Как найти количество символов в информатике сообщении

1. Найди информационный объём следующего сообщения, если известно, что один символ кодируется одним байтом.

Кто владеет информацией, тот владеет миром.

Решение: посчитаем количество символов в сообщении, будем учитывать буквы, знаки препинания и пробелы.

Всего (43) символа. Каждый символ кодируется (1) байтом.

(I = К · i), (43 · 1) байт (= 43) байта.

Ответ: (43) байта.

2. Найди информационный объём слова из (12) символов в кодировке Unicode (каждый символ кодируется двумя байтами). Ответ дайте в битах.

Решение.

Мы знаем из условия задачи, что каждый символ кодируется двумя байтами. Найдём сколько это бит.

(2) байта (·  8 = 16) бит; 

Слово состоит из (12) символов, поэтому

(16) бит (· 12) символов (= 192) бита.

Ответ: (192) бита.

3. Найди информационный вес книги, которая состоит из (700) страниц, на каждой странице (70) строк и в каждой строке (95) символов . Мощность алфавита — (256) символов. Ответ дать в Мб.

Решение: если мощность алфавита (256) символов, то информационный объём одного символа (8) бит.

Найдём количество символов в книге: (700·70·95 = 4655000) символов.

Информационный вес сообщения: (4655000·8=37240000) бит.

Ответ нужно дать в Мб, поэтому переведём биты в Мб

(37240000:8:1024:1024 = 4,44) Мб

Ответ: (4,44) Мб.

Набор символов знаковой системы (алфавит) можно рассматривать как различные возможные состояния (события).
Тогда, если считать, что появление символов в сообщении равновероятно, количество возможных событийN можно вычислить как N=2i
Количество информации в сообщении I можно подсчитать умножив количество символов K на информационный вес одного символа i
Итак, мы имеем формулы, необходимые для определения количества информации в алфавитном подходе:

Если к этим задачам добавить задачи на соотношение величин, записанных в разных единицах измерения, с использованием представления величин в виде степеней двойки мы получим 9 типов задач.
Рассмотрим задачи на все типы. Договоримся, что при переходе от одних единиц измерения информации к другим будем строить цепочку значений. Тогда уменьшается вероятность вычислительной ошибки.

Задача 1. Получено сообщение, информационный объем которого равен 32 битам. чему равен этот объем в байтах?

Решение: В одном байте 8 бит. 32:8=4
Ответ: 4 байта.

Задача 2. Объем информацинного сообщения 12582912 битов выразить в килобайтах и мегабайтах.

Решение: Поскольку 1Кбайт=1024 байт=1024*8 бит, то 12582912:(1024*8)=1536 Кбайт и
поскольку 1Мбайт=1024 Кбайт, то 1536:1024=1,5 Мбайт
Ответ:1536Кбайт и 1,5Мбайт.

Задача 3. Компьютер имеет оперативную память 512 Мб. Количество соответствующих этой величине бит больше:

1) 10 000 000 000бит 2) 8 000 000 000бит 3) 6 000 000 000бит 4) 4 000 000 000бит Решение: 512*1024*1024*8 бит=4294967296 бит.
Ответ: 4.

Задача 4. Определить количество битов в двух мегабайтах, используя для чисел только степени 2.
Решение: Поскольку 1байт=8битам=23битам, а 1Мбайт=210Кбайт=220байт=223бит. Отсюда, 2Мбайт=224бит.
Ответ: 224бит.

Задача 5. Сколько мегабайт информации содержит сообщение объемом 223бит?
Решение: Поскольку 1байт=8битам=23битам, то
223бит=223*223*23бит=210210байт=210Кбайт=1Мбайт.
Ответ: 1Мбайт

Задача 6. Один символ алфавита «весит» 4 бита. Сколько символов в этом алфавите?
Решение:
Дано:

i=4 По формуле N=2i находим N=24, N=16
Найти: N — ?  

Ответ: 16

Задача 7. Каждый символ алфавита записан с помощью 8 цифр двоичного кода. Сколько символов в этом алфавите?
Решение:
Дано:

i=8 По формуле N=2i находим N=28, N=256
Найти:N — ?  

Ответ: 256

Задача 8. Алфавит русского языка иногда оценивают в 32 буквы. Каков информационный вес одной буквы такого сокращенного русского алфавита?
Решение:
Дано:

N=32 По формуле N=2i находим 32=2i, 25=2i,i=5
Найти: i— ?  

Ответ: 5

Задача 9. Алфавит состоит из 100 символов. Какое количество информации несет один символ этого алфавита?
Решение:
Дано:

N=100 По формуле N=2i находим 32=2i, 25=2i,i=5
Найти: i— ?  

Ответ: 5

Задача 10. У племени «чичевоков» в алфавите 24 буквы и 8 цифр. Знаков препинания и арифметических знаков нет. Какое минимальное количество двоичных разрядов им необходимо для кодирования всех символов? Учтите, что слова надо отделять друг от друга!
Решение:
Дано:

N=24+8=32 По формуле N=2i находим 32=2i, 25=2i,i=5
Найти: i— ?  

Ответ: 5

Задача 11. Книга, набранная с помощью компьютера, содержит 150 страниц. На каждой странице — 40 строк, в каждой строке — 60 символов. Каков объем информации в книге? Ответ дайте в килобайтах и мегабайтах
Решение:
Дано:

K=360000 Определим количество символов в книге 150*40*60=360000. Один символ занимает один байт. По формуле I=K*iнаходим I=360000байт 360000:1024=351Кбайт=0,4Мбайт
Найти: I— ?  

Ответ: 351Кбайт или 0,4Мбайт

Задача 12. Информационный объем текста книги, набранной на компьютере с использованием кодировки Unicode, — 128 килобайт. Определить количество символов в тексте книги.
Решение:
Дано:

I=128Кбайт,i=2байт В кодировке Unicode один символ занимает 2 байта. Из формулыI=K*i выразимK=I/i,K=128*1024:2=65536
Найти: K— ?  

Ответ: 65536

Задача 13.Информационное сообщение объемом 1,5 Кб содержит 3072 символа. Определить информационный вес одного символа использованного алфавита
Решение:
Дано:

I=1,5Кбайт,K=3072 Из формулы I=K*i выразимi=I/K,i=1,5*1024*8:3072=4
Найти: i— ?  

Ответ: 4

Задача 14.Сообщение, записанное буквами из 64-символьного алфавита, содержит 20 символов. Какой объем информации оно несет?
Решение:
Дано:

N=64, K=20 По формуле N=2i находим 64=2i, 26=2i,i=6. По формуле I=K*i I=20*6=120
Найти: I— ?  

Ответ: 120бит

Задача 15. Сколько символов содержит сообщение, записанное с помощью 16-символьного алфавита, если его объем составил 1/16 часть мегабайта?
Решение:
Дано:

N=16, I=1/16 Мбайт По формуле N=2i находим 16=2i, 24=2i,i=4. Из формулы I=K*i выразим K=I/i, K=(1/16)*1024*1024*8/4=131072
Найти: K— ?  

Ответ: 131072

Задача 16. Объем сообщения, содержащего 2048 символов,составил 1/512 часть мегабайта. Каков размер алфавита, с помощью которого записано сообщение?
Решение:
Дано:

K=2048,I=1/512 Мбайт Из формулы I=K*i выразим i=I/K, i=(1/512)*1024*1024*8/2048=8. По формулеN=2iнаходим N=28=256
Найти: N— ?  

Ответ: 256

Задачи для самостоятельного решения:

  1. Каждый символ алфавита записывается с помощью 4 цифр двоичного кода. Сколько символов в этом алфавите?
  2. Алфавит для записи сообщений состоит из 32 символов, каков информационный вес одного символа? Не забудьте указать единицу измерения.
  3. Информационный объем текста, набранного на компьюте¬ре с использованием кодировки Unicode (каждый символ кодируется 16 битами), — 4 Кб. Определить количество символов в тексте.
  4. Объем информационного сообщения составляет 8192 бита. Выразить его в килобайтах.
  5. Сколько бит информации содержит сообщение объемом 4 Мб? Ответ дать в степенях 2.
  6. Сообщение, записанное буквами из 256-символьного ал¬фавита, содержит 256 символов. Какой объем информации оно несет в килобайтах?
  7. Сколько существует различных звуковых сигналов, состоящих из последовательностей коротких и длинных звонков. Длина каждого сигнала — 6 звонков.
  8. Метеорологическая станция ведет наблюдение за влажностью воздуха. Результатом одного измерения является целое число от 20 до 100%, которое записывается при помощи минимально возможного количества бит. Станция сделала 80 измерений. Определите информационный объем результатом наблюдений.
  9. Скорость передачи данных через ADSL-соединение равна 512000 бит/с. Через данное соединение передают файл размером 1500 Кб. Определите время передачи файла в секундах.
  10. Определите скорость работы модема, если за 256 с он может передать растровое изображение размером 640х480 пикселей. На каждый пиксель приходится 3 байта. А если в палитре 16 миллионов цветов?

Тема определения количества информации на основе алфавитного подхода используется в заданиях А1, А2, А3, А13, В5 контрольно-измерительных материалов ЕГЭ.

Определение информационного объема сообщения. Информатика в 7 классе.

Тема: «Измерение информации»

Формулы

Для определения информационного объема сообщения потребуются две формулы:

1. ( N= 2^i )

N — мощность алфавита

i — информационный объём одного символа в алфавите

2. ( I = k * i )

I — информационный объём сообщения

k — количество символов в сообщении

i — информационный объём одного символа в алфавите

Формула нахождения k:

( k = frac{mathrm I}{mathrm i} )

Формула нахождения i:

( i = frac{mathrm I}{mathrm k} )

Задачи

Задача №1. Сообщение, записанное буквами из 128-символьного алфавита, содержит 30 символов. Найти информационный объем всего сообщения?

Решение. Запишем, что дано по условию задачи и что необходимо найти:

N = 128

k = 30

( I = ? )

( i = ? )

Сначала найдем вес одного символа по формуле:

( N= 2^i ) = ( 128= 2^7 ) 

( i = 7  )​ бит. Какая степень двойки, такой вес одного символа в алфавите. Далее определяем информационный объем сообщения по формуле:

( I = k * i )​ = 30 * 7 = 210 бит

Ответ: 210 бит

Задача №2. Информационное сообщение объемом 4 Кбайта содержит 4096 символов. Сколько символов содержит алфавит, при помощи которого было записано это сообщение?

Решение. Запишем, что дано по условию задачи и что необходимо найти:

( I = 4 )​ Кб

k = 4096

( N = ? )

( i = ? )

Очень важно перевести все числа в степени двойки:

1 Кб = (  2^{13} ) бит

( I = 4 )​ Кб = (  2^2 ) * (  2^{13} ) = (  2^{15} ) бит

k = 4096 = (  2^{12} )

Сначала найдем вес одного символа по формуле:

( i = frac{mathrm I}{mathrm k} )​ = (  2^{15} ) : (  2^{12} ) = (  2^3 ) = 8 бит

Далее находим мощность алфавита по формуле:

( N= 2^i )  ( 2^8 =256)

Ответ: 256 символов в алфавите.

Задача №3. Сколько символов содержит сообщение, записанное с помощью 16-символьного алфавита, если его объем составляет 1/16 Мб?

Решение. Запишем, что дано по условию задачи и что необходимо найти:

N = 16

( I = frac{mathrm 1}{mathrm 16} )​ Мб

( k = ? )

( i = ? )

Представим ( I = frac{mathrm 1}{mathrm 16} )​ Мб в степень двойки:

1 Мб = (  2^{23} ) бит

( I = frac{mathrm 1}{mathrm 16} )​ Мб = ( 2^{23} ) : (  2^4  )   = (  2^{19} ) бит.

Сначала найдем вес одного символа по формуле:

( N= 2^i ) = (  2^4 = 16 ) 

( i = 4  )​ бит = (  2^2  )  

Теперь найдём количество символов в сообщении k:

( k = frac{mathrm I}{mathrm i} )​ = (  2^{19} )​ : (  2^2 ) = (  2^{17} ) = 131072

Ответ: 131072 символов в сообщении.

Как определить количество информации

Все мы привыкли к тому, что все вокруг можно измерить. Мы можем определить массу посылки, длину стола, скорость движения автомобиля. Но как определить количество информации, содержащееся в сообщении? Ответ на вопрос в статье.

Итак, давайте для начала выберем сообщение. Пусть это будет «Принтер — устройство вывода информации.«. Наша задача — определить, сколько информации содержится в данном сообщении. Иными словами — сколько памяти потребуется для его хранения.

Как определить количество информации

Определение количества информации в сообщении

Для решения задачи нам нужно определить, сколько информации несет один символ сообщения, а потом умножить это значение на количество символов. И если количество символов мы можем посчитать, то вес символа нужно вычислить. Для этого посчитаем количество различных символов в сообщении. Напомню, что знаки препинания, пробел — это тоже символы. Кроме того, если в сообщении встречается одна и та же строчная и прописная буква — мы считаем их как два различных символа. Приступим.

В слове Принтер 6 различных символов (р встречается дважды и считается один раз), далее 7-й символ пробел и девятый — тире. Так как пробел уже был, то после тире мы его не считаем. В слове устройство 10 символов, но различных — 7, так как буквы  с, т и о повторяются. Кроме того буквы т и р уже была в слове Принтер. Так что получается, что в слове устройство 5 различных символов. Считая таким образом дальше мы получим, что в сообщении 20 различных символов.

Далее вспомним формулу, которую называют главной формулой информатики:

2i=N

Подставив в нее вместо N количество различных символов, мы узнаем, сколько информации несет один символ в битах. В нашем случае формула будет выглядеть так:

2i=20

Вспомним степени двойки и поймем, что i находится в диапазоне от 4 до 5 (так как 24=16, а 25=32). А так как бит — минимальная единица измерения информации и дробным быть не может, то мы округляем i в большую сторону до 5. Иначе, если принять, что i=4, мы смогли бы закодировать только 24=16 символов, а у нас их 20. Поэтому получаем, что i=5, то есть каждый символ в нашем сообщении несет 5 бит информации.

Осталось посчитать сколько символов в нашем сообщении. Но теперь мы будем считать все символы, не важно повторяются они или нет. Получим, что сообщение состоит из 39 символов. А так как каждый символ — это 5 бит информации, то, умножив 5 на 39 мы получим:

5 бит x 39 символов = 195 бит

Это и есть ответ на вопрос задачи — в сообщении 195 бит информации. И, подводя итог, можно написать алгоритм нахождения объема информации в сообщении:

  • посчитать количество различных символов.
  • подставив это значение в формулу 2i=N найти вес одного символа (округлив в большую сторону)
  • посчитать общее количество символов и умножить это число на вес одного символа.

Автор:

1.     Информационный объём текстового
сообщения

Расчёт
информационного объёма текстового сообщения (количества информации,
содержащейся в информационном сообщении) основан на подсчёте количества
символов
 в этом сообщении, включая пробелы, и на определении
информационного веса одного символа, который зависит от кодировки, используемой
при передаче и хранении данного сообщения.

Для расчёта
информационного объёма текстового сообщения используется формула 

I=K*i, где

I  – это информационный объём текстового сообщения,
измеряющийся в байтах, килобайтах, мегабайтах; 

K  –  количество символов в
сообщении

i  –  информационный вес одного символа, который
измеряется в битах на один символ.

Информационный
объём одного символа связан с количеством символов в алфавите формулой

N=2i, где

Nэто количество символов в алфавите (мощность
алфавита),

iинформационный
вес одного символа
в битах на один символ.

2.     Информационный объём растрового
графического изображения

Расчёт
информационного объёма растрового графического изображения (количества
информации, содержащейся в графическом изображении) основан на подсчёте количества
пикселей
 в этом изображении и на определении глубины
цвета
 (информационного веса одного пикселя).

Для расчёта
информационного объёма растрового графического изображения используется
формула 

I=K*i, где

I  – это информационный объём растрового графического
изображени
я, измеряющийся в байтах, килобайтах, мегабайтах; 

K количество пикселей (точек) в
изображении
, определяющееся разрешающей способностью носителя информации
(экрана монитора, сканера, принтера); 

i глубина цвета, которая
измеряется в битах на один пиксель.

         Глубина цвета связана с
количеством отображаемых цветов формулой 

N=2i, где

N – это количество цветов в палитре

глубина цвета в битах на
один пиксель.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Неправильно работает сенсор на андроиде как исправить
  • Как найти производителя корее
  • Как найти медведя в тайге
  • Как найти автоцистерны far cry 5
  • Ошибка ssl на айфоне как исправить ошибку

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии