Как найти стороны прямоугольного треугольника
- Главная
- /
- Математика
- /
- Геометрия
- /
- Как найти стороны прямоугольного треугольника
Чтобы посчитать стороны прямоугольного треугольника воспользуйтесь нашим очень удобным онлайн калькулятором:
Онлайн калькулятор
Чтобы вычислить длины сторон прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):
- для гипотенузы (с):
- длины катетов a и b
- длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
- длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
- для катета:
- длину гипотенузы (с) и длину одного из катетов
- длину гипотенузы (с) и прилежащий к искомому катету (a или b) острый угол (β или α, соответственно)
- длину гипотенузы (с) и противолежащий к искомому катету (a или b) острый угол (α или β, соответственно)
- длину одного из катетов (a или b) и прилежащий к нему острый угол (β или α, соответственно)
- длину одного из катетов (a или b) и противолежащий к нему острый угол (α или β, соответственно)
Введите их в соответствующие поля и получите результат.
Найти гипотенузу (c)
Найти гипотенузу по двум катетам
Катет a =
Катет b =
Гипотенуза c =
0
Чему равна гипотенуза (сторона с) если известны оба катета (стороны a и b)?
Формула
Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов:
c² = a² + b²
следовательно: c = √a² + b²
Пример
Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 3 см, а катет b = 4 см:
c = √3² + 4² = √9 + 16 = √25 = 5 см
Найти гипотенузу по катету и прилежащему к нему острому углу
Катет (a или b) =
Прилежащий угол (β или α) =
Гипотенуза c =
0
Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и прилежащий к нему угол?
Формула
c = a/cos(β) = b/cos(α)
Пример
Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а прилежащий к нему ∠β = 60°:
c = 2 / cos(60) = 2 / 0.5 = 4 см
Найти гипотенузу по катету и противолежащему к нему острому углу
Катет (a или b) =
Противолежащий угол (α или β) =
Гипотенуза c =
0
Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и противолежащий к нему угол?
Формула
c = a/sin(α) = b/sin(β)
Пример
Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а противолежащий к нему ∠α = 30°:
c = 2 / sin(30) = 2 / 0.5 = 4 см
Найти гипотенузу по двум углам
Найти гипотенузу прямоугольного треугольника только по двум острым углам невозможно.
Найти катет
Найти катет по гипотенузе и катету
Гипотенуза c =
Катет (известный) =
Катет (искомый) =
0
Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и второй катет?
Формула
a = √c² — b²
b = √c² — a²
Пример
Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 5 см, а катет b = 4 см:
a = √5² — 4² = √25 — 16 = √9 = 3 см
Найти катет по гипотенузе и прилежащему к нему острому углу
Гипотенуза c =
Угол (прилежащий катету) = °
Катет =
0
Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и прилежащий к искомому катету острый угол?
Формула
a = c ⋅ cos(β)
b = c ⋅ cos(α)
Пример
Для примера посчитаем чему равен катет b прямоугольного треугольника если гипотенуза c = 5 см, а ∠α = 60°:
b = 5 ⋅ cos(60) = 5 ⋅ 0.5 = 2.5 см
Найти катет по гипотенузе и противолежащему к нему острому углу
Гипотенуза c =
Угол (противолежащий катету) = °
Катет =
0
Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и противолежащий к искомому катету острый угол?
Формула
a = c ⋅ sin(α)
b = c ⋅ sin(β)
Пример
Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 4 см, а ∠α = 30°:
a = 4 ⋅ sin(30) = 4 ⋅ 0.5 = 2 см
Найти катет по второму катету и прилежащему к нему острому углу
Катет (известный) =
Угол (прилежащий известному катету) = °
Катет (искомый) =
0
Чему равен один из катетов прямоугольного треугольника если известен другой катет и прилежащий к нему острый угол?
Формула
a = b ⋅ tg(α)
b = a ⋅ tg(β)
Пример
Для примера посчитаем чему равен катет b прямоугольного треугольника если катет a = 2 см, а ∠β = 45°:
b = 2 ⋅ tg(45) = 2 ⋅ 1 = 2 см
Найти катет по второму катету и противолежащему к нему острому углу
Катет (известный) =
Угол (противолежащий известному катету) = °
Катет (искомый) =
0
Чему равен один из катетов прямоугольного треугольника если известен другой катет и противолежащий к нему острый угол?
Формула
a = b / tg(β)
b = a / tg(α)
Пример
Для примера посчитаем чему равен катет a прямоугольного треугольника если катет b = 3 см, а ∠β = 35°:
a = 3 / tg(35) ≈ 3 / 0.7 ≈ 4.28 см
См. также
Известна гипотенуза AB и угол a
sin(a)=BC/AB
BC = sin(a) x AB
cos(a)=AC/AB
AC = cos(a) x AB
Как найти синус угла ?
Как найти косинус угла ?
Решение
Катет BC = sin(30) x 30 = 15
Катет AC = cos(30) x 30 = 25.9807621
Катеты прямоугольного треугольника с гипотенузой 30 и углом 30 равны 15 и 25.9807621
Ссылка на результат
?n1=30&n2=30
Утверждение
Катет, лежащий против угла 30 градусов, равен половине гипотенузы.
Дано:
∆ ABC,
∠C=90º,
∠A=30º.
Доказать:
Доказательство:
I способ
Так как сумма острых углов прямоугольного треугольника равна 90º, то
∠B=90º-∠A=90º-30º=60º.
Проведем из вершины прямого угла медиану CF.
Так как медиана, проведенная к гипотенузе, равна половине гипотенузы, то
то есть, CF=AF=BF.
Так как BF=CF, то треугольник BFC — равнобедренный с основанием BC.
Следовательно, у него углы при основании равны:
∠B=∠BCF=60º.
Так как сумма углов треугольника равна 180º, то в треугольнике BFC
∠BFC =180º -(∠B+∠BCF)=60º.
Поскольку все углы треугольника BFC равны, то этот треугольник — равносторонний.
Значит, все его стороны равны и
Что и требовалось доказать.
II способ
Так как сумма острых углов прямоугольного треугольника равна 90º, то
∠B=90º-∠A=90º-30º=60º.
Построим треугольник ADC, равный треугольнику ABC.
В нем ∠D=∠B=60º и ∠CAD=∠CAB=30º ( по построению).
Отсюда, ∠BAD=∠CAD+∠CAB=60º.
Следовательно, в треугольнике ABD все углы равны:
∠BAD=∠D=∠B=60º.
Значит, треугольник ABC — равносторонний, и все его стороны равны: AB=AD=BD.
BC=DC (по построению), поэтому
Что и требовалось доказать.
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов
Обратная теорема Пифагора:
Если в треугольнике квадрат одной стороны равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным
Прямоугольные треугольники
Прямоугольный треугольник — это треугольник, у которого один угол прямой (равен $90$ градусов).
Катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.
Некоторые свойства прямоугольного треугольника:
1. Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.
2. Если в прямоугольном треугольнике один из острых углов равен $45$ градусов, то этот треугольник равнобедренный.
3. Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)
4. Катет прямоугольного треугольника, лежащий напротив угла в $60$ градусов, равен малому катету этого треугольника, умноженному на $√3$.
5. В равнобедренном прямоугольном треугольнике гипотенуза равна катету, умноженному на $√2$
6. Медиана прямоугольного треугольника, проведенная к его гипотенузе, равна ее половине и радиусу описанной окружности $(R)$
7. Медиана прямоугольного треугольника, проведенная к его гипотенузе, делит треугольник на два равнобедренных треугольника, основаниями, которых являются катеты данного треугольника.
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.
Соотношение между сторонами и углами в прямоугольном треугольнике:
В прямоугольном треугольнике $АВС$, с прямым углом $С$
Для острого угла $В$: $АС$ — противолежащий катет; $ВС$ — прилежащий катет.
Для острого угла $А$: $ВС$ — противолежащий катет; $АС$ — прилежащий катет.
1. Синусом $(sin)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
2. Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
3. Тангенсом $(tg)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
4. Котангенсом $(ctg)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
В прямоугольном треугольнике $АВС$ для острого угла $В$:
5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения.
Значения тригонометрических функций некоторых углов:
$α$ | $30$ | $45$ | $60$ |
$sinα$ | $<1>/<2>$ | $<√2>/<2>$ | $<√3>/<2>$ |
$cosα$ | $<√3>/<2>$ | $<√2>/<2>$ | $<1>/<2>$ |
$tgα$ | $<√3>/<3>$ | $1$ | $√3$ |
$ctgα$ | $√3$ | $1$ | $<√3>/<3>$ |
Площадь прямоугольного треугольника равна половине произведения его катетов
В треугольнике $АВС$ угол $С$ равен $90$ градусов, $АВ=10, АС=√<91>$. Найдите косинус внешнего угла при вершине $В$.
Так как внешний угол $АВD$ при вершине $В$ и угол $АВС$ смежные, то
Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. Следовательно, для угла $АВС$:
Катет $ВС$ мы можем найти по теореме Пифагора:
Подставим найденное значение в формулу косинуса
В треугольнике $АВС$ угол $С$ равен $90$ градусов, $sinA=<4>/<5>, AC=9$. Найдите $АВ$.
Распишем синус угла $А$ по определению:
Так как мы знаем длину катета $АС$ и он не участвует в записи синуса угла $А$, то можем $ВС$ и $АВ$ взять за части $4х$ и $5х$ соответственно.
Применим теорему Пифагора, чтобы отыскать $«х»$
Так как длина $АВ$ составляет пять частей, то $3∙5=15$
В прямоугольном треугольнике с прямым углом $С$ и высотой $СD$:
Квадрат высоты, проведенной к гипотенузе, равен произведению отрезков, на которые высота поделила гипотенузу.
В прямоугольном треугольнике : квадрат катета равен произведению гипотенузы на проекцию этого катета на гипотенузу.
Произведение катетов прямоугольного треугольника равно произведению его гипотенузы на высоту, проведенную к гипотенузе.
Треугольник. Свойство прямоугольного треугольника с углом в 30°.
Катет прямоугольного треугольника, противолежащий углу в 30°, будет равняться половине гипотенузы.
Изобразим прямоугольный треугольник АСВ с углом В = 30°. В этом случае второй его острый угол будет 60°.
Обоснуем, что катет АС равняется половине гипотенузы АВ то есть АС = 1/2АВ.
Продлим катет АС за вершину прямого угла С и начертим отрезок СМ, причем части равные СМ=АС. Прочертим ВМ, соединив таким образом точки В и М. Сформированные прямоугольные треугольники ВСМ и АСВ эквиваленты (равны по двум катетам). Наглядно видно, что всякий угол треугольника АМВ по 60°, значит можно сделать вывод, что образовавшийся треугольник — равносторонний.
Сторона АС = 1/2 АМ, а поскольку АМ = АВ, а значит и катет АС будет равен 1/2 гипотенузы АВ.
http://examer.ru/ege_po_matematike/teoriya/pryamougolnie_treugolniki
http://www.calc.ru/Treugolnik-Svoystvo-Pryamougolnogo-Treugolnika-S-Uglom-V-30.html
Содержание
Свойство
Катет прямоугольного треугольника, лежащий напротив угла в
$30^circ$, равен половине гипотенузы.
Доказательство
Рассмотрим треугольник $ABC$, в котором $angle C=90^circ, angle A=30^circ$.
Докажем, что $AB=2cdot CB$.
Пусть $CM$ – медиана.
Тогда $CM=MA=MB$, следовательно, $triangle AMC$ и $triangle BMC$ – равнобедренные.
Тогда $angle A=angle ACM$, следовательно, $angle MCB=angle CBM=60^circ$.
Тогда $triangle BCM$ – равносторонний, следовательно, $BC=BM=frac{1}{2}cdot AB$.
Первый признак
Если катет прямоугольного треугольника равен половине гипотенузы, то
угол, противолежащий этому катету, равен $30^circ$.
Доказательство
Рассмотрим прямоугольный треугольник $ABC$, в котором $angle C=90^circ, BC=frac{1}{2}cdot AB$.
Докажем, что $angle A=30^circ$.
Проведем медиану $CM$. Тогда по свойству медианы прямоугольного треугольника $CM = AM = BM$.
Тогда треугольник $CMB$ – равносторонний, а, значит $angle BCM = 60^circ.$
Тогда $angle ACM = 30^circ$.
И поскольку треугольник $ACM$ – равнобедренный, то $angle A = angle ACM = 30^circ.$
Второй признак
Если в треугольнике напротив угла в $30^circ$ лежит сторона, равная
половине другой стороны этого треугольника, то треугольник
прямоугольный.
Доказательство
Первый способ.
Рассмотрим треугольник $ABC$, в котором $AC=x, AB=2x, angle B=30^circ$.
Докажем, что тогда $angle C=90^circ$.
Предположим противное, тогда из точки $B$ можно опустить перпендикуляр $AC_1$ на прямую $CB$.
Треугольник $ABC_1$ – прямоугольный,$angle B=30^circ$, следовательно, $AC_1=x$.
Тогда $triangle CAC_1$ – равнобедренный, и $angle C_1=angle ACC_1=90^circ$, что невозможно.
Значит, $angle C=90^circ.$
Второй способ.
Рассмотрим треугольник $ABC$, в котором $AC=x, AB=2x, angle B=30^circ$.
По теореме синусов для $triangle ABC$: $dfrac{x}{sin{30^circ}}=dfrac{2x}{sin{angle C}}$.
Тогда $sin{angle C}=1$, то есть $angle C=90^circ$.