Как найти гипотенузу: 4 способа поиска ответа
После изучения темы про прямоугольные треугольники ученики часто выбрасывают из головы всю информацию о них. В том числе и то, как найти гипотенузу, не говоря уже о том, что это такое.
И напрасно. Потому что в дальнейшем диагональ прямоугольника оказывается этой самой гипотенузой, и ее нужно найти. Или диаметр окружности совпадает с самой большой стороной треугольника, один из углов которого прямой. И найти ее без этого знания невозможно.
Существует несколько вариантов того, как найти гипотенузу треугольника. Выбор метода зависит от исходного набора данных в условии задачи величин.
Способ под номером 1: даны оба катета
Это самый запоминающийся метод, потому что использует теорему Пифагора. Только иногда ученики забывают, что по этой формуле находится квадрат гипотенузы. Значит, чтобы найти саму сторону, нужно будет извлечь квадратный корень. Поэтому формула для гипотенузы, которую принято обозначать буквой «с», будет выглядеть так:
с = √ (а 2 + в 2 ), где буквами «а» и «в» записаны оба катета прямоугольного треугольника.
Способ под номером 2: известен катет и угол, который к нему прилежит
Для того чтобы узнать, как найти гипотенузу, потребуется вспомнить тригонометрические функции. А именно косинус. Для удобства будем считать, что даны катет «а» и прилежащий к нему угол α.
Теперь нужно вспомнить, что косинус угла прямоугольного треугольника равен отношению двух сторон. В числителе будет стоять значение катета, а в знаменателе — гипотенузы. Из этого следует, что последнюю можно будет сосчитать по формуле:
с = а / cos α.
Способ под номером 3: даны катет и угол, который лежит напротив него
Чтобы не запутаться в формулах, введем обозначение для этого угла — β, а сторону оставим прежнюю «а». В этом случае потребуется другая тригонометрическая функция — синус.
Как и в предыдущем примере, синус равен отношению катета к гипотенузе. Формула этого способа выглядит так:
с = а / sin β.
Для того чтобы не запутаться в тригонометрических функциях, можно запомнить простое мнемоническое привило: если в задаче идет речь о противолежащем угле, то нужно использовать синус, если — о прилежащем, то косинус. Следует обратить внимание на первые гласные в ключевых словах. Они образуют пары о-и или и-о.
Способ под номером 4: по радиусу описанной окружности
Теперь, для того чтобы узнать, как найти гипотенузу, потребуется вспомнить свойство окружности, которая описана около прямоугольного треугольника. Оно гласит следующее. Центр окружности совпадает с серединой гипотенузы. Если сказать по-другому, то самая большая сторона прямоугольного треугольника равна диагонали окружности. То есть удвоенному радиусу. Формула для этой задачи будет выглядеть так:
с = 2 * r, где буквой r обозначен известный радиус.
Это все возможные способы того, как находить гипотенузу прямоугольного треугольника. Пользоваться в каждой конкретной задаче нужно тем методом, который больше подходит по набору данных.
Пример задачи №1
Условие: в прямоугольном треугольнике проведены медианы к обоим катетам. Длина той, которая проведена к большей стороне, равна √52. Другая медиана имеет длину √73. Требуется вычислить гипотенузу.
Так как в треугольнике проведены медианы, то они делят катеты на два равных отрезка. Для удобства рассуждений и поиска того, как найти гипотенузу, нужно ввести несколько обозначений. Пусть обе половинки большего катета будут обозначены буквой «х», а другого — «у».
Теперь нужно рассмотреть два прямоугольных треугольника, гипотенузами у которых являются известные медианы. Для них нужно дважды записать формулу теоремы Пифагора:
(2у) 2 + х 2 = (√52) 2
(у) 2 + (2х) 2 = (√73) 2 .
Эти два уравнения образуют систему с двумя неизвестными. Решив их, легко можно будет найти катеты исходного треугольника и по ним его гипотенузу.
Сначала нужно все возвести во вторую степень. Получается:
Из второго уравнения видно, что у 2 = 73 — 4х 2 . Это выражение нужно подставить в первое и вычислить «х»:
4(73 — 4х 2 ) + х 2 = 52.
292 — 16 х 2 + х 2 = 52 или 15х 2 = 240.
Из последнего выражения х = √16 = 4.
Теперь можно вычислить «у»:
у 2 = 73 — 4(4) 2 = 73 — 64 = 9.
По данным условия получается, что катеты исходного треугольника равны 6 и 8. Значит, можно воспользоваться формулой из первого способа и найти гипотенузу:
√(6 2 + 8 2 ) = √(36 + 64) = √100 = 10.
Ответ: гипотенуза равна 10.
Пример задачи №2
Условие: вычислить диагональ, проведенную в прямоугольнике с меньшей стороной, равной 41. Если известно, что она делит угол на такие, которые соотносятся как 2 к 1.
В этой задаче диагональ прямоугольника является наибольшей стороной в треугольнике с углом 90º. Поэтому все сводится к тому, как найти гипотенузу.
В задаче идет речь об углах. Это значит, что нужно будет пользоваться одной из формул, в которых присутствуют тригонометрические функции. А сначала требуется определить величину одного из острых углов.
Пусть меньший из углов, о которых идет речь в условии, будет обозначен α. Тогда прямой угол, который делится диагональю, будет равен 3α. Математическая запись этого выглядит так:
Из этого уравнения просто определить α. Он будет равен 30º. Причем он будет лежать напротив меньшей стороны прямоугольника. Поэтому потребуется формула, описанная в способе №3.
Гипотенуза равна отношению катета к синусу противолежащего угла, то есть:
Как найти гипотенузу через радиус описанной окружности
Основные метрические сооьтношения в прямоугольном треугольнике
§1. Прямоугольный треугольник. Метрические соотношения.
Основные метрические сооьтношения в прямоугольном треугольнике
Пусть `ABC` прямоугольный треугольник с прямым углом `C` и острым углом при вершине `A`, равным `alpha` (рис. 1).
Используем обычные обозначения:
`c` — гипотенуза `AB`;
`a` и `b` – катеты `BC` и `AC` (по-гречески «kathetos — катет» означает отвес, поэтому такое изображение прямоугольного треугольника нам представляется естественным);
`a_c` и `b_c` – проекции `BD` и `AD` катетов на гипотенузу;
`h` – высота `CD`, опущенная на гипотенузу;
`m_c` – медиана `CM`, проведённая к гипотенузе;
`R` – радиус описанной окружности;
`r` – радиус вписанной окружности.
Напомним, что если `alpha` — величина острого угла `A` прямоугольного треугольника `ABC` (см. рис. 1), то
`sin alpha = a/c`, `cos alpha = b/c` и `»tg»alpha = a/b`.
Значения синуса, косинуса и тангенса острого угла прямоугольного треугольника зависят только от меры угла и не зависят от размеров и расположения треугольника.
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов:
`c^2 = a^2 + b^2`
Доказательство теоремы повторите по учебнику.
Выведем ряд соотношений между элементами прямоугольного треугольника.
Квадрат катета равен произведению гипотенузы и его проекции на гипотенузу
Если `/_ A = alpha` (см. рис. 1), то `/_ CBD = 90^@ — alpha` и `/_ BCD = alpha`. Из треугольника `ABC` `sin alpha = (BC)/(AB)`, а из треугольника `BCD` `sin alpha = (BD)/(BC)`.
Значит, `(BC)/(AB) = (BD)/(BC)`, откуда `BC^2 = AB * BD`, т. е. `a^2 = c * a_c` . Аналогично доказывается второе равенство.
Квадрат высоты, опущенной на гипотенузу, равен произведению проекции катетов на гипотенузу
Из треугольника `ACD` (рис. 1) имеем `»tg»alpha = (CD)/(AD)`, а из треугольника `BCD` `»tg»alpha = (BD)/(CD)`.
Значит `(BD)/(CD) = (CD)/(AD)`, откуда `CD^2 = AD * BD`, т. е. `h^2 = a_c * b_c`.
Произведение катетов равно произведению гипотенузы и высоты, опущенной на гипотенузу
Из треугольника `ABC` имеем `sin alpha = (BC)/(AB)`, а из треуольника `ACD` `sin alpha = (CD)/(AC)`.
Таким образом, `(BC)/(AB) = (CD)/(AC)`, откуда `BC * AC = AB * CD`, т. е. `a * b = c * h`.
Медиана, проведённая к гипотенузе, равна половине гипотенузы, т. е.
Пусть `AM = BM`. Проведём $$ MKVert BC$$ (рис. 2), тогда по теореме Фалеса `AK = CK`
.
Кроме того, из того, что `BC _|_ AC` и $$ MKVert BC$$ следует `MK _|_ AC`. В прямоугольных треугольниках `CMK` и `AMK` катет `MK` общий, катеты `CK` и `AK` равны. Эти треугольники равны и `CM = AM`, т. е. `CM = 1/2 AB`.
Полезно также запомнить, что медиана к гипотенузе разбивает треугольник на два равнобедренных треугольника.
Радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы
Это следует из Свойства 4, действительно, `MA = MB = MC`, следовательно, окружность с центром в точке `M` и радиуса `c/2` проходит через три вершины.
Сумма катетов равна удвоенной сумме радиусов описанной и вписанной окружностей
`a + b = 2(R + r)` или `a + b = c + 2r`
Пусть `O` — центр вписанной окружности и `F`, `N` и `S` — точки касания сторон треугольника `ABC` (рис. 3), тогда `OF_|_ BC`, `ON _|_ AC`, `OS _|_ AB` и `OF = ON = OS = r`. Далее, `OFCN` — квадрат со стороной `r`, поэтому `BF = BC — FC`, `AN = AC — CN`, т. е. `BF = a — r` и `AN = b — r`.
Прямоугольные треугольники `AON` и `AOS` равны (гипотенуза `AO` — общая, катеты `ON` и `OS` равны), следовательно, `AS = AN`, т. е. `AS = b — r`.
Аналогично доказывается, что `BS = a — r`, поэтому из `AB = AS + BS` следует `c = (b — r) + (a — r)`, т. е. `a + b = c + 2r`. Зная, что `c = 2R`, окончательно получаем `a + b = 2(R + r)`.
Равенства, доказанные в Свойствах 1 и 2, записываются также как:
Как найти гипотенузу через радиус описанной окружности
Задание 6. Радиус окружности, описанной около прямоугольного треугольника, равен 4. Найдите гипотенузу этого треугольника.
Если прямоугольный треугольник вписан в окружность, то его гипотенуза AB всегда будет лежать на диаметре окружности, следовательно, она равна двум радиусам описанной окружности:
.
http://zftsh.online/articles/5597
http://self-edu.ru/math_egecat6.php?id=9_12
После изучения темы про прямоугольные треугольники ученики часто выбрасывают из головы всю информацию о них. В том числе и то, как найти гипотенузу, не говоря уже о том, что это такое.
И напрасно. Потому что в дальнейшем диагональ прямоугольника оказывается этой самой гипотенузой, и ее нужно найти. Или диаметр окружности совпадает с самой большой стороной треугольника, один из углов которого прямой. И найти ее без этого знания невозможно.
Существует несколько вариантов того, как найти гипотенузу треугольника. Выбор метода зависит от исходного набора данных в условии задачи величин.
Способ под номером 1: даны оба катета
Это самый запоминающийся метод, потому что использует теорему Пифагора. Только иногда ученики забывают, что по этой формуле находится квадрат гипотенузы. Значит, чтобы найти саму сторону, нужно будет извлечь квадратный корень. Поэтому формула для гипотенузы, которую принято обозначать буквой «с», будет выглядеть так:
с = √ (а2 + в2), где буквами «а» и «в» записаны оба катета прямоугольного треугольника.
Способ под номером 2: известен катет и угол, который к нему прилежит
Для того чтобы узнать, как найти гипотенузу, потребуется вспомнить тригонометрические функции. А именно косинус. Для удобства будем считать, что даны катет «а» и прилежащий к нему угол α.
Теперь нужно вспомнить, что косинус угла прямоугольного треугольника равен отношению двух сторон. В числителе будет стоять значение катета, а в знаменателе — гипотенузы. Из этого следует, что последнюю можно будет сосчитать по формуле:
с = а / cos α.
Способ под номером 3: даны катет и угол, который лежит напротив него
Чтобы не запутаться в формулах, введем обозначение для этого угла — β, а сторону оставим прежнюю «а». В этом случае потребуется другая тригонометрическая функция — синус.
Как и в предыдущем примере, синус равен отношению катета к гипотенузе. Формула этого способа выглядит так:
с = а / sin β.
Для того чтобы не запутаться в тригонометрических функциях, можно запомнить простое мнемоническое привило: если в задаче идет речь о противолежащем угле, то нужно использовать синус, если — о прилежащем, то косинус. Следует обратить внимание на первые гласные в ключевых словах. Они образуют пары о-и или и-о.
Способ под номером 4: по радиусу описанной окружности
Теперь, для того чтобы узнать, как найти гипотенузу, потребуется вспомнить свойство окружности, которая описана около прямоугольного треугольника. Оно гласит следующее. Центр окружности совпадает с серединой гипотенузы. Если сказать по-другому, то самая большая сторона прямоугольного треугольника равна диагонали окружности. То есть удвоенному радиусу. Формула для этой задачи будет выглядеть так:
с = 2 * r, где буквой r обозначен известный радиус.
Это все возможные способы того, как находить гипотенузу прямоугольного треугольника. Пользоваться в каждой конкретной задаче нужно тем методом, который больше подходит по набору данных.
Пример задачи №1
Условие: в прямоугольном треугольнике проведены медианы к обоим катетам. Длина той, которая проведена к большей стороне, равна √52. Другая медиана имеет длину √73. Требуется вычислить гипотенузу.
Решение.
Так как в треугольнике проведены медианы, то они делят катеты на два равных отрезка. Для удобства рассуждений и поиска того, как найти гипотенузу, нужно ввести несколько обозначений. Пусть обе половинки большего катета будут обозначены буквой «х», а другого — «у».
Теперь нужно рассмотреть два прямоугольных треугольника, гипотенузами у которых являются известные медианы. Для них нужно дважды записать формулу теоремы Пифагора:
(2у)2 + х2 = (√52)2
и
(у)2 + (2х)2 = (√73)2.
Эти два уравнения образуют систему с двумя неизвестными. Решив их, легко можно будет найти катеты исходного треугольника и по ним его гипотенузу.
Сначала нужно все возвести во вторую степень. Получается:
4у2 + х2 = 52
и
у2 + 4х2 = 73.
Из второго уравнения видно, что у2 = 73 — 4х2. Это выражение нужно подставить в первое и вычислить «х»:
4(73 — 4х2) + х2 = 52.
После преобразования:
292 — 16 х2 + х2 = 52 или 15х2 = 240.
Из последнего выражения х = √16 = 4.
Теперь можно вычислить «у»:
у2 = 73 — 4(4)2 = 73 — 64 = 9.
у = 3.
По данным условия получается, что катеты исходного треугольника равны 6 и 8. Значит, можно воспользоваться формулой из первого способа и найти гипотенузу:
√(62 + 82) = √(36 + 64) = √100 = 10.
Ответ: гипотенуза равна 10.
Пример задачи №2
Условие: вычислить диагональ, проведенную в прямоугольнике с меньшей стороной, равной 41. Если известно, что она делит угол на такие, которые соотносятся как 2 к 1.
Решение.
В этой задаче диагональ прямоугольника является наибольшей стороной в треугольнике с углом 90º. Поэтому все сводится к тому, как найти гипотенузу.
В задаче идет речь об углах. Это значит, что нужно будет пользоваться одной из формул, в которых присутствуют тригонометрические функции. А сначала требуется определить величину одного из острых углов.
Пусть меньший из углов, о которых идет речь в условии, будет обозначен α. Тогда прямой угол, который делится диагональю, будет равен 3α. Математическая запись этого выглядит так:
90º = 3 α.
Из этого уравнения просто определить α. Он будет равен 30º. Причем он будет лежать напротив меньшей стороны прямоугольника. Поэтому потребуется формула, описанная в способе №3.
Гипотенуза равна отношению катета к синусу противолежащего угла, то есть:
41 / sin 30º = 41 / (0,5) = 82.
Ответ: гипотенуза равна 82.
О нас |
Демоверсии |
Учебные пособия |
Справочник по математике |
Справочник по математике | Геометрия (Планиметрия) | Треугольники |
Фигура | Рисунок | Формулировка |
Прямоугольный треугольник | Треугольник, у которого один из углов равен 90°, называют прямоугольным треугольником. Сторону, лежащую против угла в 90°, называют гипотенузой, две другие стороны называют катетами. | |
Катеты прямоугольного треугольника | Длины катетов прямоугольного треугольника меньше длины гипотенузы. | |
Равнобедренный прямоугольный треугольник | Равнобедренным прямоугольным треугольником называют такой прямоугольный треугольник, у которого равны катеты.Острые углы равнобедренного прямоугольного треугольника равны 45°. | |
Прямоугольный треугольник с углом в 30° | Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы. | |
Катет, равный половине гипотенузы | Если в прямоугольном треугольнике один из катетов равен половине гипотенузы, то этот катет лежит против угла в 30°. | |
Медиана, проведённая к гипотенузе прямоугольного треугольника | Медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна половине гипотенузы.Посмотреть доказательство | |
Медиана треугольника, равная половине стороны, к которой она проведена | Если в треугольнике медиана равна половине стороны, к которой она проведена, то такой треугольник является прямоугольным. | |
Центр описанной окружности | Середина гипотенузы прямоугольного треугольника является центром описанной около него окружности.Посмотреть доказательство | |
Если в треугольнике центр описанной окружности лежит на одной из сторон, то этот треугольник является прямоугольным треугольником, а центр описанной окружности совпадает с серединой гипотенузы. | ||
Теорема Пифагора |
|
|
Обратная теорема Пифагора | Если в треугольнике квадрат одной стороны равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным |
Прямоугольный треугольник |
|
Равнобедренный прямоугольный треугольник |
|
Прямоугольный треугольник с углом в 30° |
|
Медиана, проведённая к гипотенузе прямоугольного треугольника |
|
Центр описанной окружности |
|
Теорема Пифагора |
|
На сайте можно также ознакомиться с нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.
Источник: https://www.resolventa.ru/demo/traininggia.htm
Как найти гипотенузу в прямоугольном треугольнике: самые простые и запоминающиеся формулы для учеников
Как известно, геометрия – непростая наука, требующая особой аккуратности и точности в решении задач. Многие выражения и формулы, которые мы впоследствии используем в более сложных вычислениях, изложены в учебниках по математике 6-7 класса. Чтобы сделать процесс изучения тригонометрических функций более простым и приятным, в этой статье мы рассмотрим несколько коротких способ вычисления гипотенузы прямоугольного треугольника.
Как найти гипотенузу по катетам?
Вспомним немного теории: прямоугольным треугольником называют плоскую фигуру, у которой есть три угла. Один из них имеет величину 90º, а стороны называют катетами и гипотенузой.
Та сторона, которая противолежит прямому углу, и есть гипотенуза, а остальные две – это прилежащие катеты. Главная игра сторон проявляется в теореме Пифагора, согласно которой гипотенуза равняется сумме квадратов катетов.
Однако это лишь кажется запутанным, ведь на самом деле все гораздо проще.
Свойства геометрической фигуры
Перед тем, как найти гипотенузу треугольника, необходимо разобраться, какие особенности имеет данная фигура. Рассмотрим главные из них:
- В прямоугольном треугольнике оба острых угла в сумме будут равны 90º.
- Катет, лежащий против угла в 30º, будет равен ½ от величины гипотенузы.
- Если катет равен ½ от значения гипотенузы, тогда второй угол будет иметь такую же величину – 30º.
Найти гипотенузу в прямоугольном треугольнике можно несколькими способами. Самым простым решением является вычисление через катеты. Допустим, вам известны значения катетов сторон А и В.
Тогда на выручку приходит теорема Пифагора, повествующая нам, что если поставить каждую величину катета в квадрат и просуммировать полученные данные, мы узнаем чему равна гипотенуза.
Таким образом, нам необходимо просто извлечь значение квадратного корня:
Как найти гипотенузу через угол?
Еще одним способом, который поможет узнать, чему равна гипотенуза в прямоугольном треугольнике, является вычисление через заданный угол. Для этого нам потребуется вывести величину через формулу синуса. Допустим, нам известна величина катета (А) и значение противолежащего угла (α). Тогда все решение заключается в одной формуле: С=А/sin(α).
- Например, если длина катета 40 см, а угол составляет 45°, тогда длину гипотенузы можно вывести следующим образом:
- 40/sin(45°) = 40/0,71 = 56,33.
Определить искомую величину можно также через косинус заданного угла. Допустим, нам известно значение одного катета (В) и острого прилежащего угла (α). Тогда для решения задачи понадобится одна формула: С=В/ cos(α).
- К примеру, если длина катета имеет значение 50 см, а угол составляет 45°, тогда гипотенузу можно вычислить следующим образом:
- 50/cos(45°) = 50/0,71 = 80,42.
Таким образом, мы рассмотрели основные способы как узнать гипотенузу в треугольнике. В ходе решения задания важно сконцентрировать внимание на имеющихся данных, тогда найти неизвестную величину будет достаточно просто. Необходимо знать всего пару формул и процесс решения задач станет простым и приятным.
Источник: https://otvetkak.ru/other/kak-najti-gipotenuzu-v-pryamougolnom-treugolnike.html
Гипотенуза в прямоугольном треугольнике
Гипотенуза – это самая длинная сторона прямоугольного треугольника. Она лежит напротив прямого угла. Длина гипотенузы может быть найдена различными способами.
Если известна длина обоих катетов, то ее размер вычисляется по теореме Пифагора: сумма квадратов двух катетов равняется квадрату гипотенузы.
Соответственно длина гипотенузы в прямоугольном треугольнике вычисляется по формуле:
К примеру: катет a = 3 см, катет b = 4 см.
Чтобы найти длину гипотенузы в прямоугольном треугольнике, подставим числа в формулу. =5 см
Преобразовав эту формулу можно найти и длину одного неизвестного катета.
,
В случае если известна длина катета A и гипотенузы C, угол α можно определить по формуле:
Второй угол будет вычисляться так: β = 180°-90°-α. Зная, что сумма всех углов составляет 180°, вычитаем прямой угол и уже известный.
К примеру: A = 3 см, C=5 см, подставляем значения в формулу: =0,6
По таблицу синусов угол α будет приблизительно равен 36°, соответственно угол β = 54°.
Если по условиям даны параметры двух катетов, то можно найти острый угол по следующей формуле:
К примеру: A = 3 см, B = 4 см
Подставляем значения в формулу =0,75
По таблице тангенсов угол α будет равняться 36°, соответственно угол β = 54°.
Также стороны прямоугольного треугольника можно найти по различным формулам в зависимости от количества известных переменных.
A
B
C
При расчете параметров прямоугольного треугольника важно обращать внимание на известные значения и решать задачу по самой простой формуле.
Источник: https://2mb.ru/matematika/geometriya/gipotenuza-v-pryamougolnom-treugolnike/
Формула гипотенузы равнобедренного прямоугольного треугольника
1001student.ru > Геометрия > Формула гипотенузы равнобедренного прямоугольного треугольника
В повседневной жизни каждому человеку время от времени приходится решать задачи из школьной программы.
Несмотря на то что многие в детстве считали эти знания ненужными, сейчас все понимают, что были неправы.
Например, в любой момент может понадобиться найти длину гипотенузы равнобедренного треугольника, формулу расчета которой несложно вывести самостоятельно. Для этого следует вспомнить законы геометрии.
Законы геометрии
В первую очередь надо определиться с терминами. Чтобы в дальнейшем было понятно, что означают те или иные геометрические понятия, необходимо вспомнить следующие определения:
- треугольник;
- сторона;
- угол;
- бедро;
- равнобедренный;
- равносторонний;
- прямоугольный;
- гипотенуза;
- катет;
- теорема.
Треугольник – это замкнутая геометрическая фигура, состоящая из трех точек, соединенных последовательно тремя отрезками, которые являются сторонами этой фигуры. Прямые, исходящие из одной точки, образуют угол.
Каждый треугольник состоит из трех сторон. Исходящие из одной вершины стороны называются бедрами, поэтому фигура, у которой минимум две стороны имеют равную длину, называется равнобедренной. В случае когда все стороны фигуры равны, она называется равносторонним треугольником.
Треугольник, в котором есть прямой угол, называется прямоугольным. Прямым в геометрии называется угол в 90 градусов. Поскольку в каждой треугольной фигуре сумма всех углов равна 180 градусов, то в ней может быть только один прямой угол. Гипотенуза в переводе с греческого языка означает «натянутая» – это сторона треугольника, которая лежит напротив прямого угла.
Катет – это одна из двух других сторон прямоугольного треугольника, тоже греческое слово, которое в переводе означает опущенный, отвесный или перпендикуляр. Катеты одновременно являются бедрами, а в равнобедренном прямоугольном треугольнике гипотенуза служит еще и основанием.
Теорема – это истина, которую надо доказать. Одно из самых известных и значимых правил геометрии – это теорема Пифагора.
Теорема Пифагора
Древнегреческий математик и философ Пифагор, если верить историкам, первым нашел правильный расчет соотношения размеров длин катетов и гипотенузы. Согласно теореме Пифагора, длина гипотенузы в квадрате равна сумме длин катетов, возведенных в квадрат. Можно кратко описать теорему, обозначив гипотенузу буквой Г, а катеты — К1 и К2:
Г2 =К12 + К22
Как вычислить формулу
Если довериться логике и Пифагору, то легко высчитать, что размер самой длинной стороны треугольника будет равен квадратному корню из суммы квадратов двух меньших сторон. Если учесть, что в равнобедренном треугольнике катеты равны, то формулу можно усовершенствовать.
Гипотенузу равнобедренного треугольника можно рассчитать путем вычисления квадратного корня из квадрата длины катета, умноженного на два.
Вопрос на засыпку
Чтобы ответить на вопрос, как найти гипотенузу равностороннего треугольника, надо вспомнить, чему равен каждый его угол.
При любой длине сторон в этой фигуре, сумма всех углов неизменна и равна 180 градусов, соответственно каждый из них в этой фигуре равен 60 градусов.
Прямого угла в такой фигуре не может быть по определению, поэтому нет и гипотенузы. Значит, поставленный вопрос некорректен и не имеет ответа.
Практическое применение
В каких сферах повседневной жизни может понадобиться знание формулы? Эта тема находит практическое применение в архитектуре, строительстве, физике, математике, астрономии и других областях народного хозяйства, например:
- Для дизайнера, работающего над планировкой дома или квартиры, важно знать, является ли конкретный угол прямым. Высчитав длину всех сторон, можно сделать вывод о размере угла.
- В организациях, занимающихся оптовой торговлей или транспортными услугами, для правильного построения логистической схемы распределения товара между розничными точками порой необходимо рассчитывать самые краткие и оптимальные пути передвижения между различными объектами.
- На даче или огороде можно правильно рассчитать длину лестницы, необходимой для установки на определенную высоту под определенным углом, чтобы легко взбираться на мансарду или чердак.
Если внимательно оглядеться вокруг, можно различить большое количество разнообразных геометрических фигур.
Где геометрия, там и возможности использовать ее правила и формулы расчетов, в том числе и формулу длины гипотенузы.
Источник: https://1001student.ru/geometriya-2/formula-gipotenuzy-ravnobedrennogo-pryamougolnogo-treugolnika.html
Свойство медианы прямоугольного треугольника
Медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы.
Пусть СМ — медиана прямоугольного треугольника АВС с прямым углом С.
Проведем через вершину В прямую m, параллельную катету АС.
Через вершину А проведем прямую n, параллельную катету ВС.
Прямые m и n пересекаются в точке К.
Мы получили прямоугольник АКВС (параллелограмм, в котором угол С – прямой).
Диагонали прямоугольника равны и в точке пересечения делятся пополам.
Задача ЕГЭ по теме «Медиана прямоугольного треугольника»
В треугольнике ABC угол ACB равен , угол B равен , CD — медиана. Найдите угол ACD. Ответ дайте в градусах.
Медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы. Это значит, что треугольник CBD – равнобедренный, CD = BD. Тогда
Источник: https://ege-study.ru/mediana-pryamougolnogo-treugolnika
Гипотенуза и угол «α» прямоугольного треугольника
Если в прямоугольном треугольнике известна гипотенуза и угол α, то можно сразу вычислить катеты и угол β из свойства суммы углов треугольника и отношений синуса и косинуса. (рис. 79.1)
β=90°-α
a=c sinα
b=c cosα
Периметр, заданный суммой катетов и гипотенузы, можно представить в виде суммы известной гипотенузы и выраженных через нее катетов.
P=a+b+c=c sinα+c cosα+c=c(sinα+cosα+1)
Площадь любого прямоугольного треугольника равна половине произведения катетов, следовательно, чтобы рассчитать площадь через гипотенузу и угол α, необходимо также заменить неизвестные на соответствующие выражения.
S=ab/2=(sinα cosα)/2
Треугольник, в котором один угол прямой, будет иметь всего одну высоту, опущенную на гипотенузу. Из любого внутреннего прямоугольного треугольника, полученного с помощью дополнительного построения высоты, можно выразить ее, как произведение катета и синуса угла. (рис. 79.2)
h=b sinα=c cosα sinα
Найти медиану прямоугольного треугольника проще всего, если она опущена на гипотенузу, в таком случае она будет равна ее половине. Медианы катетов вычисляются по стандартным формулам с заменой переменных через гипотенузу. (рис.79.
3)
m_с=c/2
m_b=√(2a^2+2c^2-b^2 )/2=√(2a^2+2a^2+2b^2-b^2 )/2=√(4a^2+b^2 )/2=√(4 〖c^2 sin^2〗α+〖c^2 cos^2〗α )/2=(с√(3 sin^2α+1))/2
m_a=√(2c^2+2b^2-a^2 )/2=√(2a^2+2b^2+2b^2-a^2 )/2=√(4 〖c^2 cos〗^2α+sin^2α )/2=(с√(3 cos^2α+1))/2
Рассчитать биссектрисы прямоугольного треугольника тоже достаточно просто, если использовать специальные формулы, зная гипотенузу и угол α. Преобразуя выражения, можно упростить их до следующих тождеств. (рис. 79.
4)
l_с=(ab√2)/(a+b)=(c sinα cosα √2)/(sinα+cosα )
l_a=√(bc(a+b+c)(b+c-a) )/(b+c)=√(bc((b+c)^2-a^2 ) )/(b+c)=√(bc(b^2+2bc+c^2-a^2 ) )/(b+c)=√(bc(b^2+2bc+b^2 ) )/(b+c)=√(bc(2b^2+2bc) )/(b+c)=(b√(2c(b+c) ))/(b+c)=(c cosα √(2c(c cosα+c) ))/(c cosα+c)=(c cosα √(2(cosα+1) ))/(cosα+1)
l_b=√(ac(a+b+c)(a+c-b) )/(a+c)=(a√(2c(a+c) ))/(a+c)=(c sinα √(2c(c sinα+c) ))/(c sinα+c)=(c sinα √(2(sinα+1) ))/(sinα+1)
Проведенная средняя линия прямоугольного треугольника создает внутри него еще один подобный треугольник в два раза меньше первоначального, поэтому сама она равна половине параллельной ей стороны. (рис. 79.7)
M_a=a/2=(c sinα)/2
M_b=b/2=(c cosα)/2
M_c=c/2
Прямоугольный треугольник может быть вписан в окружность и описан вокруг нее.
Радиус вписанной окружности внутри треугольника можно вычислить, сложив катеты за вычетом гипотенузы, и разделив полученное число на два.
Рассчитать радиус описанной окружности для прямоугольного треугольника через гипотенузу еще проще, так как он равен ее половине. (рис. 79.5, 79.6)
r=(a+b-c)/2=(c sinα+c cosα-c)/2=c/2 (sinα+cosα-1)
R=c/2
Источник: https://geleot.ru/education/math/geometry/calc/triangle/hypotenuse_and_angle_a
Калькулятор длин сторон треугольника онлайн умеет вычислять длину сторон 14 способами.
Калькулятор может:
- Найти все стороны треугольника.
- Найти все углы треугольника.
- Найти площадь (S) и периметр (P) треугольника.
- Найти радиус (r) вписанной окружности.
- Найти радиус (R) описанной окружности.
- Найти высоту (h) треугольника.
Просто введите любые имеюшиеся данные и, если их достаточно, то калькулятор сам подберет нужные формулы для вычислений и покажет подробный расчет с выводом формул.
Сторона треугольника (или длина сторон) может быть найдена различными методами.
В большинстве случаев достаточно воспользоваться одной из ниже приведенных формул. Однако не редки случаи когда для нахождения искомой стороны понадобиться обратиться к дополнительным материалам или решения в два действия.
Как найти длину стороны треугольника?
Найти длину сторон треугольника очень просто на нашем онлайн калькуляторе. Так же длина может быть найдена самостоятельно по формулам. Выбор нужной формулы зависит от того какие данные известны.
Для прямоугольного треугольника:
1) Найти катет через гипотенузу и другой катет
где a и b — катеты, с — гипотенуза.
2) Найти гипотенузу по двум катетам
где a и b — катеты, с — гипотенуза.
3) Найти катет по гипотенузе и противолежащему углу
где a и b — катеты, с — гипотенуза,α° и β° — углы напротив катетов.
4) Найти гипотенузу через катет и противолежащий угол
где a и b — катеты, с — гипотенуза,α° и β°- углы напротив катетов.
Для равнобедренного треугольника:
1) Найти основание через боковые стороны и угол между ними
где a — искомое основание, b — известная боковая сторона,α° — угол между боковыми сторонами.
2) Найти основание через боковые стороны и угол при основании
где a — искомое основание,b — известная боковая сторона,β° — угол при осноавнии.
3) Найти боковые стороны по углу между ними
где b — искомая боковая сторона, a — основание,α° — угол между боковыми сторонами.
4) Найти боковые стороны по углу при основании
где b — искомая боковая сторона, a — основание,β° — угол при осноавнии.
Для равностороннего треугольника:
1) Найти сторону через площадь
где a — искомая сторона, S — площадь треугольника.
2) Найти сторону через высоту
где a — искомая сторона,h — высота треугольника.
3) Найти сторону через радиус вписанной окружности
где a — искомая сторона,r — радиус вписанной окружности.
4) Найти сторону через радиус описанной окружности
где a — искомая сторона,R — радиус описанной окружности.
Для произвольного треугольника:
1) Найти сторону через две известные стороны и один угол (теорема косинусов)
где a — искомая сторона, b и с — известные стороны, α° — угол напротив неизвестной стороны.
2) Найти сторону через одну известную сторону и два угла (теорема синусов)
где a — искомая сторона, b — известная сторона, α° и β° известные углы.
Скачать все формулы в формате Word
Как вычислить гипотенузу в прямоугольном треугольнике
Если один из углов в треугольнике равен 90°, значит, две прилегающие к нему стороны можно называть катетами, а сам треугольник — прямоугольным. Третью сторону в такой фигуре называют гипотенузой, и с ее длиной связан самый, пожалуй, известный на нашей планете математический постулат — теорема Пифагора. Однако для вычисления длины этой стороны можно использовать не только ее.
Инструкция
Теорему Пифагора используйте для нахождения длины гипотенузы (с) треугольника с известными величинами обоих катетов (a и b). Вам нужно возвести их размеры в квадрат и сложить, а из получившегося результата извлеките квадратный корень: c = √(a²+b²).
Если кроме размеров обоих катетов (a и b) в условиях дана высота (h), опущенная на гипотенузу (c), необходимость в вычислении степеней и корней отпадет. Перемножьте длины коротких сторон и разделите результат на высоту: c = a*b/h.
При известных величинах углов в вершинах прямоугольного треугольника, примыкающих к гипотенузе, и длине одного из катетов (a), воспользуйтесь определениями тригонометрических функций — синуса и косинуса. Выбор одной из них зависит от взаимного расположения известного катета и задействованного в расчетах угла. Если катет лежит напротив угла (α), исходите из определения синуса — длина гипотенузы (c) должна быть равна произведению длины этого катета на синус противолежащего угла: c = a*sin(α). Если же задействован угол (β), примыкающий к известному катету, используйте определение косинуса — умножайте длину стороны на косинус прилежащего к ней угла: c = a*cos(β).
Знание радиуса (R) описанной около прямоугольного треугольника окружности делает вычисление длины гипотенузы (c) очень простой задачей — просто увеличьте эту величину вдвое: c = 2*R.
Медиана по определению делит пополам сторону, на которую она опущена. Как следует из предыдущего шага, половина гипотенузы равна радиусу описанной окружности. Поскольку вершина, из которой на гипотенузу может быть опущена медиана, тоже обязана лежать на описанной окружности, длина этого отрезка равна радиусу. Значит, если длина медианы (f), опущенной из прямого угла, известна, для вычисления размера гипотенузы (c) можно использовать формулу, аналогичную предыдущей: c = 2*f.
Источники:
- формула длины гипотенузы в прямоугольном треугольнике
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.