 6 звонков.
- Метеорологическая станция ведет наблюдение за влажностью воздуха. Результатом одного измерения является целое число от 20 до 100%, которое записывается при помощи минимально возможного количества бит. Станция сделала 80 измерений. Определите информационный объем результатом наблюдений.
- Скорость передачи данных через ADSL-соединение равна 512000 бит/с. Через данное соединение передают файл размером 1500 Кб. Определите время передачи файла в секундах.
- Определите скорость работы модема, если за 256 с он может передать растровое изображение размером 640х480 пикселей. На каждый пиксель приходится 3 байта. А если в палитре 16 миллионов цветов?
Тема определения количества информации на основе алфавитного подхода используется в заданиях А1, А2, А3, А13, В5 контрольно-измерительных материалов ЕГЭ.
Определение информационного объема сообщения. Информатика в 7 классе.
Тема: «Измерение информации»
Формулы
Для определения информационного объема сообщения потребуются две формулы:
1. ( N= 2^i )
N — мощность алфавита
i — информационный объём одного символа в алфавите
2. ( I = k * i )
I — информационный объём сообщения
k — количество символов в сообщении
i — информационный объём одного символа в алфавите
Формула нахождения k:
( k = frac{mathrm I}{mathrm i} )
Формула нахождения i:
( i = frac{mathrm I}{mathrm k} )
Задачи
Задача №1. Сообщение, записанное буквами из 128-символьного алфавита, содержит 30 символов. Найти информационный объем всего сообщения?
Решение. Запишем, что дано по условию задачи и что необходимо найти:
N = 128
k = 30
( I = ? )
( i = ? )
Сначала найдем вес одного символа по формуле:
( N= 2^i ) = ( 128= 2^7 )
( i = 7 ) бит. Какая степень двойки, такой вес одного символа в алфавите. Далее определяем информационный объем сообщения по формуле:
( I = k * i ) = 30 * 7 = 210 бит
Ответ: 210 бит
Задача №2. Информационное сообщение объемом 4 Кбайта содержит 4096 символов. Сколько символов содержит алфавит, при помощи которого было записано это сообщение?
Решение. Запишем, что дано по условию задачи и что необходимо найти:
( I = 4 ) Кб
k = 4096
( N = ? )
( i = ? )
Очень важно перевести все числа в степени двойки:
1 Кб = ( 2^{13} ) бит
( I = 4 ) Кб = ( 2^2 ) * ( 2^{13} ) = ( 2^{15} ) бит
k = 4096 = ( 2^{12} )
Сначала найдем вес одного символа по формуле:
( i = frac{mathrm I}{mathrm k} ) = ( 2^{15} ) : ( 2^{12} ) = ( 2^3 ) = 8 бит
Далее находим мощность алфавита по формуле:
( N= 2^i ) ( 2^8 =256)
Ответ: 256 символов в алфавите.
Задача №3. Сколько символов содержит сообщение, записанное с помощью 16-символьного алфавита, если его объем составляет 1/16 Мб?
Решение. Запишем, что дано по условию задачи и что необходимо найти:
N = 16
( I = frac{mathrm 1}{mathrm 16} ) Мб
( k = ? )
( i = ? )
Представим ( I = frac{mathrm 1}{mathrm 16} ) Мб в степень двойки:
1 Мб = ( 2^{23} ) бит
( I = frac{mathrm 1}{mathrm 16} ) Мб = ( 2^{23} ) : ( 2^4 ) = ( 2^{19} ) бит.
Сначала найдем вес одного символа по формуле:
( N= 2^i ) = ( 2^4 = 16 )
( i = 4 ) бит = ( 2^2 )
Теперь найдём количество символов в сообщении k:
( k = frac{mathrm I}{mathrm i} ) = ( 2^{19} ) : ( 2^2 ) = ( 2^{17} ) = 131072
Ответ: 131072 символов в сообщении.
Все мы привыкли к тому, что все вокруг можно измерить. Мы можем определить массу посылки, длину стола, скорость движения автомобиля. Но как определить количество информации, содержащееся в сообщении? Ответ на вопрос в статье.
Итак, давайте для начала выберем сообщение. Пусть это будет «Принтер — устройство вывода информации.«. Наша задача — определить, сколько информации содержится в данном сообщении. Иными словами — сколько памяти потребуется для его хранения.
Определение количества информации в сообщении
Для решения задачи нам нужно определить, сколько информации несет один символ сообщения, а потом умножить это значение на количество символов. И если количество символов мы можем посчитать, то вес символа нужно вычислить. Для этого посчитаем количество различных символов в сообщении. Напомню, что знаки препинания, пробел — это тоже символы. Кроме того, если в сообщении встречается одна и та же строчная и прописная буква — мы считаем их как два различных символа. Приступим.
В слове Принтер 6 различных символов (р встречается дважды и считается один раз), далее 7-й символ пробел и девятый — тире. Так как пробел уже был, то после тире мы его не считаем. В слове устройство 10 символов, но различных — 7, так как буквы с, т и о повторяются. Кроме того буквы т и р уже была в слове Принтер. Так что получается, что в слове устройство 5 различных символов. Считая таким образом дальше мы получим, что в сообщении 20 различных символов.
Далее вспомним формулу, которую называют главной формулой информатики:
2i=N
Подставив в нее вместо N количество различных символов, мы узнаем, сколько информации несет один символ в битах. В нашем случае формула будет выглядеть так:
2i=20
Вспомним степени двойки и поймем, что i находится в диапазоне от 4 до 5 (так как 24=16, а 25=32). А так как бит — минимальная единица измерения информации и дробным быть не может, то мы округляем i в большую сторону до 5. Иначе, если принять, что i=4, мы смогли бы закодировать только 24=16 символов, а у нас их 20. Поэтому получаем, что i=5, то есть каждый символ в нашем сообщении несет 5 бит информации.
Осталось посчитать сколько символов в нашем сообщении. Но теперь мы будем считать все символы, не важно повторяются они или нет. Получим, что сообщение состоит из 39 символов. А так как каждый символ — это 5 бит информации, то, умножив 5 на 39 мы получим:
5 бит x 39 символов = 195 бит
Это и есть ответ на вопрос задачи — в сообщении 195 бит информации. И, подводя итог, можно написать алгоритм нахождения объема информации в сообщении:
- посчитать количество различных символов.
- подставив это значение в формулу 2i=N найти вес одного символа (округлив в большую сторону)
- посчитать общее количество символов и умножить это число на вес одного символа.
Автор:
1. Информационный объём текстового
сообщения
Расчёт
информационного объёма текстового сообщения (количества информации,
содержащейся в информационном сообщении) основан на подсчёте количества
символов в этом сообщении, включая пробелы, и на определении
информационного веса одного символа, который зависит от кодировки, используемой
при передаче и хранении данного сообщения.
Для расчёта
информационного объёма текстового сообщения используется формула
I=K*i, где
I – это информационный объём текстового сообщения,
измеряющийся в байтах, килобайтах, мегабайтах;
K – количество символов в
сообщении,
i – информационный вес одного символа, который
измеряется в битах на один символ.
Информационный
объём одного символа связан с количеством символов в алфавите формулой
N=2i, где
N — это количество символов в алфавите (мощность
алфавита),
i — информационный
вес одного символа в битах на один символ.
2. Информационный объём растрового
графического изображения
Расчёт
информационного объёма растрового графического изображения (количества
информации, содержащейся в графическом изображении) основан на подсчёте количества
пикселей в этом изображении и на определении глубины
цвета (информационного веса одного пикселя).
Для расчёта
информационного объёма растрового графического изображения используется
формула
I=K*i, где
I – это информационный объём растрового графического
изображения, измеряющийся в байтах, килобайтах, мегабайтах;
K – количество пикселей (точек) в
изображении, определяющееся разрешающей способностью носителя информации
(экрана монитора, сканера, принтера);
i – глубина цвета, которая
измеряется в битах на один пиксель.
Глубина цвета связана с
количеством отображаемых цветов формулой
N=2i, где
N – это количество цветов в палитре,
i – глубина цвета в битах на
один пиксель.