Загрузить PDF
Загрузить PDF
Число называется делителем (или множителем) другого числа в том случае, если при делении на него получается целый результат без остатка.[1]
Для малого числа (например, 6) определить количество делителей довольно легко: достаточно выписать все возможные произведения двух целых чисел, которые дают заданное число. При работе с большими числами определить количество делителей становится сложнее. Тем не менее, если вы разложите целое число на простые множители, то легко сможете определить число делителей с помощью простой формулы.
-
1
Запишите заданное целое число вверху страницы. Вам понадобится достаточно места для того, чтобы расположить ниже числа дерево множителей. Для разложения числа на простые множители можно использовать и другие методы, которые вы найдете в статье Как разложить число на множители.
- Например, если вы хотите узнать, сколько делителей, или множителей имеет число 24, запишите
вверху страницы.
- Например, если вы хотите узнать, сколько делителей, или множителей имеет число 24, запишите
-
2
Найдите два числа (помимо 1), при перемножении которых получается заданное число. Таким образом вы найдете два делителя, или множителя данного числа. Проведите от данного числа две ветки вниз и запишите на их концах полученные множители.
-
3
Поищите простые множители. Простым множителем называется такое число, которое делится без остатка лишь на само себя и на 1.[2]
Например, число 7 является простым множителем, так как оно делится без остатка лишь на 1 и 7. Для удобства обводите найденные простые множители кружком.- Например, 2 является простым числом, поэтому обведите
кружком.
- Например, 2 является простым числом, поэтому обведите
-
4
Продолжайте раскладывать составные (не простые) числа на множители. Проводите следующие ветки от составных чисел до тех пор, пока все множители не станут простыми. Не забывайте обводить простые числа кружками.
-
5
Представьте каждый простой множитель в степенной форме. Для этого подсчитайте, сколько раз встречается каждый простой множитель в нарисованном дереве множителей. Это число и будет степенью, в которую необходимо возвести данный простой множитель.[3]
-
6
Запишите разложение числа на простые множители. Первоначально заданное число равно произведению простых множителей в соответствующих степенях.
- В нашем примере
.
Реклама
- В нашем примере
-
1
-
2
Подставьте в формулу величины степеней. Будьте внимательны и используйте степени при простых множителях, а не сами множители.
-
3
Сложите величины в скобках. Просто прибавьте 1 к каждой степени.
-
4
Перемножьте полученные величины. В результате вы определите количество делителей, или множителей данного числа
.
Реклама
Советы
- Если число представляет собой квадрат целого числа (например, 36 является квадратом числа 6), то оно имеет нечетное количество делителей. Если же число не является квадратом другого целого числа, количество его делителей четно.
Реклама
Похожие статьи
Об этой статье
Эту страницу просматривали 120 968 раз.
Была ли эта статья полезной?
Содержание материала
- Как определить количество делителей конкретного числа
- Видео
- Признаки делимости чисел
- Определение [ править
- Как найти число простых делителей числа
- Простые и составные числа
- Чем отличаются друг от друга, как найти
- Тест Миллера Рабина
Как определить количество делителей конкретного числа
Чтобы узнать, сколько положительных делителей у конкретного числа a, каноническое разложение которого выглядит как a = p 1 s 1 · p 2 s 2 · … · p n s n , нужно найти значение выражения ( s 1 + 1 ) · ( s 2 + 1 ) · … · ( s n + 1 ) . О количестве наборов переменных t 1 , t 2 , … , t n мы можем судить по величине записанного выражения.
Покажем на примере, как это вычисляется. Определим, сколько будет натуральных делителей у числа 3 900 , которое мы использовали в предыдущей задаче. Каноническое разложение мы уже записывали: 3 900 = 2 2 · 3 · 5 2 · 13 . Значит, s 1 = 2 , s 2 = 1 , s 3 = 2 , s 4 = 1 . Теперь подставим значения s 1 , s 2 , s 3 и s 4 в выражение ( s 1 + 1 ) · ( s 2 + 1 ) · ( s 3 + 1 ) · ( s 4 + 1 ) и вычислим его значение. Имеем ( 2 + 1 ) · ( 1 + 1 ) · ( 2 + 1 ) · ( 1 + 1 ) = 3 · 2 · 3 · 2 = 36 . Значит, это число имеет всего 36 делителей, являющихся натуральными числами. Пересчитаем то количество, что у нас получилось в предыдущей задаче, и убедимся в правильности решения. Если учесть и отрицательные делители, которых столько же, сколько и положительных, то получится, что у данного числа всего будет 72 делителя.
Условие: определите, сколько делителей имеет 84 .
Решение
Раскладываем число на множители.
84 42 21 7 1 2 2 3 7
Записываем каноническое разложение: 84 = 2 2 · 3 · 7 . Определяем, сколько у нас получится положительных делителей: ( 2 + 1 ) · ( 1 + 1 ) · ( 1 + 1 ) = 12 . Для учета отрицательных нужно умножить это число на 2 : 2 · 12 = 24 .
Ответ: всего у 84 будет 24 делителя – 12 положительных и 12 отрицательных.
Видео
Признаки делимости чисел
Признаки делимости чисел используются для того, чтобы ускорить процесс деления чисел. Существует множество признаков делимости и других интересных алгоритмов, значительно ускоряющих решение и освобождающих от излишней волокиты. Рассмотрим наиболее популярные из них.
Признак делимости на 10
Любое число, которое оканчивается нулем, делится без остатка на 10. Чтобы получить частное, достаточно отбросить цифру 0 в делимом.
Например, 380 : 10 = 38. Мы просто отбросили последний ноль в числе 380.
В случае, если мы имеем выражение такого вида 385 : 10, то получится 38 и 5 в остатке, поскольку 380 : 10 = 38, а пятерка это остаток, который не разделился.
Таким образом, если число оканчивается цифрой 0, то оно делится без остатка на 10. Если же оно оканчивается другой цифрой, то оно не делится без остатка на 10. Остаток в этом случае равен последней цифре числа. Действительно, в примере 385 : 10 = 38 (5 в остатке), остаток равен последней цифре в числе 385, то есть пятерке.
Признак делимости на 5 и на 2
Любое число, которое оканчивается нулем, делится без остатка и на 5, и на 2.
Примеры:
10 : 5 = 2
100 : 5 = 20
100 : 2 = 50
Признак делимости на 5
Если число оканчивается цифрой 0 или 5, то оно делится без остатка на 5.
Примеры:
355 : 5 = 71
200 : 5 = 40
475 : 5 = 95
Признак делимости на 3
Число делится на 3, если сумма цифр этого числа делится на 3. Например, рассмотрим число 27, сумма его цифр 2 + 7 = 9. Девять, как мы знаем делится на 3, значит и 27 делится на 3:
27 : 3 = 9
Признак делимости на 9
Число делится на 9, если сумма его цифр делится на 9. Например, рассмотрим число 18. Сумма его цифр 1 + 8 = 9. Девять делится на девять, значит и 18 делится на 9
18 : 9 = 2
Рассмотрим число 846. Сумма его цифр 8 + 4 + 6 = 18. Восемнадцать делится на девять, значит и 846 делится на 9:
Определение [ править
Функция «сумма положительных делителей »σx(n) для вещественного или комплексного числа x определяется как сумма x-х степеней положительных делителей числа n. Функцию можно выразить формулой
σ x ( n ) = ∑ d | n d x , <displaystyle sigma _(n)=sum _d^,!,>
где d | n <displaystyle > означает «d делит n». Обозначения d(n), ν(n) и τ(n) (от немецкого Teiler = делитель) используются также для обозначения σ(n), или функции числа делителей [1] [2] . Если x равен 1, функция называется сигма-функцией или суммой делителей [3] , и индекс часто опускается, так что σ(n) эквивалентна σ1(n) [4] .
Аликвотная сумма s(n) для n — это сумма собственных делителей (то есть делители, за исключением самого n [5] , и равна σ1(n) − n. Аликвотная последовательность для n образуется последовательным вычислением аликвотной суммы, то есть каждое последующее значение в последовательности равно аликвотной сумме предыдущего значения.
Как найти число простых делителей числа
Если речь идет о целом малом числе, то решение такой задачи не представляет никакой сложности. Рассмотрим конкретный пример. Найдем простые делители числа 54.
Для этого:
- 54 делим на «два» и получаем 27;
- 27 нечетное, поэтому разделим его уже не на «два», а на следующее простое число, т. е. «три»;
- заметим, что 27=33;
- таким образом, разложение 54 имеет вид 54 = 21 * 33, т.е. простые делители числа 54 — это «два» и «три».
Однако это не все, что мы хотели знать. Теперь найдем число простых делителей числа 54. Оно равно произведению степеней простых множителей канонического разложения числа n = p1*d1 p2d2*⋅ …⋅*pmdm, увеличенных на 1. Иными словами, в общем случае K = (d1+1)*…* (dm+1).
Тогда для 54 имеем К = 2 * 4 = 8, т. е. общее число делителей равно восьми.
Обратите внимание, что все значительно упростилось, если бы речь шла о 23, 37, 103 и пр., так как каждый знает, сколько делителей у простого числа.
Простые и составные числа
Простым называется число, которое делится без остатка на единицу и на само себя. Другими словами, имеет только два делителя. Например, число 5 делится без остатка на единицу и на само себя:
5 : 1 = 5
5 : 5 = 1
Значит, число 5 является простым числом.
Составным же называется число, которое имеет два и более делителя. Например, число 4 составное, поскольку у него два и более делителя: 4, 2 и 1
4 : 4 = 1
4 : 2 = 2
4 : 1 = 4
Значит, число 4 является составным числом.
Чем отличаются друг от друга, как найти
Делитель отличается от кратного тем, что:
- делитель — это число, НА которое делится заданное число;
- кратное — это число, которое само ДЕЛИТСЯ НА заданное число.
Чтобы найти делители числа, нужно данное число разложить на множители.
Разложить на множители — представить число в виде произведения целых чисел.
Чтобы проверить, является ли одно число делителем другого, нужно разделить число на данное нам.
Для нахождения кратного числа заданному числу, нужно это число последовательно умножать на натуральные числа. Каждое полученное число будет кратно — будет делиться — заданному.
Делители и кратные связаны между собой. Например, делителем числа 15 является 3 и число, кратное 3, равно 15.
Тест Миллера Рабина
В криптографических целях часто используют именно этот вид определения простоты числа, который имеет несколько модификаций.
Тест Миллера—Рабина основан на проверке ряда условий, выполняемых для чисел, которые делятся только на 1 и на самих себя. Если хотя бы одно из требований нарушено, это «экзаменуемое» число признается составным.
Для данного m находятся целые нечетное число t и s, такие чтобы выполнялось условие m-1=2st.
Затем выбирается случайное число a, такое что 1<a<m. Если a не свидетельствует о простоте числа m, то программа должна выдать ответ «m составное» и завершить свою работу. В противном случае выбирается другое случайное число a и проверка повторяется снова. После того как будут установлены r свидетелей простоты, должен быть выдан ответ «m, вероятно, простое», и алгоритм завершит свою работу.
Следствием теоремы Рабина является тот факт, что если r чисел, которые выбраны случайно, признаны свидетелями для определения простоты числа m, то вероятность того, что оно составное, не может превосходить (4-r).
Теперь вы знаете, сколько делителей имеет простое число и как выяснить наиболее примитивный алгоритм вычисления НПД. Эти знания помогут вам в решении многих практических задач.
Теги
Нахождение всех делителей числа
- Все делители числа
- Калькулятор нахождения всех делителей
Все делители числа
Все делители, на которые данное число делится нацело, можно получить из разложения числа на простые множители.
Нахождение всех делителей числа выполняется следующим образом:
- Сначала нужно разложить данное число на простые множители.
- Выписываем каждый полученный простой множитель (без повторов, если какой-то множитель повторяется).
- Далее, находим всевозможные произведения всех полученных простых множителей между собой и добавляем их к выписанным простым множителям.
- В конце добавляем в качестве делителя единицу.
Например, найдём все делители числа 40. Раскладываем число 40 на простые множители:
40 = 23 · 5.
Выписываем (без повторов) каждый полученный простой множитель — это 2 и 5.
Далее находим всевозможные произведения всех полученных простых множителей между собой:
2 · 2 = 4, |
2 · 2 · 2 = 8, |
2 · 5 = 10, |
2 · 2 · 5 = 20, |
2 · 2 · 2 · 5 = 40. |
Добавляем в качестве делителя 1. В итоге получаем все делители, на которые число 40 делится без остатка:
1, 2, 4, 5, 8, 10, 20, 40.
Других делителей у числа 40 нет.
Калькулятор нахождения всех делителей
Данный калькулятор поможет вам получить все делители числа. Просто введите число и нажмите кнопку «Вычислить».
- Как найти количество делителей
- Как найти неизвестный множитель
- Как разделить меньшее число на большее
- — таблица простых чисел;
- — признаки делимости чисел;
- — калькулятор.
Например, количество простых делителей числа 364 найдите таким образом:
Получите числа 2, 2, 7, 13, которые являются простыми натуральными делителями числа 364. Их количество равно 3 (если считать повторяющиеся делители за один).
Все делители числа
Все делители, на которые данное число делится нацело можно получить из разложения числа на простые множители.
Нахождение всех делителей числа выполняется следующим образом:
- Сначала нужно разложить данное число на простые множители.
- Выписываем каждый полученный простой множитель (без повторов, если какой-то множитель повторяется).
- Далее, находим всевозможные произведения всех полученных простых множителей между собой и добавляем их к выписанным простым множителям.
- В конце добавляем в качестве делителя единицу.
Например, найдём все делители числа 40. Раскладываем число 40 на простые множители:
Выписываем (без повторов) каждый полученный простой множитель – это 2 и 5.
Далее находим всевозможные произведения всех полученных простых множителей между собой:
2 · 2 = 4 |
2 · 2 · 2 = 8 |
2 · 5 = 10 |
2 · 2 · 5 = 20 |
2 · 2 · 2 · 5 = 40 |
Добавляем в качестве делителя 1. В итоге получаем все делители, на которые число 40 делится без остатка:
1, 2, 4, 5, 8, 10, 20, 40
Других делителей у числа 40 нет.
Калькулятор нахождения всех делителей
Данный калькулятор поможет вам получить все делители числа. Просто введите число и нажмите кнопку «Вычислить».
В данной статье мы поговорим о том, как найти все делители числа. Начнем с доказательства теоремы, с помощью которой можно задать вид всех делителей определенного числа. Далее возьмем примеры нахождения всех нужных делителей и покажем, как именно определить, сколько делителей имеет конкретное число. В последнем пункте подробно рассмотрим примеры задач на нахождение общих делителей нескольких чисел.
Как найти все делители числа
Чтобы понять материал, изложенный в данном пункте, нужно хорошо знать, что вообще из себя представляют кратные числа и делители. Здесь мы поговорим только о поиске делителей натуральных чисел, т.е. целых положительных. Этим можно ограничиться, поскольку свойство делимости гласит, что делители целого отрицательного числа аналогичны делителям целого положительного, которое будет противоположным по отношению к этому числу. Также сразу уточним, что у нуля есть бесконечно большое число делителей, и находить их смысла не имеет, поскольку в итоге все равно получится 0 .
Если речь идет о простом числе, то его можно разделить только на единицу и на само себя. Значит, у любого простого числа a есть всего 4 делителя, два из которых больше 0 и два меньше: 1 , — 1 , a , — a . Возьмем простое число 7 : у него есть делители 7 , — 7 , 1 и — 1 , и все. Еще один пример: 367 – тоже простое число, которое можно разделить лишь на 1 , — 1 , 367 и — 367 .
Сложнее определить все делители составного числа. Сформулируем теорему, которая лежит в основе данного действия.
Допустим, у нас есть выражение, означающее каноническое разложение числа на простые множители, вида a = p 1 s 1 · p 2 s 2 · … · p n s n . Тогда натуральными делителями числа a будут следующие числа: d = p 1 t 2 · p 2 t 2 · … · p n t n , где t 1 = 0 , 1 , … , s 1 , t 2 = 0 , 1 , … , s 2 , … , t n = 0 , 1 , … , s n .
Перейдем к доказательству этой теоремы. Зная основное определение делимости, мы можем утверждать, что a можно разделить на d , если есть такое число q , что делает верным равенство a = d · q , т.е. q = p 1 ( s 1 − t 1 ) · p 2 ( s 2 — t 2 ) · … · p n ( s n — t n ) .
Любое число, делящее a , будет иметь именно такой вид, поскольку, согласно свойствам делимости, других простых множителей, кроме p 1 , p 2 , … , p n , оно иметь не может, а их показатели в данном случае не превысят s 1 , s 2 , … , s n .
Учитывая доказательство этой теоремы, мы можем сформировать схему нахождения всех положительных делителей данного числа.
Для этого нужно выполнить следующие действия:
- Выполнить каноническое разложение на простые множители и получить выражение вида a = p 1 s 1 · p 2 s 2 · … · p n s n .
- Найти все значения d = p 1 t 2 · p 2 t 2 · … · p n t n , где числа t 1 , t 2 , … , t n будут принимать независимо друг от друга каждое из значений t 1 = 0 , 1 , … , s 1 , t 2 = 0 , 1 , … , s 2 , … , t n = 0 , 1 , … , s n .
Самым трудным в таком расчете является именно перебор всех комбинаций указанных значений. Разберем подробно решения нескольких задач, чтобы наглядно показать применение данной схемы на практике.
Условие: найти все делители 8 .
Решение
Разложим восьмерку на простые множители и получим 8 = 2 · 2 · 2 . Переведем разложение в каноническую форму и получим 8 = 2 3 . Следовательно, a = 8 , p 1 = 2 , s 1 = 3 .
Поскольку все делители восьмерки будут значениями p 1 t 1 = 2 t 1 , то t 1 может принять значения нуля, единицы, двойки, тройки. 3 будет последним значением, ведь s 1 = 3 . Таким образом, если t 1 = 0 , то 2 t 1 = 2 0 = 1 , если 1 , то 2 t 1 = 2 1 = 2 , если 2 , то 2 t 1 = 2 2 = 4 , а если 3 , то 2 t 1 = 2 3 = 8 .
Для нахождения делителей удобно все полученные значения оформлять в виде таблицы:
t 1 | 2 t 1 |
0 | 2 0 = 1 |
1 | 2 1 = 2 |
2 | 2 2 = 4 |
3 | 2 3 = 8 |
Значит, положительными делителями восьмерки будут числа 1 , 2 , 4 и 8 , а отрицательными − 1 , − 2 , − 4 и − 8 .
Ответ: делителями данного числа будут ± 1 , ± 2 , ± 4 , ± 8 .
Возьмем пример чуть сложнее: в нем при разложении числа получится не один, а два множителя.
Условие: найдите все делители числа 567 , являющиеся натуральными числами.
Решение
Начнем с разложения данного числа на простые множители.
567 189 63 21 7 1 3 3 3 3 7
Приведем разложение к каноническому виду и получим 567 = 3 4 · 7 . Затем перейдем к вычислению всех натуральных множителей. Для этого будем присваивать t 1 и t 2 значения 0 , 1 , 2 , 3 , 4 и 0 , 1 , вычисляя при этом значения 3 t 1 · 7 t 2 . Результаты будем вносить в таблицу:
t 1 | t 2 | 3 t 1 · 7 t 2 |
0 | 0 | 3 0 · 7 0 = 1 |
0 | 1 | 3 0 · 7 1 = 7 |
1 | 0 | 3 1 · 7 0 = 3 |
1 | 1 | 3 1 · 7 1 = 21 |
2 | 0 | 3 2 · 7 0 = 9 |
2 | 1 | 3 2 · 7 1 = 63 |
3 | 0 | 3 3 · 7 0 = 27 |
3 | 1 | 3 3 · 7 1 = 189 |
4 | 0 | 3 4 · 7 0 = 81 |
4 | 1 | 3 4 · 7 1 = 567 |
Ответ: натуральными делителями 567 будут числа 27 , 63 , 81 , 189 , 1 , 3 , 7 , 9 , 21 и 567 .
Продолжим усложнять наши примеры – возьмем четырехзначное число.
Условие: найти все делители 3 900 , которые будут больше 0 .
Решение
Проводим разложение данного числа на простые множители. В каноническом виде оно будет выглядеть как 3 900 = 22 · 3 · 52 · 13 . Теперь приступаем к нахождению положительных делителей, подставляя в выражение 2 t 1 · 3 t 2 · 5 t 3 · 13 t 4 значения t 1 , равные 0 , 1 и 2 , t 2 = 0 , 1 , t 3 = 0 , 1 , 2 , t 4 = 0 , 1 . Результаты представляем в табличном виде:
t 1 | t 2 | t 3 | t 4 | 2 t 1 · 3 t 2 · 5 t 3 · 13 t 4 |
0 | 0 | 0 | 0 | 2 0 · 3 0 · 5 0 · 13 0 = 1 |
0 | 0 | 0 | 1 | 2 0 · 3 0 · 5 0 · 13 1 = 13 |
0 | 0 | 1 | 0 | 2 0 · 3 0 · 5 1 · 13 0 = 5 |
0 | 0 | 1 | 1 | 2 0 · 3 0 · 5 1 · 13 1 = 65 |
0 | 0 | 2 | 0 | 2 0 · 3 0 · 5 2 · 13 0 = 25 |
0 | 0 | 2 | 1 | 2 0 · 3 0 · 5 2 · 13 1 = 325 |
0 | 1 | 0 | 0 | 2 0 · 3 1 · 5 0 · 13 0 = 3 |
0 | 1 | 0 | 1 | 2 0 · 3 1 · 5 0 · 13 1 = 39 |
0 | 1 | 1 | 0 | 2 0 · 3 1 · 5 1 · 13 0 = 15 |
0 | 1 | 1 | 1 | 2 0 · 3 1 · 5 1 · 13 1 = 195 |
0 | 1 | 2 | 0 | 2 0 · 3 1 · 5 2 · 13 0 = 75 |
0 | 1 | 2 | 1 | 2 0 · 3 1 · 5 2 · 13 1 = 975 |
t 1 | t 2 | t 3 | t 4 | 2 t 1 · 3 t 2 · 5 t 3 · 13 t 4 |
1 | 0 | 0 | 0 | 2 1 · 3 0 · 5 0 · 13 0 = 2 |
1 | 0 | 0 | 1 | 2 1 · 3 0 · 5 0 · 13 1 = 26 |
1 | 0 | 1 | 0 | 2 1 · 3 0 · 5 1 · 13 0 = 10 |
1 | 0 | 1 | 1 | 2 1 · 3 0 · 5 1 · 13 1 = 130 |
1 | 0 | 2 | 0 | 2 1 · 3 0 · 5 2 · 13 0 = 50 |
1 | 0 | 2 | 1 | 2 1 · 3 0 · 5 2 · 13 1 = 650 |
1 | 1 | 0 | 0 | 2 1 · 3 1 · 5 0 · 13 0 = 6 |
1 | 1 | 0 | 1 | 2 1 · 3 1 · 5 0 · 13 1 = 78 |
1 | 1 | 1 | 0 | 2 1 · 3 1 · 5 1 · 13 0 = 30 |
1 | 1 | 1 | 1 | 2 1 · 3 1 · 5 1 · 13 1 = 390 |
1 | 1 | 2 | 0 | 2 1 · 3 1 · 5 2 · 13 0 = 150 |
1 | 1 | 2 | 1 | 2 1 · 3 1 · 5 2 · 13 1 = 1950 |
t 1 | t 2 | t 3 | t 4 | 2 t 1 · 3 t 2 · 5 t 3 · 13 t 4 |
2 | 0 | 0 | 0 | 2 2 · 3 0 · 5 0 · 13 0 = 4 |
2 | 0 | 0 | 1 | 2 2 · 3 0 · 5 0 · 13 1 = 52 |
2 | 0 | 1 | 0 | 2 2 · 3 0 · 5 1 · 13 0 = 20 |
2 | 0 | 1 | 1 | 2 2 · 3 0 · 5 1 · 13 1 = 260 |
2 | 0 | 2 | 0 | 2 2 · 3 0 · 5 2 · 13 0 = 100 |
2 | 1 | 0 | 1 | 2 2 · 3 0 · 5 2 · 13 1 = 1300 |
2 | 1 | 0 | 0 | 2 2 · 3 1 · 5 0 · 13 0 = 12 |
2 | 1 | 0 | 1 | 2 2 · 3 1 · 5 0 · 13 1 = 156 |
2 | 1 | 1 | 0 | 2 2 · 3 1 · 5 1 · 13 0 = 60 |
2 | 1 | 1 | 1 | 2 2 · 3 1 · 5 1 · 13 1 = 780 |
2 | 1 | 2 | 0 | 2 2 · 3 1 · 5 2 · 13 0 = 300 |
2 | 1 | 2 | 1 | 2 2 · 3 1 · 5 2 · 13 1 = 3900 |
Ответ: делителями числа 3 900 будут: 195 , 260 , 300 , 325 , 390 , 650 , 780 , 975 , 75 , 78 , 100 , 130 , 150 , 156 , 13 , 15 , 20 , 25 , 26 , 30 , 39 , 50 , 52 , 60 , 65 , 1 , 2 , 3 , 4 , 5 , 6 , 10 , 12 , 1 300 , 1 950 , 3 900
Как определить количество делителей конкретного числа
Чтобы узнать, сколько положительных делителей у конкретного числа a, каноническое разложение которого выглядит как a = p 1 s 1 · p 2 s 2 · … · p n s n , нужно найти значение выражения ( s 1 + 1 ) · ( s 2 + 1 ) · … · ( s n + 1 ) . О количестве наборов переменных t 1 , t 2 , … , t n мы можем судить по величине записанного выражения.
Покажем на примере, как это вычисляется. Определим, сколько будет натуральных делителей у числа 3 900 , которое мы использовали в предыдущей задаче. Каноническое разложение мы уже записывали: 3 900 = 2 2 · 3 · 5 2 · 13 . Значит, s 1 = 2 , s 2 = 1 , s 3 = 2 , s 4 = 1 . Теперь подставим значения s 1 , s 2 , s 3 и s 4 в выражение ( s 1 + 1 ) · ( s 2 + 1 ) · ( s 3 + 1 ) · ( s 4 + 1 ) и вычислим его значение. Имеем ( 2 + 1 ) · ( 1 + 1 ) · ( 2 + 1 ) · ( 1 + 1 ) = 3 · 2 · 3 · 2 = 36 . Значит, это число имеет всего 36 делителей, являющихся натуральными числами. Пересчитаем то количество, что у нас получилось в предыдущей задаче, и убедимся в правильности решения. Если учесть и отрицательные делители, которых столько же, сколько и положительных, то получится, что у данного числа всего будет 72 делителя.
Условие: определите, сколько делителей имеет 84 .
Решение
Раскладываем число на множители.
84 42 21 7 1 2 2 3 7
Записываем каноническое разложение: 84 = 2 2 · 3 · 7 . Определяем, сколько у нас получится положительных делителей: ( 2 + 1 ) · ( 1 + 1 ) · ( 1 + 1 ) = 12 . Для учета отрицательных нужно умножить это число на 2 : 2 · 12 = 24 .
Ответ: всего у 84 будет 24 делителя – 12 положительных и 12 отрицательных.
Как вычислить общие делители нескольких чисел
Зная свойства наибольшего общего делителя, можно утверждать, что количество делителей некоторого набора целых чисел будет совпадать с количеством делителей НОД тех же чисел. Это будет справедливо не только для двух чисел, но и для большего их количества. Следовательно, чтобы вычислить все общие делители нескольких чисел, надо определить их наибольший общий множитель и найти все его делители.
Разберем пару таких задач.
Условие: сколько будет натуральных общих делителей у чисел 140 и 50 ? Вычислите их все.
Решение
Начнем с вычисления НОД ( 140 , 50 ) .
Для этого нам потребуется алгоритм Евклида:
140 = 50 · 2 + 40 , 50 = 40 · 1 + 10 , 40 = 10 · 4 , значит, НОД ( 50 , 140 ) = 10 .
Далее выясним, сколько положительных делителей есть у десяти. Разложим его на простые множители и получим 2 0 · 5 0 = 1 , 2 0 · 5 1 = 5 , 2 1 · 5 0 = 2 и 2 1 · 5 1 = 1 0 . Значит, все натуральные общие делители исходного числа – это 1 , 2 , 5 и 10 , а всего их четыре.
Ответ: данные числа имеют четыре натуральных делителя, равные 10 , 5 , 2 и 1 .
Условие: выясните, сколько общих положительных делителей есть у чисел 585 , 315 , 90 и 45 .
Решение
Вычислим их наибольший общий делитель, разложив число на простые множители. Поскольку 90 = 2 · 3 · 3 · 5 , 45 = 3 · 3 · 5 , 315 = 3 · 3 · 5 · 7 и 585 = 3 · 3 · 5 · 13 , то таким делителем будет 5 : НОД ( 90 , 45 , 315 , 585 ) = 3 · 3 · 5 = 3 2 · 5 .
Чтобы узнать количество этих чисел, нужно выяснить, сколько положительных делителей имеет НОД.
НОД ( 90 , 45 , 315 , 585 ) = 3 2 · 5 : ( 2 + 1 ) · ( 1 + 1 ) = 6 .
Ответ: у данных чисел шесть общих делителей.
Составные числа: характеристика, примеры, упражнения
В составленные числа — те целые числа, у которых больше двух делителей. Если мы присмотримся, все числа по крайней мере делятся точно сами на себя и на 1. Те, у которых есть только эти два делителя, называются простыми числами, а те, у которых больше, — составными.
Давайте посмотрим на число 2, которое можно разделить только на 1 и 2. Число 3 также имеет два делителя: 1 и 3. Следовательно, они оба простые. Теперь давайте посмотрим на число 12, которое мы можем точно разделить на 2, 3, 4, 6 и 12. Имея 5 делителей, 12 является составным числом.
А что происходит с числом 1, которое разделяет все остальные? Ну, это не простое число, потому что у него нет двух делителей, и оно не составное, поэтому 1 не попадает ни в одну из этих двух категорий. Но есть еще много других цифр.
Составные числа можно выразить как произведение простых чисел, и это произведение, за исключением порядка множителей, является уникальным для каждого числа. Это подтверждается основной теоремой арифметики, продемонстрированной греческим математиком Евклидом (325–365 до н.э.).
Вернемся к числу 12, которое можно выразить по-разному. Попробуем:
12 = 4 х 3 = 2 х 6 = 12 х 1 = 2 2 х 3 = 3 х 2 2 = 3 х 2 х 2 = 2 х 2 х 3 = 2 х 3 х 2
Фигуры, выделенные жирным шрифтом, представляют собой произведения простых чисел, и единственное, что изменяется, — это порядок факторов, который, как мы знаем, не влияет на произведение. Другие формы, хотя и действительны для выражения 12, не состоят исключительно из простых чисел.
Примеры составных чисел
Если мы хотим разложить составное число на его простые множители, мы должны разделить его между простыми числами таким образом, чтобы деление было точным, то есть чтобы остаток был равен 0.
Эта процедура называется простые множители или каноническое разложение. Основные факторы могут быть увеличены до положительных показателей.
Мы собираемся разложить число 570 на разложение, заметив, что оно четное и поэтому делится на 2, что является простым числом.
Мы будем использовать полосу, чтобы отделить число слева от разделителей справа. Соответствующие частные помещаются под числом по мере их получения. Разложение завершено, когда последняя цифра в левом столбце равна 1:
При делении на 2 получается частное 285, которое делится на 5, другое простое число, заканчивающееся на 5.
57 делится на 3, тоже простое число, поскольку сумма его цифр 5 + 7 = 12 делится на 3.
В итоге мы получаем 19, простое число, делители которого равны 19 и 1:
570 │2
285 │5
57 │3
19 │19
1 │
Получив 1, мы можем выразить 570 следующим образом:
570 = 2 х 5 х 3 х 19
И мы видим, что на самом деле это произведение 4 простых чисел.
В этом примере мы начинаем с деления на 2, но те же множители (в другом порядке) были бы получены, если бы мы начали, например, с деления на 5.
Критерии делимости
Чтобы разложить составное число на простые множители, необходимо точно разделить его. Критерии делимости простых чисел — это правила, которые позволяют узнать, когда одно число точно делится на другое, без необходимости пытаться или доказывать.
–Делимость на 2
Все четные числа, заканчивающиеся на 0 или четное число, делятся на 2.
–Делимость на 3
Если сумма цифр числа кратна 3, то число также делится на 3.
–Делимость на 5
Числа, оканчивающиеся на 0 или 5, делятся на 5.
-Делимость на 7
Число делится на 7, если при разделении последней цифры, умножении ее на 2 и вычитании оставшегося числа полученное значение будет кратным 7.
Это правило кажется немного более сложным, чем предыдущие, но на самом деле его не так уж и много, поэтому давайте рассмотрим пример: будет ли 98 делиться на 7?
Давайте следовать инструкциям: мы отделяем последнюю цифру, которая равна 8, мы умножаем ее на 2, что дает 16. Число, которое остается при разделении 8, равно 9. Мы вычитаем 16 — 9 = 7. И поскольку 7 делится на себя, 98 делится. между 7.
-Делимость на 11
Если сумму цифр в четной позиции (2, 4, 6…) вычесть из суммы цифр в нечетной позиции (1, 3, 5, 7…), и мы получим 0 или кратное 11, число будет делится на 11.
Первые числа, кратные 11, легко определить: это 11, 22, 33, 44… 99. Но будьте осторожны, 111 — нет, вместо 110.
В качестве примера давайте посмотрим, делится ли 143 на 11.
Это число состоит из 3 цифр, единственная четная цифра — 4 (вторая), две нечетные цифры — 1 и 3 (первая и третья), а их сумма равна 4.
Обе суммы вычитаются: 4-4 = 0, и поскольку получается 0, оказывается, что 143 делится на 11.
-Делимость на 13
Число без разряда единиц необходимо вычесть из 9-кратной этой цифры. Если счетчик возвращает 0 или кратное 13, число кратно 13.
В качестве примера мы проверим, что 156 делится на 13. Цифра из единиц равна 6, а число, которое остается без нее, равно 15. Мы умножаем 6 x 9 = 54 и теперь вычитаем 54 — 15 = 39.
Но 39 равно 3 x 13, поэтому 56 делится на 13.
Простые числа друг к другу
Два или более простых или составных числа могут быть простыми или взаимно простыми числами. Это означает, что их единственный общий делитель равен 1.
Когда дело доходит до взаимных простых чисел, следует помнить о двух важных свойствах:
-Два, три и более последовательных числа всегда просты по отношению друг к другу.
-То же самое можно сказать о двух, трех и более последовательных нечетных числах.
Например, 15, 16 и 17 являются простыми числами друг для друга, а также 15, 17 и 19.
Как узнать, сколько делителей у составного числа
У простого числа два делителя, одно и то же число и 1. А сколько делителей у составного числа? Это могут быть двоюродные братья и сестры.
Пусть N составное число, выраженное в терминах его канонического разложения следующим образом:
N = а п . б м . c п . р k
Где a, b, c… r — простые множители, а n, m, p… k — соответствующие показатели. Ну, количество делителей C, которое имеет N, определяется как:
C = (n +1) (m + 1) (p +1)… (k + 1)
С C = простые делители + составные делители + 1
Например, 570, что выражается так:
570 = 2 х 5 х 3 х 19
Все простые множители увеличиваются до 1, поэтому 570 имеет:
C = (1 + 1) (1 + 1) (1+ 1) (1 +1) = 16 делителей
Из этих 10 делителей мы уже знаем: 1, 2, 3, 5, 19 и 570. Отсутствуют еще 10 делителей, которые являются составными числами: 6, 10, 15, 30, 38, 57, 95, 114, 190 и 285. Их можно найти, наблюдая разложение на простые множители, а также умножая комбинации этих множителей вместе.
Простые и составные числа.
Число 1 имеет только один делитель — единицу. Любое другое натуральное число а имеет по крайней мере два делителя — единицу и само число а. Действительно, а:1 = а, а :а = 1.
Число 5 имеет только два делителя — числа 1 и 5. Только два делителя имеют также, в частности, числа 2, 7, 11, 13. Такие числа именуются простыми.
Натуральное число называют простым, если оно имеет только два натуральных делителя: единицу и само это число.
Для комфорта была сформирована таблица простых чисел. Число два — минимальное простое число. Заметим, что это единственное чётное простое число. Фактически, все другие чётные числа имеют минимально три делителя: число 1, число 2 и само число.
Простых чисел бесчисленное множество. Максимального простого числа не бывает.
У чисел 6, 15, 49, 1000 есть больше двух делителей.
Натуральное число принято называть составным, если у него бывает больше двух натуральных делителей.
Поскольку единица имеет только один делитель, то ее не относят ни к простым, ни к составным числам.
Составное число 105 можно различными методами отобразить в виде произведения его делителей.
105 = 15 • 7 = 35 • 3 = 5 • 21 = 3 • 5 • 7.
Отличительной чертой конечного произведения выступает то, что все его множители — простые числа. Указывают, что число 105 разложено на простые множители. Любое составное число можно представить в виде произведения простых чисел, то есть разложить на простые множители.
Заметим, что любые два разложения числа на простые множители состоят из одних и тех же множителей и могут отличаться только их последовательностью. Как правило, произведение одинаковых множителей в разложении числа на простые множители заменяют степенью.
18 = 2 • 3 2 ; 80 = 2 4 • 5; 81 = 3 4 ; 200 = 2 3 – 5 2 .
При разложении числа на простые множители целесообразно использовать схему, которую продемонстрируем на примере разложения числа 2940:
1) 2940 поделится на 2, 2940 : 2 = 1470;
2) 1470 поделится на 2, 1470 : 2 = 735;
3) 735 не поделится на 2, но поделится на 3, 735 : 3 = 245;
4) 245 не поделится на 3, но поделится на 5, 245 : 5 = 49;
5) 49 не поделится на 5, но поделится на 7, 49 : 7 = 7;
6) 7 поделится на 7, 7 : 7 = 1.
Таким образом, 2940 = 2 • 1470 = 2 • 2 • 735 = 2 • 2 • 3 • 245 = = 2 • 2 • 3 • 5 • 49 = 2 • 2 • 3 • 5 • 7 • 7 = 2 2 • 3 • 5 • 7 2 .
Если простые числа записать в порядке их возрастания, то образуется последовательность простых чисел: 2, 3, 5, 7, 11, 13, 17…….
Последовательность простых чисел имеет много интересных свойств и тайн. Например, ученые Древней Эллады отметили, что среди простых чисел много таких разность которых равна двум, например: 3 и 5; 5 и 7; 11 и 13; 17 и 19 и т.д. Подобные пары чисел именуют простыми числами близнецами. Уже более 25 веков ученные стараются найти существуют ли максимальное число близнец, но до сих пор ответ на этот вопрос не найден.
Как найти количество делителей целого числа
В создании этой статьи участвовала наша опытная команда редакторов и исследователей, которые проверили ее на точность и полноту.
Команда контент-менеджеров wikiHow тщательно следит за работой редакторов, чтобы гарантировать соответствие каждой статьи нашим высоким стандартам качества.
Количество просмотров этой статьи: 103 652.
Число называется делителем (или множителем) другого числа в том случае, если при делении на него получается целый результат без остатка. [1] X Источник информации Для малого числа (например, 6) определить количество делителей довольно легко: достаточно выписать все возможные произведения двух целых чисел, которые дают заданное число. При работе с большими числами определить количество делителей становится сложнее. Тем не менее, если вы разложите целое число на простые множители, то легко сможете определить число делителей с помощью простой формулы.